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Abstract Radar-based contactless detection of detailed cardiac activity enables convenient and accurate heart monitoring in healthcare

applications. However, it requires further investigation regarding the reproducibility of stable characteristic cardiogram waveforms.

In this study, we initially perform a systematic link-budget analysis for radar-based cardiogram detection to derive the performance

requirements for the radar system to be used in the detection of weak cardiogram signals. Then, we propose a novel velocity cardiogram

(VCG) extraction framework, which employs vector analytic demodulation (VAD)-Wiener filtering, to accurately extract cardiograms

based on the signals obtained using an interferometric biomedical radar. The obtained VCG waveforms provide more stable cardiogram

waveforms than Doppler cardiogram waveforms in terms of reproducibility. We conducted clinical experiments to obtain cardiac activity

data from individuals with various body types and ages, covering 6123 cardiac cycles in total. The results showed that the proposed

framework provides stable velocity cardiogram waveforms, which can be used to extract physiologically meaningful characteristics. In

addition, the extracted RR intervals from all detected cardiac activities show a correlation of 0.987 with the ground-truth ECG, validating

the high stability and reliability of the proposed cardiogram detection framework.
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1 Introduction

The detection of cardiac activity is crucial for the diagnosis and management of various heart-related diseases.
Traditional methods, such as electrocardiography (ECG) [1], ballistocardiography (BCG) [2], and seismocardiog-
raphy (SCG) [3, 4] have been widely used; however, they often require probes in direct contact with the human
body, making them impractical in clinical environments. The continuous progress in radar technology has provided
continuous-wave interferometric radars with excellent capabilities of detecting target micromotions [5]. Recently,
radar-based cardiogram detection methods, such as the Doppler cardiogram (DCG) method [6], have emerged as
promising contactless techniques for the continuous and unobtrusive monitoring of heart activity. Understanding
the relationship between radar-based and traditional cardiograms is essential for obtaining insights into the different
aspects of cardiac activity. For example, ECG detects the electrical depolarization and repolarization cycles within
the heart, and DCG provides insights into the resultant mechanical motions, such as the combined movement of
atria and ventricles. As a result, a combined view of cardiac health can be obtained. This dual perspective is es-
sential for comprehensive cardiac assessments, particularly in cases where the electrical patterns cannot fully reveal
mechanical dysfunctions such as heart valve diseases or aortic dissections [7].

However, large-scale studies on radar-based cardiogram reproducibility have not been conducted. Therefore,
there is a lack of knowledge on the stability of radar-based cardiogram waveforms across different populations and
the distortions in the radar-based cardiogram waveforms induced by various radar-detection methods.

Based on the characteristics of quadrature radar signals, several high-linearity demodulation algorithms have
been proposed to accurately recover phase information in radar interferometry and obtain time-domain waveforms
of the target motion. These algorithms include arctan [8], DACM [9], arcsine [10], and MDACM [11]. All these
algorithms are used to linearly and accurately reconstruct the waveforms corresponding to target displacement.
In some previous studies, machine- or deep-learning techniques were used to detect cardiograms; this requires the
precollection of radar and gold-standard ECG data. Then, the model is trained to transform radar-detection signals
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into quasi-ECG waveforms [12,13]. Although this method exploits the advantages of deep-learning models, it lacks
interpretability. The detected cardiograms do not correspond true physiological signal, making it difficult to validate
the authenticity of their waveform morphology.

The chestwall displacement signal obtained after radar signal demodulation is a mixed signal of respiratory
and heartbeat activities. The linear and distortion-free extraction of the human cardiogram, and as well as the
calculation of specific cardiac activity intervals based on characteristic waveforms, are currently hot research topics.
In recently published articles, a parameter respiratory filter (PRF) [7] was used to accurately filter out respiratory
motions to extract cardiogram waveforms. Additionally, other methods based on wavelet transforms [14, 15] and
empirical mode decomposition [16, 17] have been used to extract heartbeat waveforms. However, these algorithms
face challenges in practical applications because of the difficulty of adaptively the randomness of physiological
signals.

In addition to the detection of cardiac activity waveforms, radar-based cardiograms can provide accurate cardiac
interval parameters, such as RR and RT intervals, because of the strong coupling characteristics between radar-
based cardiograms and ECG. A DCG-RT-detector method [18] has been proposed to directly detect the positions of
characteristic waveforms in DCG to obtain the RR intervals. Additionally, some studies have exploited the biological
nature of the coupling between cardiac electrical activity and mechanical activity [12, 19]. In these studies, radar
cardiac cycles and ECG signals were simultaneously acquired, and deep learning, as well as synchronized data
training, was employed to reconstruct the ECG waveforms based on the obtained radar signals. This approach
enables the identification of important characteristics, such as QRS waves, enabling the calculation of time-domain
parameters such as RR intervals.

In this study, our objective is to achieve distortion-free acquisition of cardiograms and investigate their wave-
form repeatability and robustness across diverse populations. Based on their generation mechanism, radar-based
cardiograms contain rich waveform details that reflect the activities of the heart and its four chambers [6]. Given
the quasi-stationary yet nonstationary nature of human vital signals, the linear adaptive extraction of cardiogram
waveforms is crucial.

In this study, we propose a framework to accurately extract highly reliable cardiac activity. The key contributions
of our work are summarized as follows.

• The velocity cardiogram (VCG) and its related physiological model are proposed, and the radar link analysis
of the VCG detection is performed, providing a theoretical basis.

