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Abstract This paper proposes a cooperative integrated sensing and communication (ISAC) framework to support the low-altitude

economy with high-accuracy sensing and high-rate communication. In the framework, ground base stations (BSs) use coordinated

beamforming to cooperatively serve heterogeneous unmanned aerial vehicles (UAVs) performing either ISAC or sensing-only tasks. To

maximize the weighted sum rate subject to sensing signal-to-interference-plus-noise ratio (SINR) constraints, we jointly optimize the

BS transmit beamforming, UAV receive filtering, and UAV trajectories. An efficient alternating optimization algorithm, incorporating

semidefinite relaxation (SDR) and successive convex approximation (SCA), is developed to solve the challenging non-convex problem.

Simulation results demonstrate that the proposed joint cooperative design achieves superior communication throughput while ensuring

sensing robustness, and underscore the necessity of adapting UAV trajectories to varying sensing requirements, BS transmit power and

altitudes.
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1 Introduction

The evolution of sixth-generation (6G) wireless networks is driving a paradigm shift toward architectures that
integrate communication and sensing functionalities. Integrated sensing and communication (ISAC), as a key en-
abler, utilizes shared spectrum and hardware to enable concurrent data transmission and environmental perception.
This unified approach improves spectral efficiency, reduces system complexity, and enhances adaptability to dy-
namic environments [1–3]. It supports the convergence of functions and promotes compact, cost-effective system
designs. ISAC has demonstrated strong potential in latency-sensitive applications such as intelligent transporta-
tion, emergency communication, and low-altitude surveillance [4]. The underlying physical layer is also evolving,
with advanced waveforms based on orthogonal frequency division multiplexing (OFDM) being designed to strike
an effective balance between communication capacity and sensing precision [5].

To enhance ISAC performance, cooperative architectures have attracted growing interest. Compared with single-
node systems, cooperation among base stations (BSs) enables joint signal transmission and beamforming, which
improves spatial resolution, suppresses interference, and enhances sensing accuracy [1, 6]. Such cooperative frame-
works, where different nodes might handle transmission and reception to mitigate challenges like self-interference,
are a key area of study, with research exploring bistatic radar cross-section (RCS) analysis and synchronization
to validate their feasibility [7]. Furthermore, advanced architectures like network-assisted full-duplex in cell-free
networks are being investigated to support multi-static ISAC with coexisting uplink and downlink communica-
tions [8]. Such cooperation also facilitates resource pooling and information sharing, supporting robust ISAC in
heterogeneous environments. In challenging scenarios with low signal-to-interference-plus-noise ratio (SINR), such
as urban canyons, cooperation significantly improves detection of weak or distant targets [3,4]. Recent studies have
further investigated integrated trajectory and resource scheduling for cooperative ISAC, laying the groundwork for
algorithmic and system-level optimization [9].
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Unmanned aerial vehicles (UAVs) have emerged as key components in cooperative ISAC systems due to their
high mobility, flexible deployment, and favorable line-of-sight (LoS) conditions [2, 10, 11]. UAVs serve as aerial
relays while performing sensing tasks such as detection, mapping, and tracking [11–13]. By dynamically adjusting
trajectories, UAVs enhance air-ground link quality and extend sensing coverage to meet time-varying mission and
channel requirements [14–16].

Motivated by these advantages, systems involving multiple BSs and heterogeneous UAVs are gaining momentum.
In such systems, BSs jointly manage beamforming and signal scheduling to support UAV communications while
improving sensing of passive targets [1, 17, 18]. UAV heterogeneity enables flexible task allocation. However, tight
coupling between trajectories, beamforming, and sensing performance leads to complex, high-dimensional, and
non-convex optimization problems, especially under real-time constraints [16, 19].

To tackle these challenges, joint optimization strategies have been proposed, combining trajectory planning with
beamforming design. Some approaches adjust UAV positions to enhance channel conditions and beam alignment [10,
11, 18], while others incorporate advanced techniques such as 3D beamforming, time-domain tracking, and target
motion prediction to improve reliability and sensing accuracy [20–22]. This includes operational strategies like
resolution-aware beam scanning to effectively detect targets with required precision [23], as well as the development
of fundamental performance metrics, such as task mutual information, to formally evaluate the capability for discrete
sensing tasks [24]. Beam-assisted sensing has also been applied to enhance UAV localization and DoA estimation
in dynamic and multipath-rich environments [25].

Energy-aware designs have integrated UAV power consumption models into trajectory planning, enabling energy-
efficient beam and trajectory control frameworks [26]. These designs support performance-endurance trade-offs,
especially for long-duration tasks. Deep reinforcement learning (DRL) has been applied for adaptive control under
dynamic conditions such as mobility, jamming, or weather, though issues with scalability and interpretability
remain [27]. This is part of a broader trend toward intelligent ISAC, where AI-driven, data-centric methods are
increasingly utilized to tackle the high complexity of ISAC optimization problems that are often intractable for
traditional model-based approaches [28]. For UAV-based ISAC systems specifically, machine learning provides
a promising data-driven approach for designing end-to-end predictive beamforming schemes, directly mapping
historical channel data to optimized beamforming matrices [29]. Reconfigurable intelligent surfaces (RIS) have
also been explored, enabling controllable reflection paths that assist UAVs with beam steering and propagation
enhancement [3, 30–38]. RIS expands spatial degrees of freedom and mitigates blockage effects in low-altitude
scenarios. Integrating RIS into UAV-assisted ISAC allows fine-grained control and robust sensing, offering both
theoretical and practical benefits for joint trajectory and beamforming design [33,35]. An overview of different IRS
architectures, including fully-passive, semi-passive, and active IRSs, highlights their distinct fundamental limits and
roles in enabling non-line-of-sight sensing and communication [39].

Motivated by the aforementioned challenges and opportunities, this paper proposes a cooperative UAV-assisted
ISAC system tailored for low-altitude economy (LAE) scenarios. The system includes two types of UAVs: those
supporting both communication and sensing, and those dedicated to sensing. Ground BSs cooperatively transmit
integrated signals via coordinated beamforming to provide communication services and perform target detection.
A unified signal model is developed to capture key processes such as signal transmission, echo reception, self-
interference, and receive filtering, enabling accurate characterization of heterogeneous UAVs and cooperative multi-
BS operations. The main contributions are as follows.

• We establish a cooperative UAV-assisted ISAC system model tailored for low-altitude scenarios, where multiple
BSs jointly serve heterogeneous UAVs. A unified signal model is developed to capture the processes of commu-
nication transmission, echo reception, and interference, and we derive closed-form expressions for both achievable
communication rate and sensing SINR.

• A joint optimization problem is formulated to maximize the overall communication throughput while satisfying
sensing quality requirements. The optimization variables include BS transmit beamformers, UAV receive filters, and
UAV trajectories, subject to realistic constraints such as power limits, mobility dynamics, and collision avoidance.

• To efficiently solve the resulting non-convex problem, we design an alternating optimization algorithm that
decomposes the problem into three submodules. Each subproblem is tackled using appropriate techniques such as
semidefinite relaxation (SDR), successive convex approximation (SCA), Rayleigh quotient analysis, and trust-region
methods to ensure convergence.

• Extensive simulations are conducted to evaluate the performance of the proposed method against baseline
schemes. Results demonstrate significant gains in both communication and sensing metrics, and further sensitivity
analysis offers insights into the impact of system parameters such as UAV altitude and BS density.

The rest of this paper is organized as follows. Section 2 describes the system model, including UAV architecture,
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Figure 1 (Color online) System model.

signal modeling, and constraints. Section 3 presents the proposed solution, detailing the alternating optimization
strategy and subproblem formulations. Section 4 reports simulation results and comparisons with benchmarks.
Section 5 concludes the paper.

Notations: Lowercase and uppercase boldface letters represent vectors and matrices, respectively. E(·) denotes
statistical expectation. For a scalar a and a vector a, |a| and ‖a‖ represent the absolute value and Euclidean norm,
respectively. Superscripts (·)T and (·)H denote transpose and Hermitian transpose. Cx×y denotes the space of x×y
complex matrices. j =

√
−1 denotes the imaginary unit.

2 System model

We consider a cooperative ISAC system, as illustrated in Figure 1, which comprises multiple ground BSs and two
types of UAVs, each serving different operational roles. The first type, referred to as communication-and-sensing
UAVs, is defined as the set Kcs = {1, . . . ,Kcs}. These UAVs are equipped with a single antenna and can perform
both wireless data exchange and environmental sensing simultaneously, making them highly versatile in mission-
critical scenarios. The second type, defined as Ks = {1, . . . ,Ks}, includes sensing-only UAVs, which act as passive
point targets and focus exclusively on collecting environmental information without any communication hardware.
The set of all UAVs is defined as K = Kcs ∪ Ks, with a combined cardinality of K = Kcs +Ks.

