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Abstract This paper has studied the challenge of detecting a range-spread target in interference and noise when the number of
training data is limited. The interference is located within a certain subspace with an unknown coordinate, while the noise follows a
Gaussian distribution with an unknown covariance matrix. We concentrate on scenarios where the training data are limited and employ
a Bayesian framework to find a solution. Specifically, the covariance matrix is assumed to follow an inverse Wishart distribution. Then,
we introduce a Bayesian detector according to the Rao test, which has superior detection performance compared to existing detectors in
certain situations, as demonstrated by both simulation experiment and real data.
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1 Introduction

Detecting signals in unknown noise is an essential issue in the signal processing community [1-4]. In 1986, Kelly
proposed the well-known generalized likelihood ratio test (GLRT) for detecting signals in unknown Gaussian noise
[5]. Afterward, an adaptive matched filter (AMF) was put forward [6] by building on the two-step GLRT. It was
shown in [7] that an AMF can also be derived from the Wald test. The Rao test corresponding to this scenario was
provided in [8].

With advancements in radar technology, the performance of radar systems has been progressively enhanced,
leading to a corresponding increase in radar resolution [9,10]. In high-resolution radar, it is widely known that
a target is often extended in the range domain. Consequently, the target typically occupies several radar range
resolution cells and is commonly referred to as a distributed target [11,12].

Notably, there usually exists interference, intentionally or unintentionally. In [13], to settle the matter of detection
aimed at a distributed target in subspace interference, several efficient detectors were proposed based on the GLRT
criterion. Furthermore, some detectors based on the Rao test were given in [14]. Additionally, Liu et al. [15]
investigated the detection problem in the presence of subspace interference and Gaussian noise, and proposed two
adaptive detectors under the assumptions of known and unknown noise power, respectively. In [16], the authors
assumed that the interference subspace was unknown and only the dimension of the subspace was known, and
proposed a detector that is similar to that based on the GLRT. In addition, it was assumed in [17] that the
interference was unknown but orthogonal to the signal in the whitened subspace, referred to as the orthogonal
interference, which satisfied the generalized eigen-relation [18]. Then Liu et al. [17] proposed an adaptive detector
based on the GLRT, whose detection performance was better than that based on the corresponding Rao and Wald
tests.

All the detectors discussed above are proposed on the premise that there is an ample amount of training data,
which is essential for reliably estimating the unknown covariance matrix, with the sample covariance matrix (SCM)
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being a well-known effective estimate. In particular, at least N independent and identically distributed training
data are needed to form an invertible SCM with probability one. Nevertheless, in practice, this requirement may
not always hold true due to the severe terrain undulations and the rapid changes in the spectral characteristics
of clutter [19]. The actual environment may be sample-starved, a scenario where the number of training data is
insufficient to reliably estimate the unknown covariance matrix. More specifically, in many real-world applications,
the number of training data L is less than the dimension of the test data N, i.e., L < N, which leads to the
ineffectiveness of conventional detectors [20)].

To handle limited training data in signal detection, there are several approaches, one of which is the use of
Bayesian theory. Within the framework of Bayesian theory [21-23], the unknown covariance matrix is considered a
random variable that follows a certain statistical distribution. The parameters associated with this distribution are
obtained from historical data or antenna configuration. Besson et al. [24] introduced the first Bayesian detector for
signal detection amidst unknown Gaussian noise. Other Bayesian detectors can be found in [25-28].

In the available literature, relatively little attention has been given to distributed target detection in the presence
of interference when the training data are scarce. The study in [23] proposed two GLRT-based Bayesian detectors
for this purpose. Due to the excessive number of unknown parameters in the detection process, there does not
exist a uniformly most powerful test; it stands to reason to explore other criteria to develop novel detectors and
evaluate their performance against those of GLRT-based Bayesian detectors. Among such criteria, the Rao test is
commonly used. Compared to the GLRT, the derivation of the detection statistic usually involves fewer unknown
parameters to estimate. Hence, the Rao test is characterized by its low computational complexity and relatively
enhanced stability in the presence of errors in practical environments. Accordingly, we propose a Bayesian detector
utilizing the Rao test that is designed for range-spread target detection amidst interference and noise when training
data are limited. Experiments using both simulated and measured data illustrate that the Bayesian Rao detector
introduced in this paper exhibits superior detection performance compared to the GLRT-based Bayesian detectors
previously given in [23]. Additionally, our finding indicates that the Bayesian two-step GLRT (2S-GLRT) in [23]
can be obtained through the application of the Wald test in Appendix A.