• A novel linear cardiogram extraction algorithm with adaptive waveform characteristics is proposed, which offers
high accuracy and linearity in VCG recovery.

• Validation of the v- and n-wave waveforms of the proposed VCG across a wide range of ages and body weights
by obtaining 6123 heart cycles in total. Our results verify that the extracted VCG waveforms show outstanding
stability compared to DCG in terms of waveform consistency.

• Validation and discussion of the VCG detection results under different scenarios. Our results show that different
radar-based detection scenarios can lead to waveform distortions in the VCGs. Specifically, when a radar irradiates
different areas of the human body, the resulting VCG waveforms may vary in shape.

Considering population universality, in this study, we extensively analyze human VCGs and define their charac-
teristic waveforms. The extracted v - and n-wave waveforms correspond to the maximum-velocity points of different
motion trends in cardiac mechanical activity. Our analysis and results enable further applications of radar systems
in cardiac activity detection, thus contributing to the establishment of large datasets that support AI applications.

2 Theory

2.1 Radar cardiogram mechanism

Radar cardiogram, as an emerging technology, is susceptible to signal quality variations caused by individual dif-
ferences (e.g., body fat percentage, thoracic cavity structure, skin impedance) and environmental interference (e.g.,
distance, motion artifacts). Current research predominantly investigates the biomedical significance of remotely de-
tected cardiac activity signals via radar and focuses on optimizing signal acquisition algorithms, yet lacks systematic
validation of waveform consistency across diverse populations. Functional descriptors of cardiac activity, such as
electrocardiograms (ECG) exhibit well-defined characteristic waveforms with similar morphological patterns across
populations, as shown in the display of ECG device in Figure 1.

The proposed VCG in this work characterizes mechanical cardiac velocity signals, whereas prior DCG method-
ologies quantified volumetric cardiac changes [6]. Cardiac volumetric changes primarily originate from chamber
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Figure 1 (Color online) Detailed block diagram of the proposed remote velocity cardiogram detection framework with interferometric biomed-

ical radar.

contraction/relaxation dynamics, reflecting cardiac preload (filling pressure) and afterload (arterial resistance). In
contrast, cardiac velocity metrics (e.g., myocardial contraction velocity, blood flow velocity) reflect instantaneous
biomechanical performance of myocardial fibers, exhibiting lower sensitivity to preload/afterload fluctuations. Vol-
umetric metrics are prone to low-frequency perturbations induced by loading conditions, whereas velocity metrics
predominantly depend on intrinsic myocardial contractility [20].

Volumetric indices face limitations in early pathological states. For instance, ventricular dilation may compensate
for reduced stroke volume in early heart failure, whereas myocardial contraction velocity abnormalities manifest
earlier in ischemia or fibrosis with minimal compensatory interference. Thus, velocity metrics demonstrate superior
stability in pathological conditions [21]. Comparative analyses of VCG and DCG waveform stability under patho-
logical states will be presented in responses to your second and third queries. Low-frequency disturbances (e.g.,
respiration, postural changes) significantly affect volumetric measurements. Velocity signals (e.g., Doppler flow)
inherently represent differentials of volumetric signals, amplifying high-frequency transient features (e.g., peaks,
edges) while suppressing low-frequency baseline drift. This differential nature enhances waveform stationarity.

2.2 Link budget analysis

For the heart motion detection scenario, as shown in Figure 2, first, we need to calculate the radar received power of
the signal reflected by the effective chest area. In the scenario of single-transmitter single-receiver 24 G continuous
wave radar vital signs detection, the radar’s equivalent detection target is the entire chest cavity, and the beam is
focused on the whole chest not only the heart area. Therefore, the effective echo reflection carrying the vital signs
signal should come from the entire chest wall. The received power Pr in our continuous-wave (CW) radar system
is derived from the radar equation:

Pr =
PtGtGrλ

2σeffLbody

(4π)3R4Lpath
, (1)

where Pt is radar transmit power, Gt is transmit antenna gain, Gr is receiving antenna gain, λ is wavelength, σeff is
effective radar cross-section (RCS) of human chest wall, R is target distance, Lpath is free-space path loss, Lbody is
tissue reflection loss. It is worth noting that, since the detection scene of the bioradar system is often short-range,
the free-space path loss Lpath can be ignored and since the human body is a conductive medium, there is reflection
loss on the skin surface.

The radar system used in this article is a mono-static radar, the transmitting and receiving antennas are designed
in the same way, the operating frequency is 24 G, the working mode is CW, and Pt is 0 dBm (measured result).
So, Gt = Gr =13 dBi, and the wavelength λ is 1.25 cm, target distance R is 50 cm, antenna size is 3 cm × 2 cm,
target lies in far-field condition.
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Figure 2 (Color online) Schematic diagram of the application of the radar equation in vital sign detection.