The ground infrastructure consists of M BSs, represented by the set M = {1, 2, . . . ,M}. Each BS is equipped
with a uniform linear antenna array (ULA) with L elements, enabling directional beamforming to support both
communication and sensing. These BSs work cooperatively to serve the UAVs by transmitting integrated signals
and processing returned echoes, thereby forming a tightly coupled aerial-ground ISAC network.

For time management, the system operates over a total period T , which is divided into N discrete and evenly
spaced time slots. Each time slot has a duration defined as ∆t = T

N . The collection of all these time slots is defined
as the set N = {1, 2, . . . , N}, where N indicates the total number of time slots within the operational period. This
discretized timeline facilitates efficient modeling of dynamic interactions between the UAVs and the ground system.

In a three-dimensional Cartesian coordinate system, the horizontal position of each BS m ∈ M is represented
by a two-dimensional vector vm = (xm, ym). Similarly, the position of the k-th UAV at the n-th time slot is
characterized by its horizontal coordinates qk[n] = (xk[n], yk[n]) and its altitude Hk. The altitude Hk of UAV k is
constrained within a specific range to ensure operational safety and compliance with system requirements:

Hmin 6 Hk 6 Hmax, (1)

where Hmin and Hmax represent the minimum and maximum permissible altitudes, respectively.

At a specific time slot n, the angle of departure (AoD) from BS m to UAV k can be computed geometrically
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based on the relative positions of the BS and UAV. The AoD θm,k[n] is given by

θm,k[n] = arccos

(

Hk
√

‖qk[n]− vm‖2 +H2
k

)

. (2)

To facilitate signal processing, the steering vector corresponding to the calculated AoD θm,k[n] is defined as

am,k[n] = [1, e2π
d
λ
cos θm,k[n], . . . , e2π

d
λ
(L−1) cos θm,k[n]]T, (3)

where d denotes the antenna spacing, and λ is the wavelength of the transmitted signal.
Since the system operates in a low-altitude environment, non-line-of-sight (NLoS) paths are negligible. While

this LoS assumption simplifies the analysis, it is important to note that comprehensive standardized models based
on geometry-based stochastic methods (GBSM) are being developed to capture complex multipath effects by con-
catenating transmission and reflection channel segments in various ISAC scenarios [40]. For the scope of this work,
only the LoS component is considered in the channel model, which captures the geometric relationship between the
UAV and the n-th BS, as well as the effects of path loss and antenna steering.

The channel vector between BS m and UAV k at time slot n is given by

hm,k[n] =
√

βm,k[n] · am,k[n], (4)

where βm,k[n] represents the path loss associated with the signal propagation distance between BS m and UAV k.
The path loss βm,k[n] is calculated as

βm,k[n] = κ(‖qk[n]− vm‖2 +H2
k)
−1, (5)

where κ is the reference path loss at a distance of 1 m.
By combining these expressions, the channel vector from BS m to UAV k can be expressed in its final form as

hm,k[n] = κ
1
2 (‖qk[n]− vm‖2 +H2

k)
− 1

2 · am,k[n]. (6)

2.1 Communication model

In the proposed system, the ground BSs work cooperatively to establish robust communication links with UAVs
while simultaneously supporting sensing tasks. This cooperative operation enables the efficient use of spectrum
and resources, ensuring that both communication and sensing requirements are fulfilled in real time. Each BS is
responsible for transmitting signals that serve both communication and sensing purposes, allowing the system to
adapt dynamically to the demands of the UAV network.

The total transmitted signal of BS m at time slot n is given by

xm[n] =
∑

i∈Kcs

wc
m,i[n]s

c
m,i[n] +

∑

i∈K

wr
m,i[n]s

r
m,i[n], (7)

where scm,i[n] and s
r
m,i[n] denote the communication and sensing symbols transmitted from BS m to UAV i, respec-

tively, and wc
m,i[n],w

r
m,i[n] ∈ CL×1 are the corresponding beamforming vectors.

The communication signal received by UAV k at time slot n is a superposition of signals transmitted from all BSs,
including the desired communication signal, interference from other users’ communication signals, and interference
from sensing signals. This received signal can be expressed as

yk[n]=
∑

m∈M

hH
m,k[n]w

c
m,k[n]s

c
m,k[n]

︸ ︷︷ ︸

desired signal

+
∑

m∈M

∑

i∈Kcs\k

hH
m,k[n]w

c
m,i[n]s

c
m,i[n]

︸ ︷︷ ︸

multi-UAV interference

+
∑

m∈M

∑

i∈K

hH
m,k[n]w

r
m,i[n]s

r
m,i[n]

︸ ︷︷ ︸

sensing interference

+nk[n],
(8)

where nk[n] ∼ CN (0, σ2I) denotes additive white Gaussian noise (AWGN) at the receiver.
Based on the received signal structure, the SINR for UAV k at time slot n is defined as

γck[n] =

∑

m∈M

|hH
m,k[n]w

c
m,k[n]|2

∑

m∈M

∑

i∈Kcs\k

|hH
m,k[n]w

c
m,i[n]|2 +

∑

m∈M

∑

i∈K

|hH
m,k[n]w

r
m,i[n]|2 + σ2

. (9)
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The achievable communication rate Rk[n] for UAV k during time slot n is derived based on the SINR γck[n],
which can be expressed as

Rk[n] = log2(1 + γck[n]). (10)

To evaluate the overall communication performance of the system, the sum communication rate R[n] for all UAVs
at time slot n is defined as

R[n] =
∑

k∈K

ωkRk[n] =
∑

k∈K

ωk log2(1 + γck[n]), (11)

where ωk is a weight factor that reflects the priority or importance of UAV k in the system. By appropriately choosing
ωk, the system can prioritize certain UAVs based on their mission-critical requirements or service demands.

This communication model provides a comprehensive framework for analyzing the performance of cooperative
communication and sensing systems involving multiple BSs and UAVs. It accounts for interference, noise, and the
impact of beamforming on the quality of the communication links.

2.2 Sensing model

In the proposed system, we consider a scenario where each UAV is sensed by the BSs using echo signal processing
techniques. The sensing task involves detecting and tracking the UAVs, leveraging the reflected signals received at
the BSs. The system adopts a cooperative sensing framework, wherein multiple BSs operate under a monostatic
architecture and perform sensing individually via their own transmit and receive signals.

The received signal at BS j at time slot n can be expressed as

yr,j [n] =
∑

l∈K

ξj,lAj,l[n]xj [n]

︸ ︷︷ ︸

echo signals from UAVs

+
√

ζjH
H
SI,jxj [n]

︸ ︷︷ ︸

self-interference

+
∑

i6=j,i∈M

√
αi,jG

H
i,jxi[n]

︸ ︷︷ ︸

inter-BS interference

+nr,j , (12)

where ξj,l ∼ CN (0, σ2
t ) denotes the RCS of UAV l, and Aj,l[n] is the target response matrix defined as

Aj,l[n] =
√

ρj,l[n] · aj,l[n]aHj,l[n], (13)

where ρj,l[n] represents the path loss for the link between BS j and UAV l. The coefficient ζj characterizes the
residual self-interference level, and the suppression coefficient αi,j denotes the interference signal from BS i to BS
j. The matrix HSI,j ∈ CL×L is the self-interference channel matrix of BS j, the matrix Gi,j represents the direct
channel from BS i to BS j, and nr,j ∼ CN (0, σ2

rIL) is the additive Gaussian noise.
To isolate the reflected signals of interest, each BS applies a receive filter uj,k[n] ∈ CL×1. The filtered echo signal

corresponding to UAV k, received by BS j, is given by

uH
j,k[n]yr,j[n] = uH

j,k[n]
∑

l∈K

ξj,lAj,l[n]xj [n] + uH
j,k[n]

√

ζjH
H
SI,jxj [n]+ uH

j,k[n]
∑

i6=j,i∈M

√
αi,jG

H
i,jxi[n] + uH

j,k[n]nr,j . (14)

The total filtered echo signal received by all BSs for UAV k is represented as
∑

j∈M uH
j,k[n]yr,j [n]. Based on the

filtered and aggregated echo signals, the sensing SINR serves as a key metric to evaluate the quality of the sensing
performance for UAV k at time slot n. The corresponding SINR, denoted by γrk[n], quantifies the ratio of the power
of the desired echo signals to that of the combined interference and noise. Its explicit expression is provided in (15).