2 Problem formulation

The distributed target detection problem in subspace can be expressed as the binary hypothesis test

{H1:Z:<I>A+TW+N, Z; = Ny,

1
H0:Z:TW+N, ZL:NL; ()

where H; denotes the hypothesis of signal presence and Hj represents the hypothesis of signal absence, Z represents
the test data matrix of N x K dimensions, ® is an N X p matrix with full-column-rank representing the signal, Y
is an N x ¢ matrix with full-column-rank representing the interference, the p x K matrix A and the ¢ x K matrix
W respectively symbolize the coordinates of the signal and the interference, N represents the noise matrix in the
data under test, with each column of IN being distributed in accordance with a complex Gaussian distribution with
a mean of zero and an unspecified covariance matrix, denoted as R. In order to get an estimate of R, we need the
training sample matrix Z; which is of dimension N x L, while N, denotes the noise presented in training data.
In (1), N represents the dimension of the data, K represents the number of range cells occupied by the distributed
target, p is the dimension of the signal subspace, ¢ is the dimension of the interference subspace, and L representing
the amount of training data.

In many real complex and changing circumstances, the limited size of training data often results in L < N.
Consequently, the quantity of training data is insufficient to construct the inverse of the sample covariance matrix
(SCM). To resolve this issue, we adopt the Bayesian approach, where it is assumed that R is modeled as an
inverse Wishart distribution, which has 7 dimensions degrees of freedom (DOFs) and a scale matrix nX, it can be
abbreviated as R ~ CWy' (,72). Note that we have E[R] = x 2 and E[|R - 2|7 ~ %trQ(E) [26], where E|']
is statistical expectation, || - || is the Frobenius norm, and tr(-) is the matrix trace. Essentially, a large n means that
the prior information of the statistical distribution for R is more reliable.

In practical applications, determining the degree of freedom 7 can be based on prior knowledge or historical
data. If historical data of the noise covariance matrix are available, we can analyze the distribution characteristics
of the data and choose an appropriate 1 value to make the inverse Wishart prior distribution better match the
actual situation. Another approach is to use cross-validation methods. We can divide the available data into several
subsets, use different 7 values for training and testing on these subsets, and select the 1 value that gives the best
performance in terms of probability of detection (PD) or other evaluation metrics.
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3 Proposed Bayesian detector

In this section, we devise an effective Bayesian detector designed for the problem formulated in (1) based on the
Rao criterion. For convenience, we denote ® as the parameter vector, having the form

o=[ere’", (2)

with @, = vec(A), O4 = [vecT(R), vecT (W)]T, vec(-) stands for vectorization operation, (-)T denotes the transpose,
®, and ©; are respectively expressed as the correlated and uncorrelated parameters. It is acknowledged that the
Fisher information matrix (FIM) with respect to (w.r.t.) © is defined as [29]

81nf1(Z)31nf1(Z)}
90+  9eT |’

F(O)=E [ (3)

where J(-) is partial derivative, In(-) is natural logarithm, (-)* is conjugate, and (-)T is transpose. The FIM F(®)
in (3) is often partitioned in the following manner:

Fo,0,(0) Fo, 0.(0)
F(©) = : (4)
Fo.0.(0) Fo,0.(0)
We know that the Rao test can be indicated as
Oln f1(2Z) ‘T @ 0ln f1(2)
tRao = —F5 o F~(©y) — e ; (5)
99, |g_e, [ L—)T,(-)T 207 |e—e,
where [F_l(QO)]er,er is the value of
-1
[F(O)]o, 6, = |Fo.0,(©) - Fo,6.(0)F5 ¢ (©)Fs, 6,(©)] (6)
evaluated at @0, i.e., a proper estimate of ® under Hy.
For the problem indicated in (1), we have the following probability density functions (PDFs):
ctr[-RY(Z - YW)(Z - YW)"]
etr[-R~Y(Z — BC)(Z — BC)"|
fl(Z|R): 7'[NK|R|K ) (8)
etr(—R™1S)
f(ZLIR) = “ANL[RE (9)
_ =B -1
where B = [®, Y], C = [AT, WT]T | S represents the SCM constructed from training data, c is a constant, and | - |
is the matrix determinant. It follows from (8) that
ol f1(Z) _ Hp-15)T
m = vecC |:(Zl R ‘}) :| (11)
and on f2(2)
nJ1 Hp-1
— = P "R Z 12
Ovec(A*) vee [ il (12)
where Z; = Z — @A — YW. Taking a method in [30] , we can obtain
[F'(®)e, 0 = {Ix®[®"R'®- "R 'T(Y'R'Y) 'Y R ']} )

—Ix @ (B"PEd) T,
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where ® = R~'/2®, ¥ = R~'/?7, Pg = Iy — Py, Py = Y(Y"Y)"'YH. By pluging (11)-(13) into (5) as well
as letting A = 0, i, we can derive the Rao test for the given R and W as follows:

taomw =vee |(Z§R'®)"] [Ix @ (87P§®) | vec [@7R ' Z]
—vec™ [ (Z®)" | vec [ (87 PE®) 82| (14)
—tr | Z{1® (3" P4 ®) 8" 7).
where Zy = Z — YW and we have used vec(D; D> D3) = (D3 @ D;)vec(Ds) and vec™ (D] )vec(Ds) = tr(D4Ds)

for any comparable matrix.

According to (7), (9) and (10), we have

_ C|2|”etr[—R*1(ZOZ(§{ + S +13)]

Jo (Z|R) f(ZL|R)f(R) |R|77+N+L+K

(15)

Nulling the partial derivative of the logarithm of (15) w.r.t. W, we have the maximum likelihood estimate (MLE)
of W for given R as follows:

W = (TYHR™'Y) 'YHR 'z = (YHY) 'THZ. (16)
By plugging (16) into (14), we get the Rao test through calculation for given R as
P— [ZHP._;@@HP.%@*@HP._;Z} . (17)
For convenience, we express (17) as
tRaom = tr(ATAA), (18)
where .
A =®UR"! {Z —Y(riRY) R—lz} (19)
and .
A= [o"R 1D - @HR—lr(THR—lr)‘erR—lﬂ . (20)

To get the final Bayesian Rao test, an estimate of R is required under Hy. Letting the derive of (15) w.r.t. R to
be zero under Hp, we can get the maximum a posteriori (MAP) estimate of R under Hy for given W as
A (Z-XW)(Z-YW)' + 5+,
0 n+N+L+K
VY S . H
12(Z -XW)(Z -XW) +1y
n+N+L+K

= (S+1n%) (S +nx)Y2.

We proceed to derive the MAP of W. Performing the integration of (15) w.r.t. R leads to

| iRz R (RYR
. | =" |ZoZ + S + x|t K
|ZoZEF + S + =LK |R|rHNHEAK (22)
x etr [-R™" (ZoZ)' + S +1X%)] dR
. ="
2o ZE + S + pE |t LK

One can verify that
ZZ8 + S+ 3| = ‘(Z— YW)(Z - TW)H+S+17§J‘
- |S+n2|-}IK+Z—TWH(S+772)‘1(Z—TW)} (23)

— IS+ 9% ‘IK F(Z-YW)N(Z - TW)’ ,
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where Z = (S + nE)_l/QZ, Y =(S+ 772)_1/2T, and ® = (S + 772)_1/2‘I>. Letting the derivative of (23) w.r.t.
W be zero results in the MAP of W as

o . —1 v

W = (YY) YHZ (24)
Substituting (24) into (21) yields the MAP of R under Hy as
Lo oHpL
Py ZZ Py + Iy
n+N+L+K

Ry = (§+n%)"" (8 +n%)"%, (25)
where P_%: =1Iy — Py and Py = T(THT)%TH Performing the matrix inversion to (25) yields