According to the catalog and technical requirements for low-power short-range radio transmitting equipment
issued by the Ministry of Industry and Information Technology of the People’s Republic of China, the equivalent
isotropic radiated power (EIRP) of equipment in 24 GHz frequency band cannot exceed 20 mW. For the bio-radar
system in this article, EIRP = P ∗

t Gt = 20 mW, which meets the safety standard.
The RCS corresponding to human cardio-respiratory motion is measured in [22]. Based on the relationship

between wavelength and RCS, the effective σeff of cardiopulmonary motion area at 24 GHz is 1.2 m2.
At a frequency of 24 GHz, the loss of electromagnetic waves when reflected by the human body surface is mainly

determined by the reflection coefficient. According to the electromagnetic parameters, the conductivity of human
dry skin obtained in σ = 22.84 S/m, relative permittivity εr = 18.993 [23]. The intrinsic impedance of human tissue
ηbody can be calculated

ηbody =
η0√

εr − j σ
wε0

= 18.944 + j4.124, (2)

where η0 = 377 is free-space wave impedance, w = 2 × 24 × 109 rad/s, ε0 = 8.854 × 10−12 F/m. Therefore, the
reflection coefficient at normal incidence is

Γ =
ηbody − η0
ηbody + η0

≈ −0.9 + j0.0198. (3)

Tissue reflection loss Lbody = |Γ|2 ≈ 0.81, finally the calculated received power Pr = −31.13 dBm.
Then, we need to analyze the noise source and estimate the signal-to-noise ratio of the radar receiver. In the

zero-IF Doppler radar system for short-range sensing discussed in this paper, residual phase noise is negligible, with
the primary noise contributions being baseband 1/f noise and additive Gaussian noise. First, it is necessary to
calculate the noise floor N0 of the receiver system primarily composed of Johnson-Nyquist thermal noise. The noise
floor is determined as

N0 (dBm) = kTB +NF = −158 (dBm) + 5 (dB) = −153 dBm, (4)

where k represents Boltzmann’s constant, T denotes absolute temperature, B indicates system bandwidth (with
ADC sampling rate of 100 Hz and final digital signal bandwidth of 50 Hz in this implementation), and NF cor-
responds to the noise figure of the receiver’s low-noise amplifier (LNA024 005@Silicon with NF = 5 dB in this
design).

However, according to flicker noise analysis in [24–26], the flicker noise power in zero-IF systems can exhibit
approximately 10–30 dB elevation over the noise floor within the 0–1 Hz bandwidth. Therefore, to rigorously assess
the receiver noise performance of the radar, we take the radar receiver’s noise floor within 0–1 Hz as

N0–1 (dBm) = N0 + 30 (dB) = −123 dBm. (5)

For human targets in a resting state, the effective motion information detected by CW radar is mainly the
superposition of the chest surface displacement caused by respiratory movement and heartbeat movement. The am-
plitude of respiratory movement is generally about 10 times the amplitude of heartbeat movement [26]. Cardiogram
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detection requires rich cardiac waveform detail detection capabilities. The amplitude of these fine-grained wave-
form details is about one-fiftieth of the heart motion amplitude [6]. Therefore, the SNR requirement for detecting
cardiograms needs to be 54 dB higher than that for detecting respiratory movement. The SNR requirement for
the original baseband signal of effective CW radar IQ channels linear demodulation is 30 dB [11, 18]. Considering
these two SNR requirements, we can conclude that the SNRdemand required for detecting cardiac activity signals is
84 dB.

Then, according to the above analysis, for the proposed radar system detection method in this paper, Pr−N0−1 =
90.87 dB > SNRdemand. So, it effectively detects the details of heart activity.

In summary, according to this analysis, we can see that for the 24 G CW radar system, the higher the radar
transmission power, the greater the antenna gain, the better the noise coefficient performance of the receiver, and
the closer the target detection distance (not less than the far-field detection condition), the better the detection
performance of heart movement.

2.3 Detection distance analysis

The energy of the human body’s backscattered signal received by the radar receiver is inversely proportional to the
fourth power of the distance R between the human body and the radar. Therefore, the closer the human body is to
the radar, the stronger the backscattered signal energy, and consequently, the better the SNR performance of the
radar receiver. For CW radar, static clutter can be eliminated regardless of the target distance.

However, there are two limitations that prevent the target from being too close to the radar. First, our linear
target detection theory is derived under the condition of far-field detection by the antenna. Therefore, the target
distance should satisfy the far-field detection condition, i.e., R > 2D2/λ = 25.6 cm (where D is the antenna
diameter).

Second, the backscattered signal energy must not exceed the dynamic range of the radar receiver (which is often
determined by the 1 dB compression point of the LNA, due to its nonlinear distortion). Otherwise, the received
signal will be distorted. The LNA 024@Silicon used in this paper has a P1 dB = 6.5 dBm. Based on the calculation of
received power Pr in the previous subsection, when received power Pr = −6.5 dBm, the calculated closest detection
distance is 13.58 cm.

As for the maximum detection limitation, according to the radar equation (1), if the target is too far away, the
received backscattered energy will be too small. Therefore, the farthest detection distance for the human body
target in the cardiogram detection scenario can be estimated based on the required SNR for receiving the cardiac
waveform signal. According to the above analysis, to effectively detect the cardiogram signal, Pr −N0−1 needs to
be larger than SNRdemand. Finally, the farthest detection distance for the target using the radar system in this
paper is calculated as 89 cm.

Since real world radar detection scenarios are more complex and variable, this section has only analyzed the main
factors affecting detection. Thus, the optimal detection range of the radar system used in this paper is probably
between 15 and 85 cm.

3 Methodology

3.1 Signal model

In the past, the general principle of radar vital sign detection was to explore the thoracic displacement information
contained in the phase of the electromagnetic waves reflected from the human body [6]. So, the analysis of radar echo
signals often attempts to demodulate the target displacement x(t) from the echo phase, as shown in the following
equation:

sR(t) = Ar · sin

(
θCW,R +

4πx(t)

λ
+ ϕ0

)
, (6)

where Ar is the amplitude of echo signal, λ is the wavelength, θCW,R is the phase delay caused by R0, ϕ0 is the
residual phase.

