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Abstract In emergency rescue scenarios, mobile ad hoc networks (MANETSs) with dynamic topology often experience severe data
missing. This compromises the reliability of observed data, which is critical for supporting real-time decision-making. Sparse inference
methods exhibit significant degradation in reconstruction accuracy under high data missing rates, while retransmission-based methods
introduce cascading delays and may even trigger network avalanche effects. To overcome the limitations of both methods, we propose
a retransmission-free data reconstruction framework (RFDR). The framework consists of two modules: (i) a soft-sliced dynamic time
warping (SS-DTW) module that identifies the most similar offline reference sample for missing value imputation; and (ii) a time-series
interpolation module that captures richer contextual correlations to refine the imputation, using the reference sample and the observed
sparse data as an initial estimate. To validate the effectiveness of the framework, we developed a hardware-in-the-loop (HIL) testbed
that emulates dynamic wireless channel conditions. Experimental results demonstrate that RFDR, achieves a 17.3% gain in transmission
efficiency and a 63% reduction in median latency over standard retransmission protocols. Compared to baselines, RFDR exhibits
consistently superior reconstruction accuracy across simulated random data missing rates ranging from 35% to 85%. These attributes
underscore its resilience under extreme data missing conditions and indicate promising applicability in emergency settings that demand
high reliability and low-latency communication.
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1 Introduction

In emergency rescue scenarios, there is a critical need for the rapid deployment of temporary communication
infrastructure to restore essential communication services [1-5]. Mobile ad hoc networks (MANETS) serve as a
flexible infrastructure to support short-term applications (including environmental sensing, medical monitoring,
personnel localization, and traffic management) by interconnecting various Internet of Things (IoT) devices [6].
For instance, injury assessment can be conducted through an end-edge collaborative architecture [7]. End devices
incorporate biomedical sensors within wearable or implantable medical systems, which collect vital signs including
electrocardiogram, respiratory rate, body temperature, heart rate, and blood pressure [8]. The collected data are
transmitted to edge devices, such as mobile command vehicles, portable computing devices, or other edge devices—
for real-time monitoring and analysis. Nevertheless, degraded communication links in disaster areas frequently lead
to sparse samples, primarily for two reasons.

e Variable missing: Complete failure or damage of a sensor results in a variable-dimension mismatch between
the online measurements and the offline repository sample.

e Point-level values missing: Intermittent packet loss and various sampling rates cause irregular data sparsity,
which degrades the accuracy of downstream inference tasks.
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The performance of most computational and perception models is highly correlated with data sparsity and often
deteriorates with increased sparsity, as they are typically trained on full-dimensional feature vectors [9]. A common
solution is retransmission, which triggers the sender to resend data upon detecting loss or corruption, continuing
until an acknowledgment is received. While studies in routing, network deployment, and data slicing have sought
to optimize this process, their improvements are often insufficient for real-time control applications. For these
systems, delays exceeding strict millisecond-scale thresholds can cause catastrophic system failure [10]. For example,
in telemedicine, latency can render surgical commands useless and dangerous; in disaster monitoring, network
congestion causes irreplaceable alerts (e.g., for earthquakes) to be lost, forfeiting intervention windows; in industrial
IoT, missing sensor data directly reduces control accuracy and product quality [7]. The interpolation of missing
data often relies on the low-rank property of the underlying data, a property exploited by established techniques
such as low-rank matrix and tensor completion [11]. Recently, neural network-based models for multivariate time-
series interpolation have emerged as a prominent class of methods. These models integrate global inter-variable
correlations with local temporal statistics to estimate missing values [12]. A key limitation, however, lies in their
heavy reliance on short-term temporal patterns, which hinders their performance under long-range missingness and
renders them ineffective when an entire variable is absent.

To address the challenge of unusable sparse samples caused by data missing in low-communication-computation
environments, this paper begins by identifying two distinct states of data missing and systematically analyzes
the limitations of existing methods. Then, focusing on the distribution differences of data features in the target
scenario, we propose a retransmission-free data reconstruction framework (RFDR). The framework consists of two
modules, each designed to tackle one of the two missing states with targeted strategies, thereby achieving low-error
data reconstruction. Finally, comprehensive experiments are conducted on a hardware-in-the-loop (HIL) testbed to
evaluate the overall performance of the framework. The contributions of this study are summarized as follows.

e To address the issues of data loss and sparse data reconstruction caused by low-quality communication envi-
ronments in rescue scenarios, this paper proposes RFDR. RFDR retrieves from an offline database the reference
samples most similar to the currently received sparse sample and utilizes them to model usable data correlations,
thereby achieving low-error reconstruction of the sparse sample.

e To improve the accuracy and efficiency of sample similarity computation, this paper proposes a soft-sliced
dynamic time warping method (SS-DTW). This approach divides time series into partially overlapping segments,
allowing the overlapping windows to incorporate contextual information from adjacent segments. This enhances
computational efficiency while maintaining global consistency.

e To improve the accuracy of missing value imputation, this paper proposes a time series interpolation method
capable of simultaneously modeling bidirectional spatiotemporal dependencies across samples, between variables,
and within variables. By incorporating additional contextual constraints to narrow the prediction range of missing
values, this method reduces the reconstruction error of the predicted values.

e We implement and evaluate RFDR on a HIL testbed. RFDR improves packet throughput under low-quality
wireless links and surpasses baselines in reconstruction accuracy across a wide range of data missing rates, main-
taining robust performance even under severe loss.

The remainder of this paper is organized as follows. Section 2 reviews related work; Section 3 formulates
the problem and introduces preliminaries; Section 4 details the two core modules of RFDR; Section 5 presents
experimental results; and Section 6 concludes the paper.

