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Abstract This paper aims to investigate the practical fixed-time control of coupled neutral complex networks (CNCNs) with mismatched
parameters. New intermittent fixed-time stability lemmas are established, formulated using indefinite functions and unified exponent
conditions on the Lyapunov function. These lemmas incorporate and improve upon previous results. Taking into account the unavailability
of global information in practical scenarios, intermittent-type practical fixed-time stability lemmas are derived, which extend and enhance
the previously negative definite conditions. New estimations of the settling-time required to reach the residual set are provided. Based on
the newly established stability lemmas, the fixed-time stability and practical fixed-time stability of the considered CNCNs are analyzed.
The designed controllers incorporate the arctangent function, ensuring that the control values remain bounded. This approach addresses
the issue of high control gains effectively. Finally, numerical simulations of a drilling system modeled by CNCNs with mismatched
parameters are presented to validate the main results.
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1 Introduction

Intermittent control, as one of the discontinuous control methods, has gained popularity recently due to its cost-
effectiveness and practicality in engineering applications. Many researchers have achieved significant results using
this approach. Intermittent control can be categorized into periodically intermittent control and aperiodically in-
termittent control. For periodically intermittent control, both the work and rest time intervals are fixed. Several
results on periodically intermittent control have been reported, for example, [1-6]. In contrast, aperiodically in-
termittent control allows for flexible adjustment of intervals, making it more effective and convenient for practical
applications. In recent years, numerous outcomes related to aperiodically intermittent control have been achieved,
including, but not limited to [7-13]. For instance, in [11-13], several intermittent fixed-time (FxT) stability lemmas
have been established. These lemmas are significant because FxT stability ensures that the settling-time (ST) func-
tion is independent of initial conditions. To unify the exponents of the Lyapunov function and reduce additional
parameter inputs, Li and Wang [11] proposed an intermittent FxT stability lemma, which was further improved by
Qin et al. [12]. For a clear comparison, refer to Table 1.

Notably, the estimation of the ST in the aforementioned results relies on global information, which may limit
their practical applicability. This is because the global information of many systems, such as large-scale swarms
or power grids, is often unclear or unidentifiable. In recent years, practical finite-time control (see [14-16]) and
practical FxT control (see [17-21]) have been extensively studied. For a detailed comparison, refer to Table 2.

Although there are fruitful results on studying the intermittent control issues, there are at least two pending
problems.

The first one is the intermittent inequality conditions in stability lemmas. (i) From the intermittent inequality
conditions summarized in Table 1, it is evident that Inequality No.1 in [11] and Inequality No.2 in [12] are both
negative definite. However, these conditions have limitations in practical applications, as discussed in [22,23].
Although Inequality No.3 in [13] is indefinite, it introduces two additional input parameters, p and ¢, and fails to
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Table 1 Previous intermittent FxT stability conditions.

No. Intermittent-type FxT stability inequalities Condition Ref.
(_') < —a(O ga#»sigm(efl)7 < < ,
1 0 S a(©) Se xS <S¢ a>0,1<p<?2 [11]
0 <0, s <6 < St
O< — 0 — @)ptsign(®©—1) <o < sp,
2 ) S —1® —az(8) SEN eSS i az, a3 >0,1<p <2 [12]
O < az0, sp <6 < Spg1
© < —10— aB? — BOY, < ,
3 oS « A Ses s < s I is indefinite, @, 3> 0,0 < p< 1 < g [13]
© <0, sp <6 < Spqa

Table 2 Previous practical FxT stability conditions.

No. Practical FxT stability inequalities Condition Ref.
; T —T
1 O<K —a10° 1 — 0”4 1¢ a1, 02,6 >0,0< 2 <1 [17]
6 < —a10P — a0, << < sg,
2 ST a2 SES eSS ar,a2>0,0<p<1<q [20]
0 <0, s <6 < Set1
O < —a10P — 07 — a3V, <o <
3 DS T o2 SR a1,a2,a3,04 >0,0<p<1<q [20]
O < a4V, sp <6 < Spg1
O < —a10” — @07 — a3V + &1, < << < sg,
4 - ! 2 3 & e s ‘ ar, a2, a3,04,81,62 >0,0<p<1<gq (21]
O < asV + &2, s <6 < St

unify the exponents as achieved in No.1 and No.2 using p+sign(© —1). In practice, achieving FxT stability requires
both internal mechanisms and external inputs. Naturally, minimizing external inputs is essential to reducing costs.
(ii) The inequality condition ©(s) < 0 (s < ¢ < ¢41) in [11,13] (see Table 1), is proposed. Such a condition is
too special to be general, which should be improved like that in No.2 (see Table 1). (iii) As for the intermittent
practical inequality conditions in Table 2, one can see that all the inequalities are negative definite. And, all the
exponents on the © are not unified. As pointed out in [24], too many parameter inputs will cause too much energy
loss.