Under resting conditions, the vibrations on the human thorax, x(t), primarily consist of respiratory movements
xr(t), heart movement xh(t) and random body movement xb(t) [27]. These movements are directly superimposed,
thus resulting in

x(t) = xr(t) + xh(t) + xb(t). (7)
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The random body movement signal is generally considered to be a relatively stable trend based on experience,
and therefore can be regarded as a constant over a short period of time. In this morphology study of the radar
cardiogram, we aim to directly obtain the velocity information of thoracic micro-movements. Therefore, we re-model
the radar echoes under the cardiogram detection scenario, the echo signal SR(t) can be expressed as

SR(t) = Ar · sin (2πft (t− TR))

= Ar · sin

(
2πft

(
t− 2

R0 − vt

c

))

= Ar · sin

(
2πft

(
2vt

c
+ 1

)
t−

4πR0ft
c

)
,

(8)

where c is the speed of light, R0 is the initial distance between human and radar, v is the radial instantaneous
velocity of the chest-wall under test relative to the radar at time t, and ft is the operation frequency of radar.

After the downconverter process, the detected in-phase (I ) and quadrature-phase (Q) signals scattered by the
skin can be obtained

I(t) = AI · cos

[
4πvt

λ
+

4πR0

λ
+ ϕ0

]
+DCI(t), (9)

Q(t) = AQ · sin

[
4πvt

λ
+

4πR0

λ
+ ϕ0

]
+DCQ(t), (10)

where AI and AQ are the amplitudes of the signals, respectively, DCI(t) and DCQ(t) are the DC offsets.

3.2 Linear signal demodulation

For a normal IQ balanced radar system, based on the principle of vectors analytic demodulation (VAD) algorithm
proposed in previous work [18], the discrete velocity of chest-wall movement v(nT ) in discrete with a signal length
L and sampling interval T can be written as




v(0)
...

v(iT )


 =

λ

4πA2
·




I(0) · Q̂(0) Î(0) ·Q(0) Q̂(0) Î(0)
...

...
...

...

I(iT ) · Q̂(iT ) Î(iT ) ·Q(iT ) Q̂(iT ) Î(iT )


 ·




1

−1

−DCI

DCQ



, i ∈ [0, L], (11)

where i represents the ith sampling point of the processed digital signal.
It can be seen that the velocity of chest-wall movement signal v(t) shares a linear relationship with four vectors:

Î(t), Q̂(t), I(t) · Q̂(t) and Q(t) · Î(t).
In DCG morphology analysis, the focus is on the temporal waveform patterns of the demodulated signal, not its

absolute displacement. Therefore, according to (6), we can linearly demodulate the velocity signal of the thorax.

3.3 Cardiogram extraction

Eq. (2) illustrates the components of thoracic movement. Over a shorter period of time, the thoracic movement
velocity v has the following relationship with the thoracic movement velocity vh(t) caused by the heart and the
thoracic movement velocity vr(t) caused by respiration:

v(t) = vr(t) + vh(t). (12)

In past related research, many studies have modeled heartbeat and respiratory signals as ideal mathematical
models. Based on these data models, the characteristics of physiological signals are accurately estimated to extract
heartbeat or respiratory movements [7]. However, in practical situations, physiological signals are stochastic, and
the breathing and heart rates of the human body are not constant.

In physiology, respiration involves inhalation and exhalation phases [28]. During inhalation, the diaphragm con-
tracts and flattens, pushing the abdominal cavity downward. The expansion of the thoracic and abdominal cavities
increases lung volume and decreases thoracic pressure. Exhalation relaxes the diaphragm, allowing the thoracic and
abdominal cavities to return to their resting state. Also, the volume changes of the heart resulting from its pumping
action reflect the periodic nature of the cardiac cycle, where the heart undergoes regular contractions (systole) and
relaxations (diastole) to pump blood throughout the body. Over each cardiac cycle, the heart’s volume oscillates



Dong S Q, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122302:7

Figure 3 (Color online) Block diagram of proposed optimal FIR Wiener filter.

between its maximum (end-diastolic volume) and minimum (end-systolic volume) values in a predictable and repeti-
tive manner. Under resting state, the heart volume change and respiratory movement maintain consistent amplitude
and frequency characteristics, indicating stable cardiac function, which is crucial for maintaining consistent blood
flow and pressure, ensuring efficient circulation and oxygen delivery to tissues. Therefore, physiological signals can
be modeled as stationary random processes over short periods.

In the process of analyzing cardiogramwaveforms, we aim to develop a new adaptive filter for processing stationary
random signals to extract the VCG vh(t) from v(t) without distortion. In this work, a linear optimal discrete filter,
the finite impulse response (FIR) Wiener filter method is proposed. Figure 3 establishes the signal block diagram
for the proposed filter method. The input event sequence of the filter is the demodulated thoracic motion velocity
signal v(0), v(1), . . . and the filter is characterized by the transfer function H(z):

H(z) =

N∑

i=0

aiz
−i, (13)

where N is the order of the FIR Wiener filter. It should be noted that our choice of the FIR filter here is primarily
based on practical application scenarios. The FIR filter structure utilizes only the forward path without feedback,
which inherently ensures stability. This inherent stability is necessary for the adaptive filter optimization process
in this work.