2 Related work

2.1 Loss and retransmission

To mitigate congestion, packet loss, and other transmission anomalies, a variety of complementary approaches have
been developed. Examples include resource allocation protocols [13-15] for dynamic optimization of channel usage
and maximized bandwidth utilization; network topology optimization [16] to reconfigure connectivity and alleviate
bottlenecks; transmission job scheduling [17] for organizing data traffic to enhance resource efficiency; and volatile
environment sensing [18] to enable real-time adaptation to dynamic channel conditions. At the link layer, pTunes
for IEEE 802.15.4 [19] and AdaptiveLoRa for LoRaWAN [20] are prominent examples. StarCure [21] employed
time-varying graphs to model temporal topology, converting fault-induced topology changes into traffic variations
and applying an adaptive hybrid-routing scheme to handle unexpected failures. Wang et al. [22] recasted the
minimization of data delivery time as a maximum-flow problem, whereas Chen et al. [23] proposed a pyramid-based
job-scheduling model that exploits the parallelism of communication and computation. The distributed scheduler
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Method Venue Category Interpolation uncertainty Architecture Missing mechanism
BRITS [25] NeurIPS Predictive X RNN MCAR
GRIN [26] TITS Predictive X GNN MCAR/MAR
DCRNN [27] ICLR Predictive X RNN MCAR/MAR
PoGeVon [28] KDD Predictive X VAE MCAR/MAR/MNAR
DMSTG [29] TMC Predictive x GNN, Attention MCAR/MAR/MNAR
PSW-I [30] ICLR Predictive v Optimal Transport MCAR/MAR/MNAR
GRU-GAN [31] TNNLS Generative v GAN, RNN MCAR
E2GAN [32] IJCAI Generative v GAN, RNN MCAR
SSGAN [33] NeurIPS Generative v GAN, RNN MCAR
SGMCAI-DiT [34] TKDE Generative v Diffusion MCAR
Terra [35] NeurIPS Generative v LoRA-based MCAR/MAR/MNAR
MOMENT ([36] ICML Large model v Foundation model MCAR
Timer [37] ICML Large model v Foundation model MCAR
Timemixer++ [38] ICLR Large model v Foundation model MCAR
Gptdmts [39] AAAI Large model v Large language model MCAR/MAR/MNAR
LLM2Trsf [40] NeurIPS Large model v Large language model MCAR/MAR/MNAR
AutoTimes [41] NeurIPS Large model v Large language model MCAR/MAR/MNAR
TimeCMA [42] AAAI Large model v Large language model MCAR/MAR/MNAR

TapFinger [24] further improves flexibility in the use of scarce edge resources. Nevertheless, these solutions often
consume significant bandwidth, which can cause channel congestion and buffer overflow, ultimately degrading
throughput for subsequent traffic.

2.2 Sparse inference methods

Table 1 provides a systematic categorization and comparison of multivariate time-series imputation methods, high-
lighting their key characteristics and differences. A critical limitation of these methods, however, is their imprac-
ticality for emergency-rescue scenarios, which require efficient operation on resource-constrained micro-computing
devices. In addition to architectural differences, these methods can be classified by their handling of uncertainty [12].
We distinguish between predictive models, which yield a single imputation, and generative models, which produce
multiple plausible outputs to capture data stochasticity. For instance, BRITS [25], based on recurrent neural net-
works (RNNs), handles missing values by modeling temporal correlations. TimesNet [43], which leverages convolu-
tional neural networks (CNNs), extracts features by transforming time series into two-dimensional representations
to capture multi-periodicity. Meanwhile, GRIN [26], built on attention mechanisms, aggregates information via spa-
tiotemporal graph attention. Generative models also play a significant role in this domain: PoGeVon [28] employs
variational autoencoders (VAEs), SSGAN [44] operates under the generative adversarial network (GAN) frame-
work, and DCRNN [27], a graph neural network (GNN)-based approach, utilizes diffusion convolution to model
spatial correlations but is deterministic in nature. Together, these diverse methods demonstrate the effectiveness
and innovation of different architectures in addressing the challenge of missing spatiotemporal data.

Large pre-trained models have recently emerged as powerful and versatile solutions, achieving state-of-the-art
(SOTA) performance across numerous domains. However, their substantial computational and storage require-
ments render them impractical for resource-constrained devices, such as those used in emergency rescue scenarios.
Although existing interpolation methods have proven effective at reconstructing missing data and significantly
enhancing the performance of downstream prediction tasks [12], several critical limitations remain: (i) an over-
reliance on temporal continuity, which results in unreliable temporal cues and degraded reconstruction quality dur-
ing prolonged variable missingness; (ii) a persistent efficiency-accuracy trade-off, where current architectures fail to
achieve high interpolation accuracy without exceeding the tight computational budgets of typical edge devices; and
(iii) insufficient cross-variable modeling, as most techniques lack explicit methods to capture inter-variable correla-
tions over long gaps, further limiting overall performance.
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Figure 1 (Color online) Various states of missing data.
3 Problem formulation and preliminaries

3.1 Problem statement

The input to the downstream perception model must have both a fixed temporal resolution and feature dimen-
sionality. This is typically achieved by preprocessing steps or prior layers (e.g., an embedding layer). However,
in emergency response deployments that rely on temporary MANETS, packet loss occurs frequently. Although
existing sparse-reconstruction methods can mask sporadic losses, they inevitably introduce reconstruction errors
that often exceed tolerable limits when losses persist. Conventional systems therefore resort to retransmission by
requesting the source node to resend the missing packets. While retransmission restores data availability, it also
consumes bandwidth that would otherwise be allocated to subsequent traffic, leading to channel congestion and
buffer overflows.