γrk[n]=
σ2
t E

[ ∑

j∈M

∣
∣uH

j,k[n]ξj,kAj,k[n]xj [n]
∣
∣
2]

ζjE
[ ∑

j∈M

∣
∣uH

j,k
[n]HH

SI,jxj [n]
∣
∣
2]

+αi,jE

[ ∑

j∈M

∑

i6=j

∣
∣uH

j,k
[n]GH

i,j
xi[n]

∣
∣
2]

+σ2
r

∑

j∈M

∥
∥uj,k[n]

∥
∥

2
+σ2

t E

[ ∑

j∈M

∑

l 6=k

∣
∣uH

j,k
[n]ξj,lAj,l[n]xj[n]

∣
∣
2] .

(15)

2.3 Problem formulation

In the proposed ISAC system, we jointly optimize the coordinated transmit beamforming vectors {wc
m,k[n]} and

{wr
m,k[n]}, the receive filters {uj,k[n]}, and the UAV trajectories {qk[n]}. The objective is to maximize the weighted

sum rate while ensuring that the sensing SINR for all UAVs at each time slot exceeds a predefined threshold Γ.
This formulation captures the trade-off between communication and sensing, aligning with the ISAC paradigm.
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Since the UAVs are assigned predefined initial and final positions within the total operational period T , their
trajectories must comply with the following position constraints:

qk[1] = qI
k, (16)

qk[n] = qF
k , (17)

where qI
k and qF

k denote the fixed initial and final horizontal positions of UAV k, respectively. These constraints
ensure that each UAV begins its mission from a designated starting location and eventually reaches its assigned
destination, which may be determined by mission planning, airspace coordination, or task-specific requirements.

In addition to the initial and terminal position requirements, UAV trajectories must satisfy physical motion
constraints and safety requirements throughout the flight. In particular, each UAV must comply with a maximum
speed limit and maintain a safe distance from other UAVs to avoid potential collisions. The constraints are specified
as follows:

‖qk[n+ 1]− qk[n]‖2 6 Vmax∆t, ∀k ∈ K, n ∈ N , (18)

‖qj [n]−qi[n]‖2+(Hj−Hi)
2> D2

min,∀j, i∈K, j 6= i, n∈N , (19)

where Vmax represents the maximum allowable speed of a UAV, and ∆t is the fixed time duration of each slot. The
parameter Dmin denotes the minimum safe distance that must be maintained between any two UAVs at all times,
taking into account their three-dimensional positions through the inclusion of altitude differences. These constraints
are essential to ensure that UAV trajectories are not only dynamically feasible under motion limits, but also satisfy
airspace safety requirements to prevent mid-air collisions.

Furthermore, to maintain energy efficiency and ensure practical deployment, the total transmit power of each BS
must be kept within a predefined power budget Pmax. Accordingly, the transmit power constraint for BS m at time
slot n is given by

∑

k∈Kcs

‖wc
m,k[n]‖2 +

∑

k∈K

‖wr
m,k[n]‖2 6 Pmax, ∀m,n. (20)

This constraint ensures that the sum power allocated to both communication and sensing signals by BS m does
not exceed its maximum transmission capacity. It serves to regulate energy consumption, promote sustainable
operation, and prevent signal distortion due to hardware limitations.

Given the constraints above, the joint coordinated transmit beamforming and UAV trajectory optimization
problem can be formulated as follows:

(P1) : max
{wc

m,k
[n],wr

m,k
[n],uj,k[n],qk[n]}

∑

n∈N

R[n] (21a)

s.t. γrk[n] > Γ, ∀k, n, (21b)
∑

k∈Kcs

‖wc
m,k[n]‖2 +

∑

k∈K

‖wr
m,k[n]‖2 6 Pmax, ∀m,n, (21c)

qk[1] = qI
k, (21d)

qk[N ] = qF
k , (21e)

‖qk[n+ 1]− qk[n]‖2 6 Vmax∆t, ∀k ∈ K, n ∈ N , (21f)

‖qj [n]− qi[n]‖2 + (Hj −Hi)
2 > D2

min, ∀j, i ∈ K, j 6= i, n ∈ N . (21g)

In this formulation, the objective in (21a) maximizes the total communication rate R[n] over all UAVs and time
slots. Constraint (21b) ensures that the sensing SINR γrk[n] exceeds a threshold Γ for reliable sensing. The power
constraint (21c) limits each BS’s transmit power to manage energy consumption. Constraints (21d) and (21e) specify
the UAVs’ initial and final positions, while constraint (21f) enforces a speed limit on UAV movement between time
slots. Eventually, constraint (21g) imposes a minimum separation distance Dmin to prevent collisions.

Problem (P1) is a non-convex optimization involving coupled variables—beamforming vectors, receive filters, and
UAV trajectories—with non-linear, bilinear, and quadratic terms in both the objective and constraints. Rank-one
constraints and the coupling between beamforming and mobility further increase complexity and render the problem
NP-hard. Due to the intractability of closed-form solutions, we propose an alternating optimization framework that
decomposes the problem into subproblems, each solved iteratively using convex techniques such as SDR and SCA.
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3 Proposed solution

In this section, we address the joint optimization problem (P1). Due to the complexity of jointly optimizing
transmit beamforming {wc

m,k[n]} and {wr
m,k[n]}, receive filters {uj,k[n]}, and UAV trajectories {qk[n]}, we adopt

an alternating optimization framework combined with the SCA technique. This approach updates each variable
while fixing the others, and converges to a locally optimal solution.

3.1 Problem reformulation

From the expression in (7), the filtered echo signal for UAV k received by BS j at time slot n can be decomposed as

uH
j,k[n]Aj,k[n]xj [n] =

∑

t∈Kcs

uH
j,k[n]Aj,k[n]w

c
j,t[n]s

c
j,t[n] +

∑

t∈K

uH
j,k[n]Aj,k[n]w

r
j,t[n]s

r
j,t[n]. (22)

Using the orthogonality and power normalization properties of the transmitted signals, i.e., E[|s|2] = 1, we
compute the covariance matrix of the transmitted signal xj [n] as

Xj [n] = E[xj [n]x
H
j [n]] =

∑

t∈Kcs

wc
j,t[n](w

c
j,t[n])

H +
∑

t∈K

wr
j,t[n](w

r
j,t[n])

H. (23)

Thus, the numerator of the sensing SINR γrk[n] is given by σ2
t

∑

j∈M uH
j,k[n]Aj,k[n]Xj [n]A

H
j,k[n]uj,k[n].

Through applying linear filtering, matrix trace properties, and substituting the signal covariance matrix Xj [n],
the interference and noise terms in the denominator of γrk[n] can be reformulated in a compact quadratic form. As
a result, the sensing SINR expression is equivalently rewritten as

γrk[n]=

σ2
t

∑

j∈M

uH
j,k[n]Aj,k[n]Xj [n]A

H
j,k[n]uj,k[n]

∑

j∈M

uH
j,k[n]



ζjHSI,jXj [n]H
H
SI,j+αi,j

∑

i6=j,i∈M

Gi,jXi[n]G
H
i,j+σ

2
rIL+σ

2
t

∑

l 6=k,l∈K

Aj,l[n]Xj [n]A
H
j,l[n]



uj,k[n]

. (24)

By defining Hm,k[n] = hm,k[n]h
H
m,k[n], and introducing the beamforming covariance matrices as Wc

m,k[n] =

wc
m,k[n](w

c
j,t[n])

H and Wr
m,k[n] = wr

m,k[n](w
r
j,t[n])

H, where Wc
m,k[n] � 0, Wr

m,k[n] � 0, and rank(Wc
m,k[n]) = 1,

the transmit signal covariance matrix Xj [n] can be equivalently expressed as

Xj [n] =
∑

t∈Kcs

Wc
j,t[n] +

∑

t∈K

Wr
j,t[n], (25)

where Xj [n] � 0 and each term in the summation corresponds to the contribution from either communication or
sensing beamforming signals.

With these reformulations, problem (P1) can be equivalently transformed into problem (P2) as follows:

(P2) : max
{Wc

m,k
[n],Wr

m,k
[n],uj,k[n],qk[n]}

∑

n∈N

∑

k∈K

ωkR̄k[n] (26a)

s.t.
∑

k∈Kcs

tr(Wc
m,k[n]) +

∑

k∈K

tr(Wr
m,k[n]) 6 Pmax, ∀m,n, (26b)

rank(Wc
m,k[n]) = 1, ∀m, k, n, (26c)

(21b), (21d), (21e), (21f), (21g).

To solve problem (P2), we adopt the alternating optimization (AO)-based algorithm, iteratively optimizing one
set of variables while fixing the others.

3.2 Transmit beamforming optimization

In this section, we propose an efficient algorithm to address problem (P2), focusing on optimizing the communication
and sensing beamforming matrices Wc

m,k[n] and Wr
m,k[n]. The optimization is performed under fixed filter designs
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uj,k[n] and UAV trajectories qk[n]. By carefully analyzing the structure of the problem, it can be seen that
optimizing the beamforming is equivalent to solving the problem (P3) as follows:

(P3) : max
{Wc

m,k
[n],Wr

m,k
[n]}

∑

n∈N

R[n]

s.t. (21b), (26b), (26c).