During the process of cardiogram extraction, we regard the respiratory signal vr(t) as noise. However, based on
empirical information about human vital signs, respiratory waveforms generally exhibit a stable frequency distri-
bution (0–0.6 Hz) over short periods, while cardiac activity waveforms are more complex. Therefore, in the design
process of the optimal linear Wiener filter, we assume that the original thoracic velocity discrete signal v(n), when
processed through the aforementioned optimal FIR Wiener filter, yields y(n) that approximates the respiratory
activity velocity signal vr(n) as closely as possible. In the optimization process of the optimal Wiener filter, we
pass the demodulated original thoracic motion velocity signal v(n) through an FIR low-pass filter g(n) with a cutoff
frequency of 0.6 Hz to generate a respiratory estimation signal v̂r(n):

v̂r(n) =

N−1∑

m=0

g(m)v(n−m), (14)

where N is the number of samples of v(n). Then, the optimal process for the FIR Wiener filter is achieved by
calculating the filter coefficients H(z) that minimize the mean square error e(n):

e(n) = E
{
[y(n)− v̂r(n)]

2
}
. (15)

Finally, based on the superposition principle of the linear Wiener filter, the optimal estimation signal of the VCG,
denoted as v̂r(n), can be obtained as

v̂r(n) = v(n)− y(n). (16)

By applying the optimal FIR Wiener filter, we can effectively separate the cardiogram signal from the breathing
interference, providing a cleaner and more accurate representation of the cardiogram signal.

3.4 Segmentation of VCG waveform

The segmentation of cardiac activity cycles is fundamental for studying the reproducibility of VCG waveforms.
According to the physiology of cardiac mechanical activity, during ventricular contraction, rapid blood pumping
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Figure 4 (Color online) (a) Simulated chest-wall velocity signal; (b)–(d) the demodulated results of different algorithms. The grey dotted line

in (d) identifies the QRS characteristic waveform.

generates high velocity values, resulting in sharp peaks in the VCG. This characteristic of the waveform is particu-
larly advantageous for calculating and segmenting the cardiac intervals of the VCG waveform.

To enhance this characteristic of the waveform and achieve a precise segmentation of cardiac activity, we applied
a cubic transformation to the extracted VCG signals vh(t). This approach effectively amplifies peak signals and
suppresses low-amplitude and flat signals, as follows:

Peaks (n) = [vh(n)]
3 . (17)

Subsequently, we use a peak detection algorithm to achieve the segmentation of cardiac activity cycles.

4 Experiments and results

4.1 Simulation

To verify the performance advantages of the proposed algorithm in this paper for processing stationary random
signals, we conducted signal simulations using MATLAB. During the simulation process, we used the DCG waveform
derived from the cardiac MRI data presented in [6] as the heart activity signal. For the respiratory signal, we used
the respiratory model proposed in [7]. To reflect the randomness of the signal, we allowed the respiratory rate fb to
fluctuate slightly over the simulation time. It should be noted that in this scenario, the respiratory rate is variable;
therefore, some algorithms that rely on accurate respiratory rate estimation to remove respiratory waveforms for
cardiogram extraction, such as the PRF algorithm, are no longer applicable.

Figure 4 presents the simulation results for a 10-s time window. Figure 4(a) shows the thoracic motion velocity
signal after radar baseband demodulation. Figures 4(b)–(d) show the results of different signal extraction algorithms,
along with their respective running times. Figure 4(b) shows the results of the adaptive Wiener filter algorithm
proposed in this work, which almost perfectly matches the true signal. In contrast, the waveforms extracted by the
empirical wavelet transform shown in Figure 4(c) and the variational mode decomposition shown in Figure 4(d)
differ significantly from the true values. By comparing the waveform processing results of the proposed Wiener filter
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Figure 5 (Color online) (a) The clinical experiment setup. Insert is the picture of custom-designed radar system. (b) Comparison between

the extracted DCG, VCG, segmentation assisting signal and the ECG signals.

method with those of the existing algorithms, it is evident that the Wiener filter method demonstrates superior
waveform recovery performance. This discrepancy may be attributed to the fact that, as shown in Figure 3, the
proposed Wiener filter method incorporates an adaptive negative feedback mechanism. This feature makes it more
suitable for processing VCG signals, which are approximately stationary but do not maintain a perfectly consistent
period.

4.2 Experimental setup

Figure 5(a) illustrates the experimental setup. The experiment was conducted in a clinical environment, as depicted
in the figure. The subject was positioned supine on a bed, with their chest facing upward. The radar sensor was
mounted on a fixed structure, approximately 50 cm above the subject’s chest. During the measurement, the subject
breathed normally. The temperature of the inpatient ward was maintained at 26◦C. Based on our analysis of the
application scenario, a convenient installation position for the radar in a sleeping posture scenario is at a vertical
height of 40 cm to 1 m from the human body, located at the head of the bed. This position does not interfere with
daily activities such as getting into bed. It is noted that the detection distance in this paper has taken into account
the linear detection range of the radar system, the required SNR for acquiring cardiac waveform signals, and the
actual needs of the application scenario.

The inset of Figure 5(a) shows the implementation of the Doppler radar sensor, which is based on a 24-GHz
front-end silicon-germanium millimeter-wave integrated circuit (MMIC@SGR). Additionally, a K-band low noise
amplifier (LNA@Silicon radar) is employed to enhance the noise figure performance of the receiver. The baseband
signals are sampled by the built-in 16-bit sigma-delta analog-to-digital converters (ADCs) in the microcontroller
unit (MCU). The designed radar sensor, measuring 6 cm by 6 cm, is both compact and portable. For comparison,
an ECG device was employed to collect synchronized ECG data.