N < o o\ Lo

Ry =a(S +z) 12 [IN - P%Z(IK + ZHP%Z) ZHP%} (S +3z) V2, (26)

where o = (n + N + L + K). It follows from (26) that
Ry'Y =a(S+n=) ' (27)
Using (26) and (27), we can rewrite (19) and (20) as

o Y Y o\ L Y
A =adl [IN - PyZ(Ix + 2" P; 2) ZHP;] Pz

T
-1
_ FH pLl 77 FH pl 7 7H p L > 7H pl >
_a{@ PyZ - 8UPLZ (I + 2°Py2) 7 PYZ] (28)

and
o o < o\ L o
A =a {@H [IN - PyZ(Ix + 2" P; Z) ZHP;} &

. -1
HH L 7H pl —~H ¥
~ 3P, [IN—PYZ(IK+Z PyZ) Z"P; @}
-1 -1
. s SN L
_ {<1>H [IN—PTZ(IK—i—ZHPTZ) ZHP%} <I>—«I>HPT‘I>}
. -1
HH pLl & HFH pl 7 7H p L 7 7H p L &
_a{@ Pié - "PLZ (I + 2'PLZ) 7 PT<I>} ,

respectively, where Pp iE = P_%:‘I>
SHpl7\—17Hpl 77
Ix —(Ix+Z PTZ) Z Py 7.

Using matrix inversion lemma, i.e., the Sherman-Morrison-Woodbury formula, we can rewrite (29) as

(@1 Py ®) 1M PL, and in (28) we utilized equation (Ix + Z9PgZ)~! =

1

1 —
— FH pLl & FH pLl & FH pl 7
A —a{(CP Pid) +(8"Pyd) $1pLZ
i o (30)
7H pl ~H > Hpld(HHpld
(Ix+2"P4 2~ 27P,,52) 2"P;&(8"PLd) } .
Substituting (28) and (30) into (18) and ignoring the constant leads to
o o\ Ly
— { (1 + 2"Pgz) 2"
4 o (31)
A 7H pl ~H > ~H > 7H pl 7
: [Ppﬁ + Py (I + Z'P§Z — 2Py, 3 2) 2 Ppﬁ,} Z(Ix + 2"Pg 2) } .
Using the property of matrix trace, we can express (31) as
o o\ Ly o
tB-Rao-1 =tT { (IK +Z"Pyg z) VA YA
i (32)

o o o o\ Lo o o o\ —1
: [IK + (In + 2"P 2~ 2Py 4 Z) ZHPP}&,Z} (1x + 2"P; 2) } :



Xiao D P, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122301:6

which is referred to as the Bayesian Rao test with interference rejection (B-Rao-I). One can verify that

r by
o o o\ 1 o o o o o o

= (Ix + 2"P3 2~ 2"Ppy 5 2)  (Ix+2"PiZ — 2" Py g2 + 2" Py 5 2) (33)
9 o o\ 1 o o

— (Ix + 2"P§ 2~ 2°Pp s 2) (I + 2"PfZ)

Substituting (33) into (31) results in the compact form of the B-Rao-I
o o\ —1 oo o o o o o\ —1
tRaot — tr [(IK + Z"PL7) 2Py, 87 (I + 2" PiZ - 2Py, %) } . (34)

. . . J_ _ J_ .
Moreover, according to the identity Py = Py — Pp 4§ We can rewrite (34) as

< o\ Lo < o !
—— [(IK +2"P;2) 2°PpZ(Ix+ 2" P4 2Z) } . (35)

Note that the B-Rao-I is derived under the assumption of a homogeneous environment. In cases where the
environment is heterogeneous, we can utilize robust estimation techniques and compensation methods among others.
Specifically, robust estimation techniques are shown to be effective in addressing heterogeneous clutter, examples of
which include the normalized sample covariance matrix (NSCM) [31] and the fixed-point estimator (FPE) [32]. These
methods leverage heterogeneous data to mitigate the impacts of heterogeneity. Alternatively, the compensation
method models the mismatch in the covariance matrix, estimates it using suitable techniques, and subsequently
compensates for it, thereby enabling an effective estimation of the unknown covariance matrix using heterogeneous
data [33,34].