Given the stringent power and spectrum budgets in emergency rescue scenarios, repeated retransmissions signif-
icantly reduce network efficiency and can cause systemic failures. Thus, neither inference-based compensation nor
retransmission-based recovery alone ensures reliable computing under these constraints.

Edge-collected samples, which are aggregated variables from multiple sensors, exhibit three possible data states
for any given variable: (i) variable missing, (ii) point-level values missing, or (iii) complete variable. As shown in
Figure 1, we consider a system with N end-deployed sensors. Each sensor transmits its time-series variable to the
edge device at its own sampling rate. The edge device then aggregates these variables into a multivariate sample S.

3.2 Framework description

To overcome the limitations of both methods, we propose RFDR (Figure 2). The framework consists of two modules:
the SS-DTW module and the time-series interpolation module. The SS-DTW module addresses variable missing.
This design is motivated by the observation that although emergency-rescue networks suffer from high packet loss
and volatile links, the multivariate temporal patterns are not unique to disaster scenarios and often find analogs in
historical data from stable conditions or other scenarios. Therefore, the module identifies the most similar complete
sample S, from an offline repository based on the observed variables in S. It then extracts the values for the missing
variables from S, and imputes them to form a sample S’ with a complete variable set (Steps 2-4). However, S’ may
still contain point-level values missing within individual variables. These are subsequently filled by the time-series
interpolation module, which learns latent temporal dynamics to reconstruct the missing values, yielding a fully
imputed sample (Step 5).

4 RFDR

RFDR consists of two core modules: the SS-DTW module and the time-series interpolation module, as illustrated
in Figure 2.
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Figure 2 (Color online) Overview of RFDR (step 1: data collection from end devices; step 2: forwarding of the sparse sample to the offline
data center; step 3: similarity computation and retrieval of the most relevant historical sample; step 4: interpolation of entirely missing variables
from the retrieved sample; step 5: inference of remaining sporadic missing values).

e The SS-DTW module divides time series into partially overlapping segments. This allows the overlapping
windows to incorporate contextual information from adjacent segments, which enhances computational efficiency
while maintaining global consistency.

e The time-series interpolation module is capable of simultaneously modeling bidirectional spatiotemporal depen-
dencies across samples, between variables, and within variables. By incorporating additional contextual constraints
to narrow the prediction range of missing values, this method reduces the reconstruction error of the predicted
values.

To improve the accuracy of missing value imputation, this paper proposes a time series interpolation method.
4.1 SS-DTW module

4.1.1 Main idea

In multi-sensor emergency rescue systems, the raw data are collected from d different sensors, each generating a
univariate time series. A complete data sample is formed by synchronizing and combining all sensor readings over
a fixed time period [1,7]. Mathematically, we define a full sample as a multivariate time series S € R7*4:

S = {81,82,...,ST}T,

where each vector s; € R? measures the readings from all d sensors at timestamp t. However, in streaming scenarios,
S is not available a priori. Instead, data are transmitted continuously as fixed-length segments. The full sequence
is partitioned into ! consecutive and potentially overlapping segments {S1, Sa,...,S;}, each covering a short time
interval of length k (where k < T'). Each segment S; € R¥*? is itself a multivariate time series slice, containing the
synchronized readings from all d sensors over its respective time window:

Si = {8(i—1)p+1s S(i—1)p+25 o> S(i—l)-p-i-k}T-

This ensures that every data chunk preserves the multivariate structure of the source, enabling real-time processing.
DTW is a widely used method for measuring similarity between time series [45], but it has two limitations in such
settings: (i) DTW is designed for global alignment of complete series. However, when applied to short data segments,
its performance degrades because the segmentation process itself disrupts the original patterns, causing the same
pattern to appear across different segments; (ii) its O(N?) time complexity leads to high computational overhead
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in edge computing scenarios, making it difficult to meet real-time requirements. To address these limitations,
SS-DTW employs an overlapping window strategy for processing streaming data, reduces local similarity errors
through adaptive alignment, significantly lowers computational complexity, and incorporates a dedicated early-
stopping criterion tailored for large-sample databases.

4.1.2  Preliminaries

Definition 1 (Time series alignment). Let S. = (S¢1,S¢,2,...,5:n) and S = (51,52, ...,Sum) be two time series
of length N and M, respectively. An alignment path between S. and S is a sequence m = (71, ..., 7k ), where each
T, = (i, jr) denotes a correspondence between the element S.;, at index i; in S, and the element S;, at index ji
in S. The path must satisfy the following conditions.

e Boundary conditions: m = (1,1) and 7x = (N, M).

e Monotonicity: i1 > i and jpiq = jg for all k € {1,..., K —1}.

e Step size constraints: w1 — 7, € {(1,0),(0,1),(1,1)} for all k € {1,..., K —1}.

The Euclidean distance between two time series of the same length assumes a strict temporal alignment with
7, = (k, k). In contrast, DTW optimizes an elastic alignment via dynamic programming. Let A € R¥*M he the
pointwise distance matrix where A; ; = |S.; — S;|P for a given LP-norm (typically p = 1 or 2). The cumulative
distance matrix D € RV*M is computed recursively with proper initialization:

Do, =0,

Djy=o00, fori=1,...,N,

Dy j=o00, forj=1,...,M,

D;j=A;;+min{D;_1;,D;j1,Di—1;-1}, fori=1,...,N,j=1,...,M.