As part of our analysis of VCG waveforms, we ensured a stable sleep posture and positioned the radar antenna
beam to directly face the human thorax. This setup minimizes environmental interferences, allowing us to explore the
common characteristics of VCG waveforms. Moreover, synchronously collecting radar and ECG signals is crucial
for investigating the potential relationship between VCG waveforms and ECG, thereby providing physiological
significance to the VCG waveforms.

Ten adults (six males and four females; mean age: 38.3±20.3; mean BMI: 22.5±3.24) participated in this study.
The detailed information of all the subjects is listed in Table 1. The participating volunteers ranged in age from
21 to 76 years, with a balanced gender distribution and a wide range of BMI values. For each volunteer, 10 min of
synchronized radar and ECG data were collected in the scene depicted in Figure 5(a). The subjects provided written
informed consent before inclusion. This study was approved by Ethics Committee of Ruijin Hospital affiliated to
Shanghai Jiao Tong University School of Medicine (EC REFERENCE No. (2024) Linlunshen No. 220).

4.3 Individual cardiac morphology analysis

Figure 5(b) shows a 15-s segment of data from subject 3. In this figure, panel I displays the synchronously collected
ECG signals, panel II presents the segmented auxiliary signals with velocity feature enhancement processed by (17)
based on the proposed segmentation method, panel III shows the VCG obtained using the proposed VAD-Wiener
linear velocity cardiogram extraction method, and panel IV presents the DCG signal extracted using the PRF
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Table 1 Information of subject.

Subject Gender Age (year) BMI

1 Male 26 25.5

2 Male 24 19

3 Male 27 20.1

4 Male 29 18.6

5 Female 21 19

6 Female 25 23

7 Female 30 22

8 Male 61 26

9 Female 64 25

10 Male 76 27

Figure 6 (Color online) (a) Morphology analysis of measured ECG, VCG and DCG; (b) comparison between the heart rhythms retrieved from

the ECG and extracted VCG.

method. It can be seen that the enhanced segmented auxiliary signals in panel II, processed by (17), effectively
exhibit two significant cardiac mechanical activities, marked by gray and green vertical dashed lines in Figure
5(b). These two activities have opposite velocity directions, corresponding to the peak velocity moments of cardiac
contraction and relaxation, respectively. Comparing with the synchronously collected ECG signals, these two
moments correspond to the R peak and the end of the T wave in the ECG, which, according to electrocardiography
physiology, represent the onset of cardiac contraction and relaxation, respectively.

Figure 6(a) demonstrates the beat-by-beat heartbeats obtained using the segmented auxiliary signals of Figure
5(b). After extracting the VCG from radar echo data using the proposed methodology, the VCG signal is segmented
into N cardiac cycles (VCGseg) via the automatic cardiac beat segmentation algorithm described in Subsection 3.4.
Each VCGseg segment is zero-padded to a uniform length M , and ensemble averaging is subsequently performed.
The average cardiogram is derived as follows:

VCGaverage =

∑N

i=1 VCGseg

N
. (18)

Similar procedures were applied to generate the ECG and DCG waveforms shown in Figure 6(a). It can be ob-
served that both ECG and VCG exhibit stable average waveforms, whereas the average DCG appears disorganized.
This phenomenon indicates the steady-state characteristics of the VCG, making it more suitable for characteristic
studies as a generic radar cardiogram waveform across a broad population compared to DCG. Additionally, based
on the correspondence between VCG and ECG, the two distinctive morphological and physiological characteristic
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Figure 7 (Color online) Two-minute beat-by-beat VCG waveforms from 10 volunteers, with colored curves in the figure representing the

average VCG waveforms of different subjects.

waveforms are named v -wave and n-wave, respectively, and are marked on the average VCG waveform in Figure
6(a). The names v -wave and n-wave are derived from their resemblance to the letters ‘v’ and ‘n’, respectively; the
v -wave has a sharper shape, while the n-wave is smoother with a preceding notch.

To verify the accuracy of the proposed VAD-Wiener method for linear velocity cardiogram extraction, we pro-
cessed a one-minute segment of data from subject 3. Based on the VCG signals obtained using our method, we
extracted the cardiac RR intervals and RT intervals and compared them with the gold standard ECG, as shown in
Figure 6(b). We also compared our method with previous cardiogram extraction methods PRF method and DCG
RT-detector method. It can be seen that the accuracy of the RR interval extraction using our method significantly
surpasses that of the PRF and DCG RT-detector methods. Additionally, since the PRF method cannot extract the
cardiographic features corresponding to the T wave, we only compared the RT interval extraction performance with
the DCG RT-detector method. It can be seen that our method demonstrates high accuracy. However, due to the
relatively indistinct characteristics of the n-wave compared to the v -wave, there is a higher likelihood of inaccurate
localization, as indicated by an outlier around the horizontal coordinate of 58 in the figure.