Consequently, the existing intermittent inequality conditions should be improved.

The second consideration is the control constraint. In real-life applications, control constraints must be taken into
account because actuators have finite control capabilities. Therefore, incorporating input constraints into controller
design is both vital and necessary. Numerous results have been reported on control design for systems with bounded
inputs, including [25-27]. From the designed control laws for intermittent control in the literature, it is evident that
several controllers include exponential terms of state variables, such as | -| and |-|? (6 > 0). However, the values of
such controllers can exhibit exponential growth when € > 1. The control laws proposed in existing studies, such as
FxT control in [11-13], as well as practical FxT control in [17-21], may result in large or even unbounded control
inputs. Therefore, it is essential to design bounded control laws to avoid the aforementioned issues of unlimited
control.

On the other hand, many physical processes can be modeled by function differential equations of neutral systems,
such as partial element equivalent circuit, flexible systems, very large scale integration systems, and population
ecology (see [28-30]). As for the unitary discontinuous system, the Filippov system, has been widely studied due to
its vital applications in describing many biological, chemical, and physical models (see [31]). But for the continuous
neutral systems, neutral systems with discontinuous perturbation functions, especially the coupled neutral Filippov
systems, are rarely studied and there is no result on the FxT stability and practical FxT stability of coupled
neutral complex networks (CNCNs) via intermittent control. Moreover, discontinuous networks with mismatched
parameters described by Filippov systems have been studied, see [32,33]. But, there is also no result on the practical
FxT stability of networks modeled by Filippov systems with mismatched parameters.

To sum up, inspired by the unsolved problems in the existing results analyzed above, in the paper, the FxT
stability and practical FxT stability of CNCNs are considered via bounded intermittent control strategies and
generalized FxT stability and practical FxT stability lemmas. The main contributions are stated as follows.

e New intermittent FxT stability lemmas containing indefinite function and unite exponent condition are given,
which can improve and include the previous ones with negative definite conditions.

e Intermittent practical FxT stability lemmas with indefinite function and unite exponent condition are proposed
for the first time. Detail analyses show that the residual set is closely related to the unite exponent. This also
implies that the radius of the residual set is dependent on the states of the system. Some previous results are
improved, such as [17,20, 21].

e In the practical FxT stability, the dynamical behaviors of the states are also discussed after the state enters
the residual set, which supplements results in [18,20, 21].
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e The bounded intermittent controllers are designed, which can solve the large values of the controllers containing
the term | - (6 > 0) in the related results, such as [7-10,13,20,21].

2 Basic definitions and lemmas

Consider the following differential system:
X(s) = f(X()), ae. s > g9 >0, (1)

where (<) = (X1(s), X2(), ..., Xn(s)) " denotes state vector, X(¢) denotes the time derivative of X and f : R — R”
is discontinuous and measurable and essentially locally bounded. System (1) is named as a Filippov system.
Definition 1 (See [34]). The origin of (1) is finite-time stable, if the following is satisfied.

(i) Lyapunov stability: For any ¢ > 0, there exists a § = §(sp, &) > 0 such that for any X € B(0,6) = {Xo € R :
|Xo]l < 6}, [|X(s)]| < € holds for ¢ > 0.

(ii) Finite-time convergence: There exists a 0 < T'(Xo) < 400 such that lim¢_,7(x,) X(s) = 0 and X(<) = 0 for all
¢ > T(Xy). Here, T(Xy) is called the ST.
Definition 2 (See [34]). The origin of (1) is FxT stable, if it is finite-time stable and there is a constant Tynax > 0
such that T'(%X() < Thax, for any initial state-point Xy € R™.
Definition 3. The state of (1) is said to be practical FxT stable if, for positive definite function ©(X), VX, there
exists a estimation of the settling-time T'(Xy), i.e., Tmax € [0, +00), a constant v > 0 and a suitable control u(<)
such that

lim  X(c) € {X[O(X) <7},

S—>1dmax

X € {X()0(X(s)) <7}, Ys > Thmax,
lim |X| =0,

s—+o0

where Tinay is irrelevant to Xo, and {X]|O(X) < v} £ Q is called a residual set.