4 Performance evaluation

In this section, we assess the performance of B-Rao-I using both simulated and actual data. To facilitate comparison,
we take into account the ordinary GLRT and 2S-GLRT proposed in regard to the detection problem in (1), described
as [13]

lGLRT-1 = w (36)
Ik + ZHPLZ]
and
fos GLRIL = tr [ZHP%é@HP;&)”iHP;Z , (37)

respectively, where Z = S~V/2Z, & = §71/2®, Y = §7/>Y, B = §7'/2B, P = Iy—Pg, Py = T (YHY) 'TH,
Pg = Iy — Py, and Py = B(EHB)_IEH The two detectors expressed in (36) and (37) are termed as the
ordinary GLRT to suppress interference (GLRT-I) and 2S-GLRT to suppress interference (2S-GLRT-I), respectively.
Additionally, we also consider the Bayesian GLRT to suppress interference (B-GLRT-I) and Bayesian 2S-GLRT to

suppress interference (B-2S-GLRT-I) in [23], described as

[Ix + Z"P§ Z|

—_——, 38
Ix+Z8PLz (38)
B

IB-GLRT-1 =

and
“ VR v .—1y 9
tB08.GLRTL = tr [ZHP%<1>(<I>HP%<I>) @HP%Z] , (39)
respectively, For simulated data, we can set signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) as

SNR = tr (A"®"= 19 A), (40)

and
INR = tr(WHYHES - 1vyw), (41)
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Figure 1 (Color online) PFA varies with o2 and p for simulated data. p =7, ¢ =3, K =4, and L = 12. (a) p = 0.9; (b) 02 = 1.
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Figure 2 (Color online) PD varies with SNR for simulated data. p =7, ¢ =3, K =4, L =12, 02 =1, and p = 0.9. (a) n = 14; (b) n = 22.
the (i, j)th element of the scale matrix is (i, j) = 02p***(:=7)  where abs(-) denotes the absolute value. Moreover,
we let the system dimension as N = 10 and INR=10 dB. To reduce the complexity of computation, we let the
probability of false alarm (PFA) as PFA = 10~ for simulated data. 10* Monte Carlo simulations are run to derive
the PD for the results of the simulation. To get the detection threshold for the predesigned PFA, we run 100/PFA
Monte Carlo simulations.

The real data utilized in the experiment are from the IPIX dataset “19980223_170435IPIX.mat”, which contains
60000 pulses from 34 range bins. We set PFA = 1072 since the quantity of the real data are limited. As we all
know, the IPIX dataset is compound-Gaussian. Therefore, first of all, we adopt the pre-processing in [35] to the
data to make them to be Gaussian. Moreover, for real data, the matrix 3 in (40) and (41) is substituted to the
SCM estimated by the whole available data.

4.1 Simulated data

Figure 1 shows the PFAs of the proposed B-Rao-I and the existing Bayesian detectors B-GLRT-I and B-2S-GLRT-I
when o2 and p vary. From the results presented in the figure, it can be seen that the PFAs of the Bayesian detector
hardly change with the variation of 02 or p, indicating the CFAR property. However, it is difficult to provide a
rigorous mathematical proof of the CFAR property of the detectors. This is a problem worthy of research in the
future.

Figure 2 indicates that the PDs vary with SNRs with 7 as a variable parameter. We can find that the B-
Rao-I detector achieves superior detection performance than other detectors. One plausible explanation for the
performance enhancement of the proposed B-Rao-I compared to the B-GLRT-I lies in the Rao test’s inherent
capability to handle limited training data more effectively. Notably, the Rao criterion was initially proposed
in a context with fewer training data [36]. Moreover, all the Bayesian detectors outperform ordinary detec-
tors, highlighting the efficacy of the Bayesian approach in adaptive detection. Comparing the two sub-figures in
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Figure 3 (Color online) PD varies with SNR for simulated data. ¢ =5, K =6, n =14, L =8, 0> =1, and p = 0.9. (a) p=3; (b) p = 5.
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Figure 4 (Color online) PD varies with SNR for simulated data. p =6, K =9, n =14, L =12, 6% =1, and p = 0.9. (a) ¢ = 1; (b) ¢ = 2.