Constraint (26b), which represents the power budget at each BS, is straightforwardly convex as it is linear in terms
of the optimization variables Wc

m,k[n] and Wr
m,k[n]. To verify whether constraint (21b) is convex, we reformulate

it as the inequality in (27).

σ2
t

∑

j∈M

uH
j,k[n]Aj,k[n]Xj [n]A

H
j,k[n]uj,k[n]

>Γ·
{
∑

j∈M

uH
j,k[n]

(

ζjHSI,jXj [n]H
H
SI,j+αi,j

∑

i6=j,
i∈M

Gi,jXi[n]G
H
i,j+σ

2
rIL+σ

2
t

∑

l 6=k,
l∈K

Aj,l[n]Xj [n]A
H
j,l[n]

)

uj,k[n]

}

. (27)

It can be observed that this constraint is linear with respect to Xj [n]. Since Xj [n] is a jointly convex function of
Wc

m,k[n] and Wr
m,k[n], it follows that constraint (21b) is also convex with respect to these variables.

Although constraints (21b) and (26b) are convex, the objective function R[n] and the rank constraint (26c)
introduce non-convexity into problem (P3). To address this challenge, the SCA method is applied, where the
non-convex components of the objective function are approximated with convex surrogates in each iteration.

Let W
c(f)
m,k [n] and W

r(f)
m,k [n] denote the current local point at the f -th iteration, f > 1. During each iteration,

the logarithmic terms in the objective function are linearized around the current solution. This linearization results
in a convex approximation of the objective function, which can then be solved efficiently using standard convex
optimization techniques. By iteratively updating the beamforming matrices and solving the resulting subproblems,
the algorithm converges to a high-quality locally optimal solution. To illustrate this, the communication SINR γck[n]
can be re-expressed as

γck[n] =

∑

m∈M

tr(Hm,k[n]W
c
m,k[n])

∑

m∈M

∑

i∈Kcs\k

tr(Hm,k[n]W
c
m,i[n]) +

∑

m∈M

∑

i∈K

tr(Hm,k[n]W
r
m,i[n]) + σ2

. (28)

The achievable rate Rk[n] for UAV k at time slot n can then be expressed as

Rk[n] = log2(1 + γck[n]) = log2

(
∑

m∈M

∑

i∈Kcs

tr(Hm,k[n]W
c
m,i[n]) +

∑

m∈M

∑

i∈K

tr(Hm,k[n]W
r
m,i[n]) + σ2

)

− log2

(
∑

m∈M

∑

i∈Kcs\k

tr(Hm,k[n]W
c
m,i[n]) +

∑

m∈M

∑

i∈K

tr(Hm,k[n]W
r
m,i[n]) + σ2

)

. (29)

To address the non-convexity arising from the difference of logarithmic functions in (29), we employ the first-order

Taylor expansion to approximate the second logarithmic term at a feasible point (W
c(f)
m,i [n],W

r(f)
m,i [n]). This yields

a concave lower bound for the achievable rate Rk[n], expressed as

Rk[n]> log2

(
∑

m∈M

∑

i∈Kcs

tr(Hm,k[n]W
c
m,i[n]) +

∑

m∈M

∑

i∈K

tr(Hm,k[n]W
r
m,i[n]) + σ2

)

− a
(f)
k [n]

−
∑

m∈M

∑

i∈Kcs\k

tr(B
(f)
m,k[n](W

c
m,i[n]−W

c(f)
m,i [n]))−

∑

m∈M

∑

i∈Kcs

tr(B
(f)
m,k[n](W

r
m,i[n]−W

r(f)
m,i [n])) , R̄k[n], (30)

where

a
(f)
k [n] = log2

(
∑

m∈M

∑

i∈Kcs\k

tr(Hm,k[n]W
c(f)
m,i [n]) +

∑

m∈M

∑

i∈K

tr(Hm,k[n]W
r(f)
m,i [n]) + σ2

)

, (31)
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B
(f)
m,k[n] =

log2 e ·Hm,k[n]
∑

m∈M

∑

i∈Kcs\k

tr(Hm,k[n]W
c(f)
m,i [n]) +

∑

m∈M

∑

i∈K

tr(Hm,k[n]W
r(f)
m,i [n]) + σ2

. (32)

Based on the concave lower bound R̄k[n], the original weighted sum rate maximization problem can be approxi-
mated by the following convex surrogate problem:

(P4) : max
{Wc

m,k
[n],Wr

m,k
[n]}

∑

n∈N

R̄[n]

s.t. (21b), (26b), (26c).

However, the rank-one constraint (26c) in (P4) remains non-convex. To address this, the SDRmethod is employed,
which relaxes the rank-one constraint and transforms (P4) into a standard convex optimization problem, referred
to as (P4.SDR). The relaxed problem can be solved via CVX tools, yielding solutions Wc∗

m,k[n] and Wr∗
m,k[n]. If

these solutions are not rank-one, equivalent rank-one approximations are constructed as follows:

w̄c
m,i[n] =

Wc∗
m,i[n]hm,k[n]

√

hH
m,k[n]W

c∗
m,i[n]hm,k[n]

, (33)

W̄c
m,i[n] = w̄c

m,i[n] · (w̄c
m,i[n])

H, (34)

W̄r
m,i[n] =

∑

i∈K

Wc∗
m,i[n] + W̄r∗

m,i[n]−
∑

i∈K

W̄c
m,i[n]. (35)

These solutions are rank-one and feasible for (P4) [3], and they achieve the same objective value as the relaxed
problem (P4.SDR), ensuring that the relaxation is tight. This iterative process guarantees convergence to a high-
quality locally optimal solution.

3.3 Receive filter optimization

In this section, we focus on optimizing the receive filter uj,k[n] under the given beamforming matrices Wc
m,k[n] and

Wr
m,k[n], as well as the fixed UAV trajectory qk[n].
To begin with, the sensing SINR γrk[n] can be reformulated as

γrk[n] =
∑

j∈M

uH
j,k[n]Ej,k[n]uj,k[n]

uH
j,k[n]Fj,k[n]uj,k[n]

, (36)

where the matrices Ej,k[n] and Fj,k[n] are defined as follows:

Ej,k[n] = σ2
tAj,k[n]Xj [n]A

H
j,k[n], (37)

Fj,k[n] = ζjHSI,jXj [n]H
H
SI,j +

∑

i6=j,i∈M

αi,jGi,jXi[n]G
H
i,j + σ2

rIL + σ2
t

∑

l 6=k,l∈K

Aj,l[n]Xj [n]A
H
j,l[n]. (38)

Ej,k[n] represents the covariance of the desired echo signals for UAV k, and Fj,k[n] is the covariance matrix of the
interference and noise. Both Ej,k[n] and Fj,k[n] are both semi-positive Hermitian matrices.

The optimization of the receive filter uj,k[n] can be formulated as follows:

(P5) : max
{uj,k[n]}

∑

n∈N

R[n]

s.t.
∑

j∈M

uH
j,k[n]Ej,k[n]uj,k[n]

uH
j,k[n]Fj,k[n]uj,k[n]

> Γ. (39)

The expression of the sensing SINR γrk[n] is in the form of a generalized Rayleigh quotient, where both the
numerator and denominator are quadratic forms in uj,k[n]. It is well known that the optimal solution to such a

quotient is achieved when uj,k[n] is the dominant (i.e., principal) eigenvector of the matrix F
−1/2
j,k [n]Ej,k[n]F

−1/2
j,k [n],

and the corresponding optimal value of the sensing SINR equals the largest eigenvalue.
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Therefore, to satisfy the sensing SINR constraint γrk[n] > Γ, it is sufficient to ensure that this maximum eigenvalue

is no less than Γ. Let λmax
j,k [n] denote the largest eigenvalue of F

−1/2
j,k [n]Ej,k[n]F

−1/2
j,k [n]. The problem (P5) can then

be equivalently reformulated as

(P6) : max
{uj,k[n]}

∑

n∈N

R[n]

s.t.
∑

j∈M

λmax
j,k [n] > Γ. (40)

The optimal receive filter u∗j,k[n] is thus obtained as the eigenvector associated with the largest eigenvalue of

the matrix F
−1/2
j,k [n]Ej,k[n]F

−1/2
j,k [n]. This solution ensures that the sensing SINR is maximized under the given

constraint and that uj,k[n] is aligned with the most favorable eigenmode of the effective sensing channel [16].

3.4 UAV trajectory optimization

In this section, our goal is to optimize the UAV trajectory design qk[n], while keeping the beamforming vectors
Wc

m,k[n] and Wr
m,k[n], as well as the receive filter uj,k[n], fixed. The optimization problem is formally expressed

as

(P7) : max
{qk[n]}

∑

n∈N

R[n]

s.t. (21b), (21d), (21e), (21f), (21g).