Remark 1. The “practical” FxT stability defined in Definitions 2 means that the state disagreement will converge
to a neighborhood of the origin (i.e., residual set) at T without dependence on initial states. Such a neighborhood
can be adjusted to a desired level. The “practical” FxT stability is put forward to solve the problem that the
estimate of the ST in FxT stability depends on the global information, which may usually not be available; see [17].

Lemma 1. There exist a number o > 0 and parameters 0 < 71 < 7o such that 7 |X| < |arctan(rex)|, |X| < o. For
any number 7 > 0, Mﬁﬂ < |arctan(mz)|, o < |X| < 7, and wﬁﬂ <7|X[,0<o0<r.
Proof. Let h(X) = —|arctan(mX)| + 71|/%|. Then

hx) =4 arctan(m2X) + X, X >0,
| arctan(mX) — 7 X, X <0.

Since h(0T) < 0, h(07) < 0, h(+00) > 0, h(—o00) > 0, then there exists a point o > 0 such that

|arctan(m2X)| > 71|X[, [X| <o,
|arctan(2X)| < 7|X|, |X] > o.

(2)
For any number r» > 0, when o < |X| < r, @ < 1, we have wﬁﬂ < |arctan(meX)|, o < |X| < r, by (2),
we can obtain %(T””ﬂ < Jarctan(mX)| < 7|X[, 0 < o < |X| < 7, namely, %(Tﬂ”ﬂ <7m|X,0<o0<r.
Therefore, the proof is complete.

Remark 2. Since the 71|X| and |X| are even function, there exists a —o < 0 such that |arctan(mX)| < 7 |%],
X < —o. For any point —r < —0 < 0, mwﬂ <7|X], - r<X< —o.

Lemma 2 (See [8]). For aperiodically intermittent strategy, if W(¢) = $=2£, ¢ € (s, <e41], and £ € D is a strictly
increasing function, one can get that WU(¢) < = < lim sup 2= = ¥. Then, one can derive 0 < ¥ < 1.
Se1—5Se m— 00 Se4+1—Se

Herein, D is a set of natural numbers.
Lemma 3 (See [35]). Let z1,29,...,21 > 0, 0 < ¢ < 1, p > 1, the following two inequalities hold Zi:l zd >

(Zi:l Zb)qv Zi:l zp 2z ll_p( 25:1 Zb)p'



Kong F C, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122206:4

3 Intermittent stability lemma

In the following, two absolutely new intermittent stability lemmas with indefinite function and unified exponents
shown by the sign function are given.

3.1 Intermittent FxT stability lemmas

Lemma 4. Assume that the function ©(c) is non-negative for ¢ € [¢p, +00). There are a function I' € K, an
indefinite function $ and a positive constant g, such that T'(]|X]]) < ©(X(s)) = O(s), VX € R™ \ {0}, ¢ > o, and

0(s) < —H(<)B(s) = F(O(¢))r O~ ¢, < ¢ < sy, 3)
O(s) < —pO(s), 50 < 5 < so41,
for a.e. ¢ > g, where £ €D, 1 < p <2, §F >0, p=sup{H(s)} and function § satisfies the following inequality:
$><0
S
N < [ 9l < N )
So

N, Ny are positive constants. Then lim O(¢) =0 and O(¢) =0 if ¢ > Tiyax, where Tiax =

¢—Tmax
here W is defined in Lemma 2.

1
T —pNaII-0) T

(2— aﬂ)SeXp{@ PN II-0)’
Proof.  The proof will be complete by the following three steps.

e Step 1. When ¢ < ¢ < s¢ from (3), it follows that ©(c) < —$()O(s), multiplying the above inequality by
o0 P9 e obtain efo YOO () < —H()O(c)elo0 2P namely, d[ef:oﬁ(s)ds O()]/ds < 0, integrating it from

% to ¢ gives e 2 O(¢) — O(cp) < 0 and by (4), we further have
O(s) < B(so)e J0 2 < B(g)e ™M,V > ¢

Based on the fact that ©(c) is continuous at Xy, ©(0) = 0, then Ve > 0 and Vgy > 0, there exist a § = §(¢) > 0 and
VXo € {X € R": ||X|| < &}, such that O(g) < (E) . Then, we can get

e~ M

%] <T7Y(O(c)) < T 1(O(p)e* ) < I~ (E .e—m) .

which means that the origin of (1) is Lyapunov stable according to the (i) in Definition 1. When s, < ¢ < ¢41, the
same consequence can be obtained since O(¢) < —pO(s) is the special case of O(s) < —H(5)O(s). Thus, the origin
of (1) is Lyapunov stable.