Figure 2 shows that the increase of the DOF 7 leads to the capability enhanced of the Bayesian detectors. This
can be attributed to the greater reliability of the a priori information in regard to the covariance matrix associated
with higher values of 7.

Figure 3 presents the PDs across different SNRs with p as a variable parameter. However, the PDs of the ordinary
detectors are not shown due to their invalidity in such a sample-starved environment. It is evident that for the
selected parameters, the proposed B-Rao-I can attain roughly the best detection performance. Additionally, the
performance of the Bayesian detectors deteriorates when the signal subspace dimension extends. This is due to the
dispersion of signal energy, leading to a negative impact on detection performance.

Figure 4 depicts the PDs vary with SNRs with g as a variable parameter. The results demonstrate that the
performance of B-Rao-I is superior to the other detectors. Furthermore, it is observed that the PD of a detector
diminishes as the interference subspace dimension extends. This decline is a result of the increased leakage of signal
energy that is projected into the subspace of interference.

Figure 5 shows the PDs across various SNRs with L as a variable parameter. The results demonstrate that the
detector’s performance enhances as the amount of training data increases. Moreover, the ordinary detectors are
invalid because the inverse of the covariance matrix is unable to be formed due to too few training data, and hence
they are not shown in Figure 5(a).

4.2 Real data

Figure 6 illustrates the PDs at various SNRs with 7 as a variable parameter. B-Rao-I demonstrates superior
detection performance compared to the other detectors. Moreover, the performance of the Bayesian detectors
improves with the DOF 7 increasing.

Figure 7 presents the PDs across various SNRs with p as a variable parameter. The graphs reveal that the
Bayesian detectors can possess higher PDs than the ordinary detectors. Additionally, the PDs of all the detectors
exhibit a decline as the dimension of the signal subspace p extends.



Xiao D P, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122301:9

1 : : : : : y 1 : . T : y
=—©— B-GLRT- =—©—B-GLRT-I
0.9 [ | —@—B-Rao-| 0.9 [ | —@—B-Rao-I
—— B-2S-GLRT-| —%— B-2S-GLRT-I
0.8 1 0.8 GLRT-I 1
—#— 2S-GLRT-I
07 J 07k
06 1 0.6 1
[a)] L 1 o L J
a 05 qa 05
04f 1 0.4 1
031 1 031 1
0.2 q 02F 4
01r 1 01 F 1
09 L L L ' ' 0‘ L L L L L

10 12 14 16 18 20 22 24 26 28 30 10 12 14 16 18 20 22 24 26 28 30
SNR (dB) SNR (dB)

Figure 5 (Color online) PD varies with SNR for simulated data. p =8, ¢ =1, K =6, n = 14, o2 =1, and p = 0.9. (a) L =8; (b) L =13.
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Figure 6 (Color online) PD varies with SNR for the real data. p =1, ¢=7, K =4, and L = 12. (a) n = 14; (b) n = 22.
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Figure 7 (Color online) PD varies with SNR for the real data. ¢ =6, K =4, n =22, and L =12. (a) p=1; (b) p= 2.

Figure 8 illustrates the PDs across different SNRs with ¢ as a variable parameter. The results reveal that the
detectability of all the detectors decreases when the interference subspace dimension ¢ extends. As pointed out
above, this decline is due to the leakage of signal energy projected into the interference subspace.

Figure 9 shows that the PDs vary with the SNRs with L as a variable parameter. The graphs demonstrate that
the performance of all the detectors is enhanced as the quantity of training data L increases. This enhancement
is a result of the more precise estimation of the SCM. In addition, the degree of improvement of the conventional
detectors is a little higher than that of the Bayesian detectors.

Before closing this section, we would like to briefly discuss the computational complexities of B-Rao-I and B-
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Figure 8 (Color online) PD varies with SNR for the real data. p =2, K =4, n =14, and L =12. (a) ¢ =4; (b) ¢ =T7.
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Figure 9 (Color online) PD varies with SNR for the real data. p =3, ¢ =5, K =4, and n = 14. (a) L = 12; (b) L = 17.