Constraints (21d) and (21e) ensure that the UAVs adhere to the specified initial and final positions, con-
straint (21f) imposes a maximum velocity limit on UAV movement, and constraint (21g) enforces collision avoidance
between UAVs. However, constraint (21g) is nonconvex, making direct optimization challenging. The trajectory
variable qk[n] appears in θm,k[n], which directly impacts the achievable rate Rk[n]. Therefore, it is necessary to
process the nonconvexity of (21g) and reformulate Rk[n] to facilitate optimization.

To handle this, we first apply the SCA method to approximate the non-convex constraint (21g). In the f -th

iteration, the UAV trajectory variable qk[n] is represented as q
(f)
k [n]. Using the first-order Taylor expansion around

q
(f)
k [n], the original constraint (20g) is approximated as

−‖q(f)
j [n]− q

(f)
i [n]‖2 + 2(q

(f)
j [n]− q

(f)
i [n])T(qj [n]− qi[n]) > D2

min − (Hj −Hi)
2. (41)

This reformulation transforms the original non-convex constraint into a convex one, making it easier to solve by
using convex optimization techniques.

Next, we reformulate the achievable communication rate Rk[n] in the objective function to facilitate subsequent
derivations. Let [Wc

m,i[n]]p, q and [Wr
m,i[n]]p, q denote the (p, q)-th entries of the beamforming matrices Wc

m,i[n]
and Wr

m,i[n], respectively, and their phases are defined as θcp,q and θrp,q.
Based on these notations, Rk[n] can be rewritten in a more tractable form, enabling precise handling of its

non-linear components. This reformulation lays the foundation for iterative optimization via convex approximation
techniques. The resulting relationship is given by

Rk[n] = log2

(
∑

m∈M

∑

i∈Kcs

ηm,i,k[n] +
∑

m∈M

∑

i∈K

µm,i,k[n] +
∑

m∈M

σ2

κ
(‖qk[n]− vm‖2 +H2

k)

)

− log2

(
∑

m∈M

∑

i∈Kcs\k

ηm,i,k[n] +
∑

m∈M

∑

i∈K

µm,i,k[n] +
∑

m∈M

σ2

κ
(‖qk[n]− vm‖2 +H2

k)

)

, (42)

where ηm,i,k[n] and µm,i,k[n] are expressed as

ηm,i,k[n]=

L∑

z=1

[Wc
m,i[n]]z,z+2

L∑

p=1

L∑

q=p+1

|[Wc
m,i[n]]p,q|×cos

(

θcp,q+2π
d

λ
(q−p) Hk

√

‖qk[n]−vm‖2+H2
k

)

, (43)

and

µm,i,k[n]=

L∑

z=1

[Wr
m,i[n]]z,z+2

L∑

p=1

L∑

q=p+1

|[Wc
m,i[n]]p,q|×cos

(

θrp,q+2π
d

λ
(q−p) Hk

√

‖qk[n]−vm‖2+H2
k

)

. (44)
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Subsequently, we approximate (42) by using the first-order Taylor expansion in iteration f as

Rk[n] ≈ R̃
(f)
k [n] = c

(f)
k [n] + d

(f)T
k [n](qk[n]− q

(f)
k [n]), (45)

where

c
(f)
k [n] = log2

(
∑

m∈M

∑

i∈Kcs

η
(f)
m,i,k[n] +

∑

m∈M

∑

i∈K

µ
(f)
m,i,k[n] +

∑

m∈M

σ2

κ
(‖q(f)

k [n]− vm‖2 +H2
k)

)

− log2

(
∑

m∈M

∑

i∈Kcs\k

η
(f)
m,i,k[n] +

∑

m∈M

∑

i∈K

µ
(f)
m,i,k[n] +

∑

m∈M

σ2

κ
(‖q(f)

k [n]− vm‖2 +H2
k)

)

, (46)

d
(f)
k [n] =

log2 e

φk[n]

(
∑

m∈M

∑

i∈Kcs

γ
(f)
m,i,k[n] +

∑

m∈M

∑

i∈K

ω
(f)
m,i,k[n](q

(f)
k [n]− vm)

)

− log2 e

ψk[n]

(
∑

m∈M

∑

i∈Kcs\k

γ
(f)
m,i,k[n] +

∑

m∈M

∑

i∈K

ω
(f)
m,i,k[n](q

(f)
k [n]− vm)

)

, (47)

where γ
(f)
m,i,k[n], ω

(f)
m,i,k[n], φk[n] and ψk[n] are defined respectively as follows:

γ
(f)
m,i,k[n]=

L∑

p=1

L∑

q=p+1

4π|[Wc
m,i[n]]p,q|×sin

(

θcp,q+2π
d

λ
(q−p) Hk

√

‖q(f)
k [n]−vm‖2+H2

k

)

· dHk(q−p)
λ(‖q(f)

k [n]−vm‖2+H2
k)

3
2

, (48)

ω
(f)
m,i,k[n]=

L∑

p=1

L∑

q=p+1

4π|[Wr
m,i[n]]p,q|×sin

(

θrp,q+2π
d

λ
(q−p) Hk

√

‖q(f)
k [n]−vm‖2+H2

k

)

· dHk(q−p)
λ(‖q(f)

k [n]−vm‖2+H2
k)

3
2

, (49)

φk[n] =
∑

m∈M

∑

i∈Kcs

η
(f)
m,i,k[n] +

∑

m∈M

∑

i∈K

µ
(f)
m,i,k[n] +

∑

m∈M

σ2

κ
(‖q(f)

k [n]− vm‖2 +H2
k), (50)

ψk[n] =
∑

m∈M

∑

i∈Kcs\k

η
(f)
m,i,k[n] +

∑

m∈M

∑

i∈K

µ
(f)
m,i,k[n] +

∑

m∈M

σ2

κ
(‖q(f)

k [n]− vm‖2 +H2
k). (51)

Similarly, we reformulate constraint (21b) in terms of qk[n] and ensure convexity.
Let Ãm,k[n] = AH

m,k[n]um,k[n]u
H
m,k[n]Am,k[n], so as to H̃SI,j and G̃i,j . Then Eq. (24) can be reformulated as

γrk[n] =

σ2
t

∑

j∈M

tr(Ãj,k[n]Xj [n])

∑

j∈M

[tr(H̃SI,jXj [n]) + tr(G̃i,jXj [n]) + σ2
rIL + σ2

t

∑

l 6=k,l∈K

tr(Ãj,k[n]Xj [n])]
. (52)

Let um,k[n] = [α1, α2, ..., αL]
T, ãm,k[n] = AH

m,k[n] · um,k[n] = Am,k[n] · um,k[n]. Then we have [ãm,k[n]]i=
∑L

q=1 αq ·ej2π
d
λ
(i−q) cos θm,k[n], 16k6L. Since Ãm,k[n]= ãm,k[n]·ãHm,k[n], [Ãm,k[n]]p,q can be expressed as

[Ãm,k[n]]p,q =

(
L∑

s=1

αse
j2π d

λ
(p−s) cos θm,k[n]

)

·
(

L∑

t=1

α∗t e
−j2π d

λ
(q−t) cos θm,k[n]

)

=

L∑

s=1

L∑

t=1

αmα
∗
ne
j2π d

λ
[p−q−(s−t)] cos θm,k[n]. (53)

Next, we approximate tr(Ãj,k[n]Xj [n]) by using the first-order Taylor expansion in iteration f as

tr(Ãj,k[n]Xj [n]) = h
(f)
j,k [n] + i

(f)
j,k [n](qk[n]− q

(f)
k [n]), (54)
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where

h
(f)
j,k [n] =

L∑

s=1

L∑

t=1

αsα
∗
t ·
[

L∑

z=1

[Xj [n]]z,z+2

L∑

p=1

L∑

q=p+1

|[Xj [n]]z,z|×cos

(

θxp,q+2π
d

λ

(p−q+t−s)Hk
√

‖q(f)
k [n]−vm‖2+H2

k

)]

, (55)

i
(f)
j,k [n] =

L∑

s=1

L∑

t=1

αsα
∗
t·
[

L∑

p=1

L∑

q=p+1

4π|Xj,k[n]sin

(

θxp,q+
2πd(p−q+t−s)Hk
√

‖q(f)
k [n]−vm‖2+H2

k

)

× d(p−q+t−s)Hk

λ(‖q(f)
k [n]−vm‖2+H2

k)
3
2

]

, (56)

in which θxp,q represents the phase of the entries.
By bringing the formula (54) into (52), the constraint (21b) can be transformed into the form of the constraint (57).

It is clear that the inequality constraint is linear with respect to qk[n], and therefore the constraint is convex.