The optimal warping path P* is the path that achieves the minimum cumulative distance, and the DTW distance
between S. and S is defined as
DTW c = - i R
(S¢,S)=Dn.um min Z A (1)
(i,))eP
where P denotes the set of all valid warping paths.

Definition 2 (Subsequence alignment). Given a reference subsequence Sék:p) = (Se,k, Sekt1s---5 5 p), and
Sler) = (SqsSq+1,---,5r), the local DTW distance between them is computed by constraining the dynamic pro-
gramming to the indices i € [k, p] and j € [¢,7]. The recurrence is initialized and computed as follows:

Dy_1,; =00, forallj,

Dj q-1 =00, foralli,

Diq = Diyg

D;;=2A7;;+min{D;_1;,D;j-1,D;_1j-1}, forie[k+1,p],j€g+1r]

This initialization ensures that the path starts at (k, ¢), and the recurrence is restricted to the defined subsequence
interval, ensuring the path ends at (p, 7).

4.1.3 Details of SS-DTW module

As illustrated in Figure 3, existing methods typically perform time series alignment as follows. Figure 3(a) shows the
reference sample S, and the observed sample S. S, contains two characteristic patterns (Pattern 1 and Pattern 2)
that are also present in S but are subject to temporal distortions. These distortions, such as shifts, compression, or
expansion, frequently occur in low-quality communication environments. Figure 3(d) demonstrates how conventional
DTW aligns these patterns by computing a global warping path that accounts for the temporal distortions.

In contrast, the slice DTW method (Figure 3(b)) operates by dividing both time series S. and S into fixed-length
segments and aligning them independently. This approach results in a discontinuous warping path that fails to
capture the global temporal structure, thereby distorting the underlying patterns. Figures 3(e)—(g) display the
suboptimal alignments produced by the slice DTW method. The limitations of slice DTW are further confirmed by
the discrepancy matrices of the optimal warping paths, shown in Figure 3(1), which reveal higher alignment errors
compared to the conventional method.

To mitigate the distortion introduced by slice DTW, we designed the SS-DTW module. This method partitions
the sequence into overlapping segments and performs a segment-wise alignment that is regularized by overlapping
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Figure 3 (Color online) The SS-DTW module.

segments to ensure global consistency. The procedure is illustrated in Figure 3(c) and consists of the following
steps.

(i) Segmentation and extension: The reference sequence S, of length n is partitioned into I contiguous segments.
The segment boundaries are determined by a target segment length k, resulting in [ = [n/k| segments. Each
segment Seg, is then extended by a window of size w in both temporal directions. The first and last segments are
handled as boundary cases: the first segment omits the backward extension (as no data exists prior to the start),
and the last segment omits the forward extension. The query sequence S is partitioned synchronously using the
same segment boundaries derived from S, and extended identically.

(ii) Local alignment: For each extended segment pair (Seg,(S.), Seg,(S)), we compute a local cumulative cost
matrix C, and an optimal warping path P, within the extended window. The recurrence relation for each local
matrix is identical to the standard DTW computation but is constrained within the segment’s extended boundaries.

(iii) Global path fusion: The final SS-DTW similarity score is obtained by summing the cumulative costs along
the optimal path within the non-exztended core of each segment. Let P be the segment of the path restricted to
the core indices of Seg,. The global score is

l
SS-DTW(S., S) = Z Z (2)
p=1 (i,j)EP,

This approach ensures the alignment is both globally optimal across segments and locally precise within them.
Figures 3(h)—(j) demonstrate that this method preserves the holistic pattern structure by maintaining continuous
warping paths that respect the natural temporal order of the data. Figure 3(m) confirms the high consistency
between the full-sequence warping path and the concatenated soft-sliced paths, as evidenced by the clear diagonal
structure in the discrepancy matrix, which is similar to that of conventional DTW.

Definition 3 (Distance matrix). The pairwise local distance matrix M € R™*™ is the foundational element for
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computing alignment costs. Each entry M, ; is defined using the Minkowski L”-norm:
D
d d
M= [Sei = Sllp = D187 — 5§71, (3)
d=1

where p > 1 denotes the norm order, D measures the dimensionality of each point, and S’idi) denotes the d-th
dimension of the i-th point in S.. This definition applies to both univariate (D = 1) and multivariate (D > 1) time
series.

Definition 4 (Time series similarity). Using the distance matrix M, the time series similarity matrix C' €
R(+Dx(m+1) j5 constructed via accumulated cost matrix. This matrix recursively aggregates local distances to find
the optimal alignment path, with its boundary conditions and recurrence relation defined as follows:

Co,0 =0,
Cio=00, fori=1,...,n,
Co,j =00, forj=1,...,m,

C@j = Mi,j + min {Ci—l,j7 Ci,j—17 Ci—l,j—l}7 for i = 1, NN j = 1, NN

The final time series similarity between S, and S is then given by the value at the corner of the accumulated cost
matrix:

SS-DTW(S,, S) = Cyym. (4)

4.1.4 FEarly termination strategy

To enhance the computational efficiency of matching a real-time input sample S against a large offline reference

dataset D = {Sél),&?), .. .,SEK)}, we propose an early termination strategy leveraging its properties of non-
negativity and additivity. The strategy is outlined in Algorithm 1.
Let ¢ be the best-match distance found so far during the search:

¢= min SS-DTW (S, S). (5)
1<i<k

The SS-DTW distance between a reference sample Sgk) and the sample S is computed as the sum of the distances
of their aligned segment pairs:

4
DM =37dW), where df) = SS-DTW (S, ,). (6)
p=1

Here, Sé? and S, denote the p' segments of Sék) and S, respectively. Since d](gk) > 0 for all p, the partial sum
2:1 dl(yk) is non-decreasing with ¢. To enable early termination, we maintain a running lower bound for the total
distance. After processing the gth segment, the total distance D®) can be bounded from below:

q ¢
DP = "dP + Y o, (7)

p=1 p=q+1

where 51(7k) > 0 is a cheap-to-compute lower bound estimate for the future distance dl()k). A simple and effective
choice is to set 51(7k) = 0, which leverages only the non-negativity of the distance. Early termination for reference k
is triggered whenever

D((Ik) >c¢ forany ¢ < (. (8)

4.2 Time-series interpolation module

The observed sample simultaneously suffers from two types of issues: variable missing and point-level values missing.
The SS-DTW module addresses the issues of variable missing by extracting the complete data of the corresponding
variable from the reference sample and transferring them to the observed sample, thus generating sample S’.
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Algorithm 1 Early termination for SS-DTW reference matching.

Input: Reference database D = {Sél)7 ey Sgk)}7 query sample S, target segment length k, stride s, extension window w.
Output: Optimal reference index k™, minimum distance cpegt-

Initialization:

Chest < O0;

k™ < —1; // Initialize to an invalid index;

for k < 1 to K do

// Determine segment boundaries for reference Sgk) using k and s;

¢ <— number of segments in Sgc);

// Segment query sample S synchronously using the boundaries from Sgk);
D& 0; // Accumulated distance for reference k;

q < 1; // Segment index;

while ¢ < £ and D®) < ¢poyy do

// Compute lower bound for remaining segments (using 5;’“) =0 as simple estimate);
A (k) k . [4 k) _ k) _ 0.
DX — D® 0,77 6160 =0 when 5 = 0;

if D > ¢, then
|_ break // Early termination: skip the rest of reference k;
// Compute the expensive segment alignment;
d « Ss-DTW(SK), Sq, w);
(k) (k) (k).
DY« DY +d "
L g« g+ 1
if D*) < ¢y then

Chest < D(k)v
k™ <+ k;

return k¥, cpest.

However, S’ may still contain point-level values missing inherited from the raw sparsity sample caused by low-
quality communication environments. During inference, we leverage the available observations to capture data
correlations. The accuracy of interpolation critically depends on the number of observed entries—a greater number
of observations strengthens the correlations to missing values and leads to higher reconstruction accuracy. As
illustrated in Figure 4, we model two types of correlations: bidirectional intra-sensor correlations and inter-sensor
correlations.

e Bidirectional intra-sensor modeling: To capture bidirectional temporal correlations, we reverse each time-series
variable and apply an attention mechanism that connects timestamp ¢ to both t — At and ¢ + At. This allows an
observation at ¢ to capture correlations with both its past (t — At) and future (¢t + At) contexts, thereby enhancing
the discovery of temporal correlations.

e Inter-sensor correlations modeling: We employ a graph-based network, in which the hidden states of nodes
are updated through message-passing layers with interpolation methods. Observations from neighboring nodes
propagate spatiotemporal constraints, resulting in more accurate estimates of the missing values.

4.2.1 Formal definition

For each sample S;, we construct a directed weighted graph G; = (V;, E;), termed the sensor correlation graph.
The node set V; corresponds to sensors, and the edge set F; encodes pairwise correlation relations. Each edge from
node u to node v is associated with a weight e; ,, € [0, 1], representing the strength of the relationship. If e; ., # 0,
sensor u can pass neural messages to sensor v; otherwise, the two sensors are considered independent. All graphs
are initialized as fully connected directed graphs (i.e., e; , = 1 for all possible edges) and are adaptively updated
during training.

Consider a multivariate time series comprising N sensor variables observed over a time window of length W,
which can be represented as a matrix V.€ R"W*¥ A corresponding mask matrix M € {0,1}"*¥ indicates
missing entries: m,, ; = 0 if the value v, ; is missing. Model operations (e.g., variable embedding and inference)
are performed only on the observed values (where m,; = 1). To capture complex spatiotemporal correlations,
sensors are interconnected via dynamically learned edge weights, enabling effective joint modeling of both spatial
and temporal correlations.

4.2.2  Embedding observations of active sensors

This section describes the method for generating observation embeddings for any sensor at a given timestamp. Let
a:z(ti € R denote the preprocessed observation from sensor u in sample i at time ¢. To enhance model capacity,
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Figure 4 (Color online) Time series interpolation module.

each observation is nonlinearly projected into a high-dimensional space via a sensor-specific transformation:
¢ ¢
nh = o (allR) | (9)

where R, € R is a trainable weight matrix unique to sensor u (shared across all samples and timestamps),
and o(-) is the ReLU activation function. This transformation facilitates the handling of sparse and irregular
observations. To capture bidirectional temporal correlations, the reversed observation sequence ?52

independently using a separate set of parameters:

W= (F0R), (10)

is processed

where R, € R?*9 is a distinct, learned weight matrix for the reverse temporal direction. The forward and backward
representations are subsequently concatenated to form a fused representation:

7,

A = [p0 1 B0 e r2 (11)

4.2.3  Message passing for inactive sensor imputation

To estimate the embedding of an inactive sensor v at time ¢, our method leverages information from its active

neighbors in the graph G; through a message-passing mechanism. For a neighboring sensor u € N'(v), an attention
(t)

i.uv € [0,1] is computed to quantify the relevance of u to v:

al(-i)w = sigmoid <(h§tl)LD> : {rv I p(t)] T) . (12)

weight o

Here, r, € R% is a trainable, sensor-specific embedding vector for the receiver node v, allowing the model to discern
the importance of different senders. The vector p(¥) € R% is a temporal encoding that injects timestamp-specific
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information, defined using trigonometric functions:

(t) = sin —t
P = 2R )
0) ¢
Pojy1 = COS 2R )

where ¢ is a frequency scaling factor set to 10000. The matrix D € R% *(dr+di) jg 5 Jearnable projection matrix. The
estimated embedding for an inactive sensor v is then computed as an attention-weighted sum over the embeddings
of all its active neighbors:

(13)

hgi)) =0 Z al uv ei,uv : (hgzw) ) (14)
weEN (v)

where W € R4 *dn ig a shared learnable weight matrix, and e; 4, is the edge attribute between u and v.