4.4 Reliability validation

Figure 7 shows the two-minute beat-by-beat VCG waveforms of 10 volunteers. It can be observed that the average
waveforms of these 10 subjects exhibit various shapes, but still maintain a certain degree of morphological similar-
ity. For example, the 1st v -wave marked with a red dot is clearly visible in the VCG waveforms of all 10 subjects.
However, for the 2nd n-wave marked with a red dot, different individuals exhibit different waveform characteristics.
This n-wave is relatively noticeable in most subjects, showing a more gentle peak compared to the v -wave. In sub-
jects 5 and 7, the basic morphology of the n-wave has undergone some changes, but it still retains the physiological
characteristic of the maximum point of positive velocity. Each individual has unique and distinctive physiological
characteristics, and no two individuals have identical cardiac activities. This fundamental principle is reflected in
the relatively broad population data set shown in Figure 7. Utilizing this characteristic, it is possible to achieve
biometric identification based on VCG.

To further deepen the analysis of VCG waveform morphology and explore whether the VCG obtained under the
standardized VCG detection and extraction process proposed in this paper has considerable consistency, the afore-
mentioned describes that physiological signals exhibit stochastic stationary signal characteristics over a continuous
period. Therefore, based on human physiology, beat-by-beat VCG signals collected over continuous periods should
exhibit a certain degree of similarity. Thus, we use the average VCG waveforms of each subject’s two-minute data
shown in Figure 7 as templates, and investigate the Pearson correlation coefficient between the average waveforms
of different numbers of continuous beats and the templates. The calculation method is as follows:

ρ =
cov(

∑
n

i=1
heartbeats(i,t)

n
, template)

σσtemplate
, (19)

template =

∑N

i=1 heartbeats(i, t)

N
, (20)

where template represents the subject’s two-minute VCG template signal, N is the number of heartbeats within
two minutes, and heartbeats(i, t) is the time-domain waveform of the VCG within the ith heartbeat cycle, cov
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Figure 8 (Color online) (a) Convergence of the correlation coefficient between the cumulatively averaged VCG heartbeat and template VCG

heartbeat with respect to number of heartbeats in the cumulative average for 10 subjects; (b) the correlation scatters plot of the RR intervals

obtained by the proposed radar-based method and simultaneously recorded ECG device; (c) the Bland-Altman diagram of the RR intervals

obtained by the proposed method and simultaneously recorded ECG device. The horizontal dotted line indicates the mean bias, and the dotted

lines represent the upper and lower limits of the 95% confidence interval.

denotes the covariance operation, while σ denotes the standard deviation operation. The curves showing the change
in Pearson correlation coefficients between the VCG waveforms of the 10 subjects and their individual templates as
the number of included heartbeats increases is presented in Figure 8.

As seen in Figure 8(a), from the first heartbeat cycle, all subjects’ VCG waveforms already have a correlation
coefficient greater than 0.7 with the template signal. The curves of subjects 1 and 8 initially exhibited very
high correlation (approximately 0.9). As the number of heartbeat cycles increased, most subjects’ correlation
curves displayed steady-state characteristics, showing increasing similarity to the template signal. After the fourth
heartbeat cycle, all subjects exhibited a correlation coefficient greater than 0.9. The curve of subject 1 showed
fluctuations between the 40th and 60th heartbeat cycles, but the overall correlation coefficient during this period
remained above 0.95. This indicates that while the overall VCG waveform characteristics maintain a certain
consistency, there are also inherent differences and variations between individual heartbeats, resulting in some
fluctuations. This phenomenon aligns with the physiological characteristic of heart rate variability, which is that
the intervals between heartbeats in a normal human are not completely identical, causing some rhythmic or activity-
based differences.

As previously mentioned, to verify the accuracy of the standardized VCG detection method proposed in this
paper, we can identify the v -wave and calculate the RR intervals, which can then be compared with the RR
intervals extracted from the simultaneously collected ECG signals. Thus, we utilized the segmented auxiliary
signals generated by the segmentation method proposed in Subsection 3.4 of this paper to enhance the v -wave
effectively. Then, using the findpeaks method, we extracted the cardiac RR intervals and statistically compared
them with the ground truth RR intervals extracted from the simultaneously collected gold-standard ECG signals.

Figure 8(b) shows the correlation analysis between the RR intervals extracted from the radar and the reference
RR intervals extracted from the ECG. The figure presents the results of a simple linear regression on the scatter
plot, with the best-fit line having a slope of 0.9876 and intercepts of −0.01231 and 0.01216 for the XY axes,
respectively. The Pearson correlation coefficient between the radar RR intervals and the ECG RR intervals is
0.9854. These results demonstrate a strong correlation between the VCG extraction method proposed in this paper
and the gold standard. Additionally, Figure 8(c) shows the Bland-Altman analysis results of the RR intervals. The
mean difference between the values detected by the proposed method and the reference values is close to zero, and
the 95% confidence intervals are all below 0.035 s.

Notably, as can be seen from the distribution of RR interval scatter plots in Figures 8(b) and (c), the 6123
heartbeat cycles of the 10 volunteers have a wide range of durations. This also demonstrates that the VAD-Wiener
method proposed in this paper has excellent velocity cardiogram recovery characteristics across different heartbeat
activity intervals.

4.5 VCG morphology analysis in different conditions

Based on the mechanism of radar detection of cardiac activity, what the radar actually detects are the micromove-
ments on the surface of the chest cavity caused by the mechanical activity of the heart. In previous studies, all data
were obtained using an experimental setup illustrated in Figure 5(a), employing a direct radar irradiation method
on the chest to acquire VCG waveforms. In fact, the mechanical activity of the heart causes varying degrees of
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Figure 9 (Color online) The beat-by-beat VCG waveforms of subject 1 (a) in supine position, (c) in lateral position. The beat-by-beat VCG

waveforms of subject 4 (b) in supine position, (d) in lateral position.

micromovements throughout the upper body. To further investigate how different radar irradiation positions affect
the VCG waveforms and considering practical application scenarios, we conducted VCG collection experiments on
subjects 1 and 4 in different postures.