GLRT-I. B-Rao-I derives its primary computational complexity from the inversion of an N x N-dimensional matrix,
thus resulting in a computational complexity of O(N3). B-GLRT-I has its main computational complexity from
the inversion of an N x N-dimensional matrix and the determinant computation of a K x K-dimensional matrix.
For matrices of the same dimension, because matrix inversion and determinant computation share the same level
of complexity, the computational complexity of the B-GLRT-I detector is max{O(N?3),O(K?)}. Therefore, the
proposed B-Rao-I detector has a computational complexity that is comparable to or less than that of B-GLRT-I.

5 Conclusion

This paper addressed the challenge of detecting a range-spread target in subspace interference and noise when
there were limited training data. To solve this problem, we developed the Bayesian detector B-Rao-I. Through
experiments using both simulated and real data, we demonstrated that B-Rao-I outperformed existing detectors.
Our investigation also revealed that the effectiveness of the Bayesian detectors was enhanced by reducing the
dimensionality of the signal and interference subspaces and increasing the DOF's of the inverse Wishart distribution
and the amount of training data. Potential directions involve generalizing the proposed B-Rao-I to other clutter
models and analyzing the sensitivity of the detector to the assumption of data statistics.
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Appendix A B-2S-GLRT-I is equivalent to the Bayesian Wald test
In this appendix, we show that the B-2S-GLRT-I can also be derived based on the Wald test, which is given by [29]

twald = ((:)rl - ero)H{ [Fﬁl(él)] e,.0, }71((:)r1 - ero)v (Al)

where (':'),r1 represents the MLE of @, under Hi, ©,, represents ®; under Hp. Nulling (15) w.r.t. C, we can easily get the MLE of C
for given R as

¢ =BYR'B) 'BiR'Z. (A2)
The MLE of A is the first p rows of (A2). As the method described by (19) in [30], we can get the MLE of A from (A2) as
A= (8"py3) @"Pg2. (A3)
From (13) we have
[[FO®)g.0 ) =Ixo @ Pid) (A4)
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Then substituting (A3) and (A4) into (A1) results in the Wald test for given R as
twaldg =vecH {(@HP.%:@) 71@HP.%.‘Z} (Ix ® ‘E’HP.%."E’)VGC {(@HP.%:@) 71<§HP%Z}
—vecH [(@HP%@)*@HP%Z} veo [ PL B3P E)  B1PE 2] (A5)
—u | 2P a(avpi) Tanpsz),
which shares the same form as (17). Hence, we can also rewrite (A5) as (18), repeated below
twaldy, = tr(ATAA). (A6)
Next, We aim to derive the MAP of R under Hi. One can verify that
Z,Z8 1S+ nz’ = ’(z —BC)(Z-BCO)" + 8+ nz(
:|S+n2|~‘IK—i-(Z—BC)H(S-i-nE)’l(Z—BC) (AT)
=[S+ 73| (IK +(Z-Bo)(z- BC)( ,
where B = (S + nE)fl/zB. Setting the derivative of (A7) w.r.t. C to be zero results in the MAP of C as
¢ =B"B) 'BYZ (AS8)
Setting the deriveative of (15) w.r.t. R to be zero under Hi, we get the MAP of R under hypothesis H; for given A and W as

-~ (Z-BC)(Z-BC)" 5 +1z

Ry (A9)
n+N+L+K
Substituting (A8) in (A9) leads to
PLZZUPL + Iy
Ri=(S+nx)/2°B " "B " (g4 y3)1/2 A10
L= (S )2 BB (S ) (a10)
where PE =1Iy — Py and Py = E(BHB)iléH Performing the matrix inversion to (A10) leads to
N < < A
R =a(S +nx)~1/2 {IN - PEZ(IK + ZHPEZ) szg} (S +nx=)~1/2, (A11)
Using (A11), we can easily obtain the following two equations
RI'® =a(S+12) '@, (A12)
and
RI'Y =a(S+n=)7'. (A13)

Substituting (A12) and (A13) into (19) and (20), and then inserting the results back into (A6) while disregarding the constant term,
we can get the ultimate Wald test, which is isovalent to the B-2S-GLRT-I in (39).
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