4.2.4  Temporal aggregation into fived sensor embeddings

The previous steps yielded a set of observation embeddings {hgtz | t € T;,} for all timestamps where the data
were available either at sensor v or within its neighborhood. To aggregate these variable-length sequences into a
fixed-length sensor embedding z; ., we employ a temporal attention mechanism. The observation embedding at
each time ¢ is first concatenated with its corresponding temporal encoding p(*) to form a composite feature vector
[hz(tl)) | p¥] € R¥dntdi - All such vectors for t € Tj,, are stacked into a matrix H;,, € RITivlx2dntdi)

To obtain a single vector representation for the entire sequence, we compute the final sensor embedding z; ,, € R-
as the weighted sum of the value-projected features, using attention weights derived from a dedicated, learnable
query vector gus € R1*%a:

T , zm—Zﬂ(t) (alwv). (15)

where Wé € RéaXde Wy € R(2dh+d')Xdk and Wy € REdntd)xd: are Jearned projection matrices, dj is the

dimension of the key/query space, H( ) is the ¢-th row of H;,, and Bftg is the ¢-th component of the attention
weight vector.

T,
Bi» = softmax <(Hi’”WK)(qCZSWé2)T> R

4.2.5 Readout and reconstruction loss

For each sample S;, the embeddings of all N sensor-generated embeddings {z; ,})_; are aggregated into a sample-
level representation z; € R% via a readout function g. We implement g as mean pooling:

1 N
v=1

The sample embedding z; is then passed through a multi-layer perceptron (MLP) head which projects it into the
imputation space and directly produces the imputed values Y; for all sensors and timestamps in the sample.
The model is trained to minimize the reconstruction error over the observed values. For a batch of samples, the
loss function is defined as
T N t t) (¢t
r 1 & et 2o m() g(yz('L);?yz('L))) (17)
- B N T ’
B i=1 Zt 12 0= m( )
(t)

where y( ) and Y; , are the reconstructed and true values, respectively, mz(tg € {0,1} is a binary mask indicating
whether the value was observed (1) or missing (0), £(-,-) is an element-wise error function, such as mean absolute
error (MAE) or mean squared error (MSE), and mean relative error (MRE), B is the number of samples in the
batch.
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Figure 5 (Color online) The end-edge collaborative wireless communication system.

5 Experiments

5.1 Datasets

We evaluate our method on various public datasets spanning three domains: healthcare, environment, and traffic.
Healthcare: The MIMIC open-source database contains anonymized records from 38803 intensive care patients
monitored by 36 sensors. Each patient record includes multiple binary labels for common clinical events [46].
Environment: This dataset comprises air quality index measurements from 437 monitoring sites. We focus on
PMay 5 concentrations defined as AIR, and also use a reduced version with 36 sensors, defined as AIR-36 [47].
Traffic: We employ the PEMS-BAY and METR-LA traffic sensor datasets [27].

5.2 Baselines

We compare our method with the following baselines on the tasks of imputation and forecasting. GRIN [48]: A
graph-based imputation method that replaces the standard gating mechanism in RNNs with a message-passing
network to handle missing data. TimesNet [43]: A general-purpose time series modeling framework that transforms
time series into two-dimensional representations based on temporal periods for analysis. It employs a residual
dilated inception block as its convolutional backbone to capture multi-scale temporal patterns. We adapt it for
the imputation task. DCRNN [27]: A spatio-temporal GNN designed for traffic forecasting. It captures spatial
correlations via bidirectional random walks on a graph and models temporal correlations with an encoder-decoder
architecture utilizing scheduled sampling. We apply its paradigm to the imputation problem. PoGeVon [28]: a
graph variational autoencoder approach that performs imputation of missing values in both the node-level time
series and the underlying graph structure simultaneously. SSGAN [33]: a generative adversarial network for spatio-
temporal imputation. It introduces a temporal reminder matrix to guide the generator in producing more accurate
estimates of missing values. BRITS [25]: a bidirectional recurrent imputation model that learns missing values
in multivariate time series based on both forward and backward directions and the empirical correlations between
different channels. DMSTG [29]: a dynamic graph learning model for traffic data imputation. It utilizes a self-
attention module to dynamically assign importance weights to different components and a variable-fusion module
to integrate multi-view spatio-temporal representations.

5.3 Experimental configuration

We deployed the end-edge HIL testbed consisting of six portable Raspberry Pis (as sensing nodes), one laptop
mounted on a patrol car that acted as a portable edge node, and one server functioning as an edge-located, small-
scale offline data center (see Figure 5). To simulate dynamic channel conditions, the patrol car moved continuously,
and physical obstacles were periodically introduced into the environment to simulate signal blockage. The sensors
generated data packets of up to 200 kB. These packets were first buffered in a 1 MB queue on the sensing node.
Any undelivered packets were moved to a retransmission queue. Prolonged latency and frequent failures caused
packets to accumulate, leading to buffer overflow and data missing. We evaluated the following two schemes.
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Figure 6 (Color online) Throughput and transmission delay (A is cumulative differential values).

e Retransmission: This scheme employed a classic ARQ-like recovery mechanism. Upon detecting a packet loss,
the receiver sent a retransmission request, prompting the sensing node to resend the packet. A packet delivery is
considered a failure if a buffer overflow occurs or if a timeout is triggered before successful transmission.

e RFDR: This scheme adopted a loss-tolerant streaming strategy. Upon detecting a loss, it did not request a
retransmission. Instead, the edge device queried its offline database for a semantically similar data segment to
compensate for the loss, while the system continued to stream the subsequent batch of real-time data.