The left of Figure 9 shows two experimental postures. One is the general posture used in previous studies, where
the radar directly irradiates the surface of the chest, theoretically capturing significant micromovements caused by
the heart. The other posture is lying on the side, where the radar irradiates the shoulder and back of the subject.
Figures 9(a) and (c) display the two-minute VCG waveforms and average template signals extracted using the
proposed VAD-Wiener method for subject 1 in these two postures. It can be observed that the n-wave disappears
when lying on the side, likely because the micromovements induced by cardiac activity on the shoulder and back are
too minimal, leading to greater signal loss through body tissue during transmission. However, due to the inherently
strong kinematic characteristics of cardiac contraction, the v -wave remains clearly visible. Figures 9(b) and (d) show
the two-minute VCG waveforms and average template signals extracted using the proposed VAD-Wiener method
for subject 4 in these two postures. Similarly, significant changes in the VCG morphology are observed when lying
on the side compared to lying flat. The n-wave is difficult to identify, and the detailed waveform of the overall
template signal is greatly reduced. This is likely because the signals conducted to the lateral side are much weaker
than those to the front of the thorax during cardiac mechanical activity. Nevertheless, the v -wave remains clearly
visible.

We have also collected data from patients with abnormal cardiac conditions in a hospital setting. The experi-
mental results obtained after processing with the method proposed in this paper are illustrated in Figure 10. As
can be seen from the figure, the v -wave in the VCG waveform of the patient with atrial fibrillation is still clearly
visible and retains its characteristic sharp waveform features. However, the n-wave is difficult to discern. Addi-
tionally, the T wave in the simultaneously acquired ECG waveform has also disappeared. This indicates that the
waveform characteristics of the VCG signal maintain a certain degree of repeatability even in populations with
cardiac abnormalities.

5 Discussion

In this study, we introduced a framework for the stable representation of cardiac mechanical activity using VCGs;
the proposed VCG demonstrated considerably higher cardiogram waveform stability than the DCG. Based on
the stochastic stationary properties of human physiological signals, we proposed an accurate linear extraction
method, the VAD-Wiener algorithm. The VCG framework proposed in this study lays the foundation for subsequent
extensive analysis of VCG waveforms across diverse populations. For comparison, we provide Table 2 [7,12,13,18,29],
which summarizes previous and recent studies on radar cardiogram detection.

Additionally, we investigated the extraction of common characteristic waveforms from cardiograms obtained from
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Figure 10 (Color online) VCG waveform analysis for a patient with atrial fibrillation.

Table 2 Comparison with other radar-based cardiogram detection studies.

Work Data size
Radar working mode

and frequency
Processing method

Cardiogram

detected
RRI accuracy

Waveform

analysis

[12]
10 h of 35 subjects

(between the ages of 18 and 65)
FMCW, 77 G Deep learning Quasi-ECG Median error: 14 ms Y

[13]
12 subjects

(aged between 22 and 39)
FMCW, 120 G

Adaptive template

matching
DCG

BA 95% confidence:

43.9 ms
N

[29] 6222 subjects FMCW, 60 G
VMD and harmonics

analysis
–

Median RMSSD

error: 53.8 ms
N

[7]
10 mins of

3 subjects
CW, 24 G

Parameterized respiratory

filter
DCG RMSE: 10.84 ms Y

[18] 100 s of 5 subjects CW, 24 G DCG-RT detector DCG NRMSE: 2.03% N

This work

6123 heart cycles of 10 subjects

(aged between 21 and 76 years and

BMI between 18.6 and 27)

CW, 24 G VAD-wiener VCG
BA 95% confidence:

34.5 ms
Y

different individuals and the physiological significance of these waveforms. Despite their differences, commonly used
cardiograms describing cardiac activity, such as ECG, BCG, and SCG, exhibit similar waveform characteristics
across different individuals. Therefore, for VCGs, which directly describe the mechanical activity of the heart, there
should be corresponding VCG characteristic waveforms representing typical contraction and relaxation activities of
the heart. Consequently, we employed a broad dataset of volunteers encompassing a wide range of ages and body
types. Using the proposed framework, we verified that the VCG waveforms obtained from different individuals
exhibit common v- and n-wave characteristics, corresponding to the maximum cardiac contraction and relaxation
velocities, respectively. By comparing these characteristic waveforms with simultaneously collected ECG signals,
we validated the accuracy of the proposed method.

However, during the course of this work, we found that the n-wave characteristic waveform could not be well
detected in some populations; therefore, further investigation is required. In contrast, the v -wave waveform con-
sistently demonstrated clear recognizability under various conditions and detection methods, making the accurate
contactless detection of cardiac RR intervals possible.

For different radar irradiation positions on the same individual, the obtained VCG waveforms may be inconsistent.
This implies that in potential future applications, such as biometric identification, VCG would likely require highly
stringent detection conditions.

In future work, based on the VCG detection framework proposed in this study, extensive and large-scale datasets
can be established. These datasets can be used for the classification of heart diseases. By integrating AI algorithms,
meaningful disease prediction based on VCGs can be achieved.
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