The following two steps will prove the finite-time convergence and estimate the settling-time.

e Step 2. When O(¢) > 1, ¢y << < s¢, £ € D, Eq. (3) becomes

0(s) < —9(5)0(s) — F(O(s)#H, o <5 < s,
< —pO(s), ¢ << < Sup1-

Select ¢p = 0. For ¢ € [0, s¢), define
Ro(s) = S(s) = Mo, Mo =079(0),

S)=6""* exp{ / (s } % exp{—pNa k.
Clearly, Ry(0) = 0. And, we can obtain
. <
afe) > giexp{ o [ 9(s)as} - g esp(-pNa} >0
0

Thusa S(g) P MO; Vs € [Oa SO)'
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For ¢ € [s0,¢1), let Bo(g) = S() — My + S exp{pNa2}(s — s0). Obviously, we have Ro(so) = S(s9) — My
and the derivative of Ry(<) is

éo(C) =(—p)O~ ao—() exp{ /.6 } () pH exp{ /53 }

~ ¥ expl—pNa} + pFexp{—pNa} > (p— ()0 Wp{ / 5(s }

WV

0,

Therefore, Ro(s) > 0, that is S(¢) = My — pF exp{—pNa}(s — 50), < € [s0,51). By mathematical induction, we
assume that

o~

—1
S(¢) =My — pF exp{—pNa} > (Sk — Sk—1),50—1 < S < S¢—1,

I
~ |l
| -

1

S(s) =My — pF exp{—pNa} [ (Sk — Sk—1) +5 — 8@—1] ,S0-1 < 6 < g

k=1
In fact, when < € [g, s¢), define Ry(s) = S(s) — Mo + oF exp{—pNa} Zizl(gk — Sk—1), then, we have that

4

£—1

Re(se) =S(se) = Mo + pF exp{—pNa} Y (s — sx-1) = Mo — pF exp{—pNa} [Z(% — Sk-1)
k=1 k=1

£

— Mo + pF exp{—pNa} Z(Ck — sp-1) = 0.
k=1

Ry(s) =(—p)0~ 1 (<)O( eXP{ /.6 } BOELIS exp{ /.6 }

— pSexp{—pN2} > pSeXp{ - p/ fJ(S)dS} — S exp{—pN2} >0
0

+ < — Sp—1

Moreover,

Thus, we obtain S(¢) > My — T exp{—pN2} Zizl(gk —Sk-1), ¢ < < 8.
Additionally, let
) ) ¢
Ry(c) =5(c) — Mo + pF exp{—pN2} [Z(% —sh-1) + 6 — Sz] ;80 < S < Syt
k=1

Using a similar proof as Ry(s;) > 0, we get Ry(¢) > 0, and

2
S(s) =2Mo — pF exp{—pNa2} lz Sk — Sk—1) +¢ — Sz] 280 < S < S
k=1

Therefore, we can conclude that

S() > My — pF exp{—pNa} Yj_y (5 = s1-1), 5 <5 < 50
S() = My — pF exp{— @N2}[Ek:1( Sk — Sk—1) +S — s¢], 80 < S < Gy
For ¢ € [, s¢), we have
Sk !
—1 ~
S(s) =My — pF exp{—pN2} Z 71(% —Gho1) = Mo — pF exp{—pN2} T Y (o — Sk-1)

Sk =S =

=My — pF exp{— pNz}\Ifcz My — pF exp{—pNa} Us.
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For ¢ € [sp,<041), we get

S(s) =My — pF exp{—pNs} — Z (s — <)

)

Sk — Sk— S
SETSeL oy
—1 Sk Sk—1 S
>My — p§ exp{—pN2 } Us.

Hence, for all ¢ € [¢p, +00), S(5) = My — pF exp{—pN2}¥s holds. Then,

07%(c) 267°(¢) exp{ - @/Ogﬁ(S)dS} > 07Y(0) + pF exp{—pN2}(1 — ¥)s

>pF exp{—pN2}(1 — ¥, ¢ € [0, +00),

which implies that
) < 1
pS exp{—pNa}(1 = ¥)

Let ¢(s) = oF exp{_plNz}(l_\p)g. It is easy to see that ¢(<) is a strictly decreasing continuous function of . Setting
the right side of (5) to 1, we can get

0¥ (¢

g,( € [0, 400). (5)

1
N Fewl-oNl (- 9 0
and glirgl O¢(¢) = 1. Tt follows from (5), (6) and the monotonicity of ¢(¢) that tlinTll O(s) =1 and O(s) < 1 for all
¢ =T
e Step 3. When ©(c) < 1 for all ¢ > T4, by (3), we have
{@ <=HEV =FO ™, T < < < s, )
O < —pV, 50 << <1

When ¢ € [11, so), let

Qols) = H(s) — My, My =0>"%(T)

H(c) = ©°7(c) exp {(2 - %) g YJ(S)dS} + (2 - p)Fexp{(2 - p)N1}s.