5.4 Performance metrics

We selected two types of performance metrics for a comprehensive evaluation: transmission performance and recon-
struction performance. For the former, we measured throughput, defined as the amount of successfully transmitted
data over the test duration, and latency, quantified as the time elapsed from a packet’s transmission to its successful
receipt, including any delays incurred by loss and retransmission. For the latter, we employed three common metrics
to assess imputation accuracy: the MAE, which measures the average magnitude of errors between imputed and
ground truth values; the MSE, which calculates the average of squared errors to emphasize larger errors; and the
MRE, which normalizes the absolute error by the actual value to provide a relative measure.

5.5 Transmission performance

The first row of Figure 6 compares the real-time throughput of RFDR and the retransmission scheme for six
mobile devices during the 60-minute experiment. The second row depicts the corresponding time series of packet
transmission latency, where each point represents the delay of an individual packet in chronological order. Owing
to the continuous movement of the devices and introduced obstacles, the channel conditions were dynamic, causing
both metrics to exhibit significant volatility. We quantify the performance gap as the difference in mean throughput
(denoted as A) between the two schemes. For Devices 2 and 3, which experienced relatively stable channels, REDR
achieved a mean throughput gain of A = 37.5 + 3.5. In contrast, for Devices 1, 4, 5, and 6, which suffered
from severe channel fluctuations, the performance improvement was more pronounced, with a throughput gain of
A = 118.3+30.4 and higher volatility (coefficient of variation = 25.7%). Crucially, RFDR also yielded a substantial
reduction in latency. As visible in the second row of Figure 6, the retransmission scheme exhibited frequent
latency spikes caused by retransmission timeouts following packet loss. RFDR, by eschewing retransmissions,
eliminates these spikes and maintains a consistently lower and more predictable delay profile. In summary, the results
demonstrate that RFDR consistently outperforms the conventional retransmission method in both throughput and
latency, with its advantages being particularly significant under highly volatile channel conditions. This robust
performance underscores the framework’s strong potential for application in demanding scenarios such as emergency
rescue operations.

The latency distribution of data packets reveals a significant head-of-line blocking issue. This phenomenon is
characterized by a few packets consuming a disproportionate share of the transmission time, which stalls the en-
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Figure 7 (Color online) Packet loss rate and data transmission delay.

tire queue and induces cascading delays for subsequent packets, thereby significantly reducing overall transmission
efficiency. In contrast, REDR mitigates this problem through a novel method. It abandons conventional retrans-
mission, which intensifies channel contention. Instead, upon detecting missing data, RFDR leverages nearby edge
computing nodes to retrieve or infer the missing information from an existing dataset. This strategy bypasses re-
peated transmissions over the end-edge link, effectively freeing up channel resources. In our experimental evaluation,
this method achieved an average improvement in transmission efficiency of 17.32% compared to the retransmission
scheme.

Figure 7 compares packet loss rate and latency between the two schemes. The average packet loss rate is
similar (20.33% for retransmission vs. 19.83% for RFDR), confirming consistent network conditions. The box plot
shows that RFDR achieves lower latency across most devices (mean reduction: 1.81 s) and a smaller interquartile
range (IQR reduction: 1.74 s), indicating superior robustness—especially under poor network conditions. The
retransmission scheme exhibited higher latency variability, indicating higher sensitivity to network variations.

5.6 Reconstruction performance under various scenarios

Figure 8 provides a systematic comparison with baselines in the field of sparse data reconstruction. To evaluate the
generalization capability and robustness of our method, we conducted comprehensive benchmark tests on multiple
datasets. Following Zhang et al. [49], we adopted MAE, MSE, and MRE as evaluation metrics. We established
two experimental conditions. In-sample evaluation: Training and validation sets originate from the same data
distribution. Out-of-sample evaluation: The validation set is sourced from a significantly different data origin than
the training set. The experimental results, under the given experimental conditions, show that RFDR significantly
outperformed all baselines across all 30 evaluation tasks (5 datasets x 2 settings x 3 metrics). Compared to the
second-best method, it achieved an average reduction of 49.94% in MAE, 8.86% in MSE, and 16.25% in MRE,
demonstrating its superior cross-domain reconstruction capabilities and stability.