σ2
t

∑

j∈M

[h
(f)
j,k [n] + i

(f)
j,k [n](qk[n]− q

(f)
k [n])]

>Γ ·
∑

j∈M

{tr(H̃SI,jXj [n]) + tr(G̃i,jXj [n]) + σ2
rIL + σ2

t

∑

l 6=k,l∈K

[h
(f)
j,k [n] + i

(f)
j,k [n](qk[n]− q

(f)
k [n])]}. (57)

To address the non-convexity of the objective function in (42), we reformulate it into a linearized form, as pre-
sented in (45). This reformulation simplifies the problem and makes it suitable for convex optimization techniques.
However, to ensure the accuracy of the linear approximation at each iterative step, a mechanism called the trust
region constraint [11] is introduced. The trust region constraint is mathematically expressed as

‖q(f)
k [n]− q

(f−1)
k [n]‖ 6 ε(f), ∀k ∈ K, n ∈ N , (58)

where ε(f) represents the radius of the trust region in the f -th iteration. This constraint ensures that the trajectory
update between successive iterations remains within a bounded region, maintaining the validity of the first-order
approximation.

Incorporating the trust region and approximated terms, problem (P7) is reformulated as the convex problem
(P8) for iteration f , expressed as

(P8) : max
{qk[n]}

∑

n∈N

∑

k∈K

ωkR̃
(f)
k [n]

s.t. (21b), (21e), (21f), (41), (57), (58).

This convex approximation problem can be efficiently solved using numerical tools such as CVX, a solver designed
for convex optimization. The specific solution algorithm for problem (P8) is as shown in Algorithm 1.

Algorithm 1 Trajectory optimization algorithm for problem (P8).

1: Initialize: UAV trajectory {q̂(0)[n]}, trust region ψ(0), outer iteration index f = 1;

2: repeat

3: Let l = 1; set {q(l−1)[n]} = {q̂(f−1)[n]};
4: repeat

5: Solve problem (P8) under local point {q(l−1)[n],W
(f)
k

[n],R(f)
s [n]} to obtain {q(l)∗[n]};

6: if objective value of problem (P8) increases then

7: {q(l)[n]} = {q(l)∗[n]}, l← l + 1;

8: else

9: Update trust region: ψ(l) = ψ(l)/2;

10: end if

11: until ψ(l) < ε̂;

12: Update UAV trajectory: {q̂(f)[n]} = {q(l)[n]}, f ← f + 1;

13: until the objective value converges within tolerance ε̄.

The computational complexity of the proposed alternating optimization algorithm is analyzed by examining
the three subproblems solved in each outer iteration. The transmit beamforming optimization (P3) is addressed
by solving a semidefinite program (SDP) via the SDR technique. The receive filter optimization (P5) requires
computing the dominant eigenvector of a matrix, which is a standard linear algebra operation. Similarly, the UAV
trajectory optimization (P7) is transformed into a convex problem. It is well-established that standard convex
optimization problems, such as SDPs, and eigenvector computations can be solved efficiently with a complexity
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that is a polynomial function of the problem size. Among these steps, solving the SDP for beamforming typically
constitutes the main computational bottleneck. Since each of the core subproblems is solvable in polynomial
time, the overall proposed algorithm has a polynomial-time complexity, ensuring its computational tractability for
moderately sized networks.

In summary, the proposed algorithm for solving problem (P7) operates iteratively by solving a sequence of convex
subproblems, where each subproblem refines the solution using the trust region and linearized approximations. As
established by our analysis, since only problems with polynomial-time complexity are solved in each iteration, the
algorithm can be efficiently implemented and is expected to achieve fast convergence in wireless networks with
a moderate number of users. The methods for the subproblems (P3), (P5), and (P7) converge by either finding
the optimal solution or by successive refinements of the approximations. As a result, the overall AO technique
is guaranteed to converge to a locally optimal solution for the joint UAV trajectory design and beamforming
optimization problem.

4 Numerical results

This section presents numerical results to evaluate the performance of the proposed design. In the simulation,
we consider Kcs = 2 ISAC UAVs, Ks = 2 sensing UAVs, and M = 4 BSs located near the UAV trajectories.
Each BS is equipped with L = 8 antennas with spacing d = λ/2. The initial and final positions of the ISAC
UAVs are set as qI

1 = [50m, 150m], qF
1 = [550m, 150m], and qI

2 = [50m, 450m], qF
2 = [550m, 450m]. For the

sensing UAVs, we set qI
3 = [50m, 250m], qF

3 = [550m, 250m], and qI
4 = [50m, 350m], qF

4 = [550m, 350m]. The
UAV altitude is fixed at Hk = 100m, the time horizon T is divided into N = 30 slots, and the maximum UAV
speed is Vmax = 20m/s. A larger choice of N typically yields finer time quantization and consequently improved
performance. However, it also incurs a higher computational burden. Hence, the selection of N inherently involves
a fundamental trade-off between computational complexity and system performance. Each BS has a maximum
transmit power of Pmax = 10W. This power level is representative of small-cell base stations often considered for
dense network deployments supporting applications like the low-altitude economy. The reference channel power
gain at d0 = 1m is set to −45 dB, and the noise power at UAVs is −100dBW. The RCS of each UAV is modeled as
ξj,l ∼ CN (0, 1). The self-interference coefficient is ζj,l = −110dB, which represents a practical scenario with highly
effective self-interference cancellation (SIC) technologies assumed at the BSs. The inter-BS interference coefficient
is αj,l = −30 dB, a commonly used value to model the inter-site signal isolation in moderately dense deployments.
All weight parameters are set to ωk = 1, which establishes a fair baseline for performance comparison, allowing the
analysis to focus on the fundamental gains from the joint optimization of trajectory and beamforming. This ensures
that observed performance improvements are due to efficient resource management rather than user prioritization.
Conversely, assigning non-uniform weights would direct the system to prioritize UAVs with higher importance. The
algorithm would allocate more resources—such as transmit power or a more favorable flight path—to these UAVs
to enhance their communication rates, potentially at the expense of lower-priority ones. Our proposed framework
is fully capable of supporting such service differentiation.

For performance comparison, the following benchmark schemes are considered.
(1) Optimized beamforming with a uniform straight-line trajectory: In this scenario, UAV trajectories

are fixed as straight lines from initial to final positions, with constant speed Vk = 1
N ‖qI

k − qF
k‖. Given this non-

adaptive trajectory, the beamforming matrices {Wc
m,i[n]} and {Wr

m,i[n]} are optimized by solving problem (P4)
to enhance communication performance during flight.

(2) Optimized beamforming and straight-line trajectory with optimized speed: This benchmark
extends the previous one by allowing UAVs to adjust their speeds along fixed straight-line paths. The speeds are
optimized to improve communication by enabling UAVs to spend more time in favorable locations. Problem (P2)
is solved to jointly optimize the beamforming matrices and UAV positions {qk[n]}, under the constraint of linear
trajectories with variable speeds.

(3) Optimized trajectory, not beamforming: Here, UAV trajectories are optimized while beamforming

follows an equal power allocation strategy: Wc
m,i[n] =

pcj,l[n]

L IL, Wr
m,i[n] =

prj,l[n]

L IL, where pcj,l[n] and prj,l[n]
are constrained by

∑

i∈Kcs
pcj,l[n] +

∑

i∈K p
r
j,l[n] 6 Pmax. UAV trajectories {qk[n]} are then optimized by solving

problem (P8) with fixed beamforming, aiming to improve communication despite non-adaptive transmission.
(4) Dynamic best-server selection with joint optimization: In this non-cooperative benchmark, each

UAV k is dynamically served by only one ground BS at each time slot n. This exclusive association is modeled
using a binary variable adm,k[n], where a

d
m,k[n] = 1 if BS m is selected to serve UAV k at slot n, and adm,k[n] = 0

otherwise. This selection satisfies the constraint
∑

m∈M adm,k[n] = 1 for each UAV. The serving BS is chosen as the
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Figure 2 (Color online) Optimal UAV trajectories under different altitudes and sensing thresholds.

one providing the strongest instantaneous channel link, meaning adm,k[n] is set to 1 for the BS m that maximizes

‖hm,k[n]‖2. The UAV trajectories and transmit beamforming are then jointly optimized. The communication rate
for UAV k is calculated based on the signal from its single serving BS, while treating signals from all other BSs as
interference.

The first three benchmarks are designed to perform an ablation study, isolating the performance gains from
each key component of the joint optimization framework. They respectively demonstrated the significance and
advantages of optimizing different variables. In contrast, the fourth benchmark, dynamic best-server selection,
represents a mainstream and highly effective non-cooperative strategy, often considered a state-of-the-art (SOTA)
approach in multi-cell UAV networks [3, 41]. Therefore, a direct comparison against this SOTA benchmark is
necessary to rigorously validate the superiority of our proposed cooperative scheme, highlighting the significant
advantages offered by cooperative transmission and joint design over current advanced, non-cooperative techniques.