5.7 Reconstruction performance under various missing ratios

Through a comprehensive evaluation across various missing ratios (ranging from 35% to 85%; see Table 2), we
empirically show that our proposed RFDR achieves consistent improvements in cross-domain sparse data recon-
struction tasks. Specifically, RFDR attains optimal performance in all 36 comparative scenarios (6 missing ratios
X 3 metrics x 2 settings), with average relative improvements of 18.18% in MAE, 8.71% in MSE, and 30.29% in
MRE compared to the second- best method. The notably higher improvement in MAE and MRE compared to MSE
suggests that our method is particularly effective at reducing common errors, while its advantage in mitigating large
outliers is more modest. Notably, the performance gap progressively widens as the missing data ratio increases. The
method also exhibits superior generalization in out-of-sample conditions. It achieves a 56.5% reduction in MAE at
a 35% missing ratio (7.92 vs. DMSTG’s 18.21) and maintains an average MAE improvement of 44.5%, compared
to 34.7% in in-sample conditions. This confirms its exceptional generalization capability under distribution shifts.
At an extreme missing ratio of 85% in-sample, REDR achieves an MAE of 27.63 (a 17.3% reduction over DCRNN’s
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Table 2 Performance comparison across different ratios. The best results are in bold. The second best results are underlined.
Missing ratio Method In-sample Out-of-sample Missing ratio Method In-sample Out-of-sample
MAE MSE MRE (%) MAE MSE MRE (%) MAE MSE MRE (%) MAE MSE MRE (%)
GRIN  23.71 1211.13 4.10 26.02 1355.44 4.70 GRIN  45.75 1998.27 5.75 51.18 2398.32 7.42
TimesNet 30.12 1521.51 5.54 32.89 1769.44 6.61 TimesNet 51.45 2172.66 9.02 57.53 2607.94 11.01
DCRNN  25.41 1221.21 5.15 30.24 1612.29 7.41 DCRNN  28.23 1455.08 10.04  32.01 1746.34 12.85
35% PoGeVon 22.34 1113.13 2.11 29.77 1567.94 4.59 65% PoGeVon 45.55 2167.52 5.75 50.19 2601.69 7.70
; SSGAN  20.13 1223.11 1.89 30.42 1586.72 3.23 : SSGAN  42.34 2142.33 5.31 47.14  2570.87 6.52
BRITS  18.13 1012.34 1.44 29.06 1555.09 3.22 BRITS  46.35 1943.09 6.04 51.28 2332.69 7.52
DMSTG 12.45 745.23 1.98 18.21  934.02 2.48 DMSTG 28.61 1311.39 4.52 32.02 1573.84 6.27
RFDR  7.05 693.79 1.10 7.92 833.00 2.10 RFDR  24.32 1197.53 2.94 27.45 1437.57  4.39
GRIN  30.73 1517.52 4.25 34.40 1821.10 4.90 GRIN  51.05 2198.69 6.66 56.19 2638.54 8.78
TimesNet 40.04 1975.37 6.98 44.69 2371.29 7.73 TimesNet 53.05 2390.57 10.90  58.66 2869.25 14.02
DCRNN  26.83 1323.42 7.50 30.04 1588.91 8.83 DCRNN  31.93 1600.89 11.56  35.45 1921.51 14.19
15% PoGeVon 33.33 1643.44 4.03 36.79 1972.65 5.00 5% PoGeVon 49.65 2384.31 6.43 55.03 2861.83 7.75
3 3
SSGAN  33.83 1669.67 3.67 37.93  2004.21 4.60 SSGAN  47.75 2357.05 6.67 53.09 2829.23 8.29
BRITS  31.73 1565.36 3.84 35.25 1879.35 4.75 BRITS  49.05 2137.72 6.80 54.10 2565.36 8.48
DMSTG 17.31 853.82 2.69 19.85 1025.39 3.78 DMSTG 30.55 1443.40 5.63 34.10 1732.43 6.95
RFDR 15.82 780.08 2.00 18.14 936.86 2.29 RFDR  27.13 1317.74 3.34 30.02 1581.75 4.01
GRIN  36.84 1816.31 5.19 40.82  2180.49 6.22 GRIN  55.96 2418.81 7.79 62.19 2903.01 10.05
TimesNet 40.04 1974.27 7.98 44.44 2369.19 9.39 TimesNet 57.36 2630.44 12.09  63.62 3156.90 15.37
DCRNN  26.83 1322.72 8.76 29.53 1587.66 10.58 DCRNN  33.43 1761.26 13.13  37.26 2113.84 15.89
55% PoGeVon 39.94 1970.17 5.06 44.12  2365.13 6.03 85% PoGeVon 59.26 2623.20 7.65 66.00 3148.05 9.90
3 3
SSGAN  39.44 1947.25 4.30 43.44 2337.24 5.31 SSGAN  55.06 2593.01 8.10 60.65 3112.56 10.47
BRITS 35.74 1765.66 4.81 40.00 2119.18 5.81 BRITS  53.25 2351.97 8.05 59.01 2823.35 9.75
DMSTG 24.16 1191.27 3.77 27.53 1429.86 4.47 DMSTG 37.24 1588.69 6.53 41.11 1906.65 8.36
RFDR  22.02 1088.39 2.61 25.06 1306.20 3.82 RFDR  27.63 1449.86 3.97 30.44 1740.16 5.56

33.43) and an MRE of 3.97% (a 39.2% reduction over DMSTG’s 6.53). These consistent advantages substantiate
RFDR’s significant advancement in addressing the critical challenge of extreme sparse data reconstruction.

6 Conclusion

This paper proposes RFDR for data reconstruction that consists of two modules: (i) an SS-DTW module for handling
missing variables, and (ii) a time-series interpolation module for imputing missing values. Unlike conventional
retransmission methods that rely on requesting retransmission data from end devices, SS-DTW leverages an offline
historical repository to retrieve the most similar reference sample to the current sparse observed data. By integrating
the observed data and the reference sample, the time-series interpolation module achieves accurate reconstruction
of the raw data. Validation on a HIL testbed, which emulates an end-edge link, shows that RFDR improves
throughput by 17.3% and reduces median latency by 1.81 s compared to the retransmission scheme, while also
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outperforming deep learning-based baselines in reconstruction accuracy under 35% to 85% random data missing
rates. These results demonstrate its superior performance under severe data missing conditions and its strong
potential for emergency scenarios where low latency and high reliability are critical.
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