Through analyzing the optimized UAV trajectories shown in Figure 2, we can explore the impact of different
sensing SINR thresholds Γ and UAV flight altitudes Hk on trajectory optimization.

The sensing SINR threshold significantly affects UAV trajectories, as shown by comparing Figures 2(a) and (b)
at Hk = 100m, and Figures 2(c) and (d) at Hk = 120m. In both cases, increasing the threshold from Γ = −12 dB
to Γ = −7 dB causes the trajectories to become more concentrated and closer to the BSs. This is because a higher
sensing requirement compels UAVs to fly in regions where BSs can receive stronger echo signals, enhancing sensing
performance. In contrast, a lower threshold permits greater trajectory flexibility, allowing a more balanced trade-
off between communication and sensing. Thus, higher thresholds lead to sensing-driven path planning, while lower
thresholds offer more freedom to optimize communication.

UAV altitude also plays a critical role in trajectory optimization. This is evident by comparing Figures 2(a) and
(c) for Γ = −7 dB, and Figures 2(b) and (d) for Γ = −12 dB. As altitude increases from Hk = 100m to Hk = 120m,
trajectory distributions change notably. Higher altitudes introduce greater propagation loss for sensing echoes
and degrade communication link quality due to longer distances. Conversely, lower altitudes yield better channel
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Figure 3 (Color online) Weighted sum rate versus UAV flight alti-

tude Hk under different numbers of BSs (Γ = −12 dB).

Figure 4 (Color online) Weighted sum rate versus sensing SINR

threshold Γ under different BS transmit power limits Pmax.

conditions, enabling more effective trajectory planning. These results highlight the importance of jointly optimizing
altitude and trajectory to balance sensing and communication performance based on specific mission requirements.

Figure 3 illustrates the impact of UAV altitude on the weighted sum rate under varying BS densities, with
the sensing SINR threshold fixed at Γ = −12 dB. As altitude increases, the communication rate declines due
to increased path loss and degraded channel quality between UAVs and BSs. Additionally, deploying more BSs
significantly enhances system performance. Specifically, the three-BS configuration is derived by removing one
BS from the original four-BS layout. Across all altitudes, the four-BS setup consistently outperforms the three-
BS case, benefiting from greater spatial diversity and improved beamforming flexibility. Although additional BSs
may introduce interference, coordinated beamforming with enhanced spatial resolution effectively mitigates it.
These results underscore the importance of jointly optimizing UAV altitude and BS deployment to improve ISAC
performance.

Figure 4 shows how the weighted sum rate varies with the sensing SINR threshold Γ under different BS power
limits (Pmax = 6W, 10W, and 15W). As Γ increases, stricter sensing requirements reduce the degrees of freedom
available for communication, leading to a noticeable decline in rate. However, increasing the BS transmit power
alleviates this trade-off by providing more resources to support both tasks simultaneously. Higher power budgets
help maintain communication performance even under tight sensing constraints. These findings suggest that appro-
priately increasing BS power enhances system robustness and elevates the achievable performance ceiling of ISAC
systems.

Figure 5 illustrates the impact of various trajectories and beamforming optimization schemes on the communi-
cation rate under different sensing SINR thresholds Γ. As Γ increases, all schemes exhibit a rate decline due to
the trade-off between sensing and communication, where more resources are required to satisfy sensing constraints,
those available for communication. Among the schemes, the proposed joint trajectory and cooperative beamform-
ing optimization consistently achieve the highest rates across all Γ values, demonstrating strong adaptability and
performance. Following this is the dynamic best-server selection scheme, which serves as a powerful non-cooperative
baseline. Although it intelligently adapts by selecting the best single server at each moment, the noticeable per-
formance gap highlights the clear superiority of our proposed cooperative approach. This gain is attributed to
the ability of multiple BSs to perform coordinated multi-point transmission, which not only enhances the desired
signal but also actively mitigates inter-BS interference, a capability that single-server strategies inherently lack. The
scheme with a fixed straight-line trajectory but optimized speed performs reasonably well but remains inferior to
the fully optimized trajectory case, indicating that speed control alone offers limited benefit compared to full spa-
tial trajectory design. In contrast, optimizing only beamforming with a fixed trajectory and constant speed yields
substantially lower but stable rate curves. Lastly, the scheme with optimized trajectory but fixed, non-adaptive
beamforming becomes infeasible at higher Γ values, resulting in a truncated curve and highlighting the essential role
of beamforming in maintaining sensing feasibility. Overall, the results confirm that joint optimization of trajectory
and beamforming is key to maximizing communication performance under varying sensing demands.

The proposed framework is particularly applicable to practical low-altitude scenarios where LoS links are domi-
nant, such as over open or suburban areas for applications like precision agriculture and infrastructure inspection.



Li F Z, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122304:16

Figure 5 (Color online)Weighted sum rate versus sensing SINR threshold Γ under different trajectory and beamforming optimization strategies.

The focus on an LoS channel model is justified by the common condition in many air-to-ground deployments where
the UAV’s altitude provides a clear, stable direct path to the ground base stations, rendering NLoS effects negligible.
This LoS assumption is not only practical for these scenarios but also crucial for analytical tractability. Introducing
statistical NLoS components would obscure this direct relationship and significantly increase the complexity of the
optimization problem. While NLoS components can become more prominent in dense urban canyons, our approach
provides a crucial and robust foundation for these widespread, LoS-dominant use cases.

Further investigation into the scalability of the proposed framework is a crucial aspect for practical deployment.
The scale of the optimization problem is primarily determined by the number of base stations, UAVs, antennas per
BS, and time slots. The number of optimization variables, particularly the semidefinite beamforming matrices, grows
with these factors, directly impacting the computational load. As identified in our analysis, the main computational
bottleneck is the SDP used for beamforming optimization. The complexity of solving this SDP is a high-order
polynomial function of the system dimensions, which is why the proposed algorithm is most tractable for the
moderately sized networks considered in this work. To extend the framework’s applicability to large-scale systems,
future research should focus on mitigating this complexity. Promising directions include the development of more
scalable solutions, such as distributed optimization techniques that decompose the central problem, or machine
learning-based approaches that can learn to approximate the optimal policy with significantly lower real-time
computational overhead.

5 Conclusion

This paper proposed a joint trajectory and cooperative beamforming framework for a UAV-enabled ISAC system.
We formulated a non-convex problem to maximize the weighted sum rate under sensing SINR constraints and solved
it using an efficient alternating optimization algorithm based on SDR and SCA. Simulation results demonstrated
that our joint cooperative design outperforms non-cooperative benchmark schemes, delivering higher communica-
tion throughput while ensuring robust sensing performance. The findings highlight the critical role of trajectory
adaptation in balancing sensing and communication trade-offs, providing a robust baseline for future extensions
toward large-scale and complex environments.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 62350710796), Jiangsu Out-

standing Youth Fund (Grant No. BK20240071), Scientific Research Innovation Capability Support Project for Young Faculty (Grant Nos.

3204002501C3, U40), and Fundamental Research Funds for the Central Universities (Grant No. 2242025K20001).

References

1 Zhang Y, Shan H, Zhou Y, et al. Cooperative beamforming design for anti-UAV ISAC systems. IEEE Trans Wireless Commun, 2025,
24: 2249–2264

2 Meng K, Wu Q, Xu J, et al. UAV-enabled integrated sensing and communication: opportunities and challenges. IEEE Wireless Commun,
2024, 31: 97–104

https://doi.org/10.1109/TWC.2024.3519351
https://doi.org/10.1109/MWC.131.2200442


Li F Z, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122304:17

3 Cheng G, Song X, Lyu Z, et al. Networked ISAC for low-altitude economy: transmit beamforming and UAV trajectory design. In:
Proceedings of IEEE/CIC International Conference on Communications in China (ICCC), 2024. 78–83

4 Long H, Chen M, Yang Z, et al. Joint trajectory and passive beamforming design for secure UAV networks with RIS. In: Proceedings of
IEEE GlobeCom Workshops (GCWkshps), 2020. 1–6

5 Liu J Q, Yang P, Jiang K, et al. OFDM-structure based waveform designs for integrated sensing and communication. Sci China Inf Sci,
2025, 68: 150306

6 Xu Y, Li Y, Zhang J A, et al. Joint beamforming for RIS-assisted integrated sensing and communication systems. IEEE Trans Commun,
2024, 72: 2232–2246

7 Liu G Y, Xi R Y, Jiang T, et al. Feasibility study of cooperative sensing: radar cross section, synchronization, cooperative cluster,
performance and prototype. Sci China Inf Sci, 2025, 68: 150302

8 Zeng F, Liu R Y, Sun X Y, et al. Multi-static ISAC based on network-assisted full-duplex cell-free networks: performance analysis and
duplex mode optimization. Sci China Inf Sci, 2025, 68: 150303

9 Pan Y, Li R, Da X, et al. Cooperative trajectory planning and resource allocation for UAV-enabled integrated sensing and communication
systems. IEEE Trans Veh Technol, 2024, 73: 6502–6516

10 Jing X, Liu F, Masouros C, et al. ISAC from the sky: UAV trajectory design for joint communication and target localization. IEEE
Trans Wireless Commun, 2024, 23: 12857–12872

11 Lyu Z, Zhu G, Xu J. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication. IEEE Trans
Wireless Commun, 2023, 22: 2424–2440

12 Khalili A, Rezaei A, Xu D, et al. Efficient UAV hovering, resource allocation, and trajectory design for ISAC with limited backhaul
capacity. IEEE Trans Wireless Commun, 2024, 23: 17635–17650

13 Wang Y, Zu K, Xiang L, et al. ISAC enabled cooperative detection for cellular-connected UAV network. IEEE Trans Wireless Commun,
2025, 24: 1541–1554

14 Chai R, Cui X, Sun R, et al. Precoding and trajectory design for UAV-assisted integrated communication and sensing systems. IEEE
Trans Veh Technol, 2024, 73: 13151–13163

15 Meng K, Wu Q, Ma S, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication. IEEE
Wireless Commun Lett, 2022, 11: 1211–1215

16 Liu S, Liu R, Lu Z, et al. Cooperative cell-free ISAC networks: joint BS mode selection and beamforming design. In: Proceedings of
IEEE Wireless Communications and Networking Conference (WCNC), 2024. 1–6

17 Zhang R, Zhang Y, Tang R, et al. A joint UAV trajectory, user association, and beamforming design strategy for multi-UAV-assisted
ISAC systems. IEEE Internet Things J, 2024, 11: 29360–29374

18 Gao Q, Zhong R, Liu Y. Trajectory and beamforming optimization in UAV-enabled ISAC system. In: Proceedings of IEEE Global
Communications Conference (GLOBECOM), 2024. 1527–1532

19 Pang X, Guo S, Tang J, et al. Dynamic ISAC beamforming design for UAV-enabled vehicular networks. IEEE Trans Wireless Commun,
2024, 23: 16852–16864

20 Pei F, Xiang L, Klein A. Joint optimization of beamforming and 3D array-steering for UAV-aided ISAC. In: Proceedings of IEEE
International Conference on Communications (ICC), 2024. 1249–1254

21 Zhou S, Yang H, Xiang L, et al. Temporal-assisted beamforming and trajectory prediction in sensing-enabled UAV communications.
IEEE Trans Commun, 2025, 73: 5408–5419

22 He Z, Xu W, Shen H, et al. Full-duplex communication for ISAC: joint beamforming and power optimization. IEEE J Sel Areas Commun,
2023, 41: 2920–2936

23 Xu Y M, Xu D F, Xie Z Y, et al. Resolution-aware beam scanning for joint detection and communication in ISAC systems. Sci China
Inf Sci, 2025, 68: 150305

24 Shang F, Du H H, Yang P L, et al. Measuring discrete sensing capability for ISAC via task mutual information. Sci China Inf Sci, 2025,
68: 150308

25 Wu Q, Zeng Y, Zhang R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans Wireless
Commun, 2018, 17: 2109–2121

26 Yuan X, Jiang H, Hu Y, et al. Joint analog beamforming and trajectory planning for energy-efficient UAV-enabled nonlinear wireless
power transfer. IEEE J Sel Areas Commun, 2022, 40: 2914–2929

27 Lin H, Zhang Z, Wei L, et al. A deep reinforcement learning based UAV trajectory planning method for integrated sensing and commu-
nications networks. In: Proceedings of IEEE Conference on Vehicular Technology (VTC), 2023. 1–6

28 Zhang J F, Lu W D, Xing C W, et al. Intelligent integrated sensing and communication: a survey. Sci China Inf Sci, 2025, 68: 131301
29 Duan X Y, Zhang X Q, Xia S Q, et al. Machine learning empowered UAV-based beamforming design in ISAC systems. Sci China Inf

Sci, 2025, 68: 150307
30 Pan C, Ren H, Wang K, et al. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Trans Wireless Commun,

2020, 19: 5218–5233
31 Moon S, Liu H, Hwang I. Joint beamforming for RIS-assisted integrated sensing and secure communication in UAV networks. J Commun

Netw, 2024, 26: 502–508
32 Pang X, Zhao N, Tang J, et al. IRS-assisted secure UAV transmission via joint trajectory and beamforming design. IEEE Trans Commun,

2022, 70: 1140–1152
33 Deng D, Zhou W, Li X, et al. Joint beamforming and UAV trajectory optimization for covert communications in ISAC networks. IEEE

Trans Wireless Commun, 2025, 24: 1016–1030
34 Sankar R S P, Chepuri S P, Eldar Y C. Beamforming in integrated sensing and communication systems with reconfigurable intelligent

surfaces. IEEE Trans Wireless Commun, 2024, 23: 4017–4031
35 Li S, Du H, Zhang D, et al. Joint UAV trajectory and beamforming designs for RIS-assisted MIMO system. IEEE Trans Veh Technol,

2024, 73: 5378–5392
36 Ge L, Dong P, Zhang H, et al. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communi-

cations. IEEE Access, 2020, 8: 78702–78712
37 Xiu Y, Lyu W, Yeoh P L, et al. Improving physical-layer security in ISAC-AAV system: beamforming and trajectory optimization. IEEE

Trans Veh Technol, 2025, 74: 3503–3508
38 Zhang X, Peng M, Liu C. Sensing-assisted beamforming and trajectory design for UAV-enabled networks. IEEE Trans Veh Technol, 2024,

73: 3804–3819
39 Song X X, Fang Y, Wang F, et al. An overview on IRS-enabled sensing and communications for 6G: architectures, fundamental limits,

and joint beamforming designs. Sci China Inf Sci, 2025, 68: 150301
40 Zhao C S, Zhang J H, Zhang Y X, et al. BUPTCMCC-6G-CMG+: a GBSM-based ISAC standard channel model generator. Sci China

Inf Sci, 2025, 68: 150304
41 Liu X, Liu Y, Liu Z, et al. Fair integrated sensing and communication for multi-UAV-enabled Internet of Things: joint 3-D trajectory

and resource optimization. IEEE Internet Things J, 2024, 11: 29546–29556

https://doi.org/10.1007/s11432-024-4373-7
https://doi.org/10.1109/TCOMM.2023.3344143
https://doi.org/10.1007/s11432-024-4377-0
https://doi.org/10.1007/s11432-024-4381-8
https://doi.org/10.1109/TVT.2023.3337106
https://doi.org/10.1109/TWC.2024.3396571
https://doi.org/10.1109/TWC.2022.3211533
https://doi.org/10.1109/TWC.2024.3455370
https://doi.org/10.1109/TWC.2024.3509978
https://doi.org/10.1109/TVT.2024.3390693
https://doi.org/10.1109/LWC.2022.3161338
https://doi.org/10.1109/JIOT.2024.3430390
https://doi.org/10.1109/TWC.2024.3447779
https://doi.org/10.1109/TCOMM.2024.3519546
https://doi.org/10.1109/JSAC.2023.3287540
https://doi.org/10.1007/s11432-024-4375-4
https://doi.org/10.1007/s11432-024-4374-y
https://doi.org/10.1109/TWC.2017.2789293
https://doi.org/10.1109/JSAC.2022.3196108
https://doi.org/10.1007/s11432-024-4205-8
https://doi.org/10.1007/s11432-024-4376-9
https://doi.org/10.1109/TWC.2020.2990766
https://doi.org/10.23919/JCN.2024.000051
https://doi.org/10.1109/TCOMM.2021.3136563
https://doi.org/10.1109/TWC.2024.3503726
https://doi.org/10.1109/TWC.2023.3313938
https://doi.org/10.1109/TVT.2023.3332851
https://doi.org/10.1109/ACCESS.2020.2990166
https://doi.org/10.1109/TVT.2024.3477925
https://doi.org/10.1109/TVT.2023.3326407
https://doi.org/10.1007/s11432-024-4345-5
https://doi.org/10.1007/s11432-024-4378-0
https://doi.org/10.1109/JIOT.2023.3327445

	Introduction
	System model
	Communication model
	Sensing model
	Problem formulation

	Proposed solution
	Problem reformulation
	Transmit beamforming optimization
	Receive filter optimization
	UAV trajectory optimization

	Numerical results
	Conclusion