Th
Obviously, Q(0) = 0. Differentiate Qo(s) and based on (7), we can obtain

S

Qo(s) =(2 = )0 (c)O(s) exp {(2 - ) ,6(3)015}

Th

+0779(6)(2 — )H(<) exp {(2 - %) g fJ(S)dS} + (2 - p)Fexp{(2 - )N}

Th

T

<—(2—-p)Fexp {(2 - p) ) f)(s)dS} + (2 = p)Fexp{(2 — p)N1} <0,

based on which implies that H(s) < My, Vs € [T1, so).
When ¢ € [sg,¢1), let

Qo(s) = H(s) — (2 — p)F exp{(2 — p) N1 }(s — s0) — Mo.

When ¢ € [So, §1), it gives that QO(SO) = H(So) — My < 0.
Furthermore, since p > sup{$(<)}, it follows that

$><o0

Q. () =(2 - )0 (6)6(s) exp {(2 - ) < ﬁ(S)dS}

T
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+ 0% °()(2 — p)9H(s) exp {(2 - ) C YJ(S)dS}

T
+ (2 - p)Fexp{(2 - p)N1} — (2 — )T exp{(2 — p) N1}

=(5(s) = p)O*(c)(2 — p) exp {(2 - p)

<
T

sﬁ(s)ds} <0,

which implies that H(¢) < My + (2 — p)Fexp{(2 — ©)N1}(s — s0), Vs € [s0,51)-
Similar to the proof process in Step 2, by mathematical induction, we can get

{H(<) < Mo+ (2— )T exp{(2— )N1} Sy 1 (s — k1), 50 << < 8¢5

H() < Mo+ (2 — 0)F exp{(2 — 0) N1} Xk (or — sh-1) + 6 — 80-1], 50 <5 < 541

For ¢ € [s¢, s¢), from the first inequality of (8), we have

14
H(s) <My + (2 p)Fexp{(2 = p)Ni} Y 21 (g — )
1 Sk — Sk—1

4

<My + (2 - @)Fexp{(2 = @)N1}¥ D (sk — k1)
k=1

=Mo + (2 — p)Fexp{(2 — p) N1} ¥s,
<Mo + (2 — p)F exp{(2 — o) N1} Vs

For ¢ € [s¢,e+1), from the second inequality of (8), we have

¢

Sk — Sk—1 t— s¢
.= WY SR S . JRP
el Sk — Sk—1 C— <

Mo + (2 = )T exp{(2 — ) N1 } Vs,
Thus, for all ¢ € [T, 4+00), H(s) < Mo + (2 — p)F exp{(2 — p) N1} ¥s holds. So,

H(c) <Mp + (2 — p)T exp{(2 — ) N1}

©*77(c) exp {(2 - %) C YJ(S)dS} + (2 - 9)Fexp{(2 — p)N1}¢

T
<O7(1) + (2 - p)F exp{(2 — )N} s, < € [0, +00).

Then for all ¢ € [T7, 4+00), we have

0279 (¢) < @2°(c) exp {(2 . / gﬁ(S)dS}

<O T) — (2 - p)Fexp{(2 — p)N1}(1 - V)
=1-(2-p)Fexp{(2— p)N1}(1 - D).

9)

Let o(s) =1—(2— p)Fexp{(2— p) N1 }(1 — ¥)s. It is easy to see that (¢) is a strictly decreasing and continuous

function of ¢. Letting the right side of ¢(s) to 0, we can obtain

1
(2 - p)Fexp{(p —2)N1}(1 - )’

T, =

(10)

and lim ©279(c) = 0. It follows from (9) and the monotonicity of ¢(¢) that lim ©O(s) = 0 and O(c) = 0 for

¢—=Tmax ¢—=Tmax
all ¢ > Tipax.

Consequently, from (6) and (10), we can see that lim ©(s) =0 and ©(s) = 0 if

= Tmax
B 1 . 1
T pTexp{—pNa}(1 - V) (2 - p)Fexp{(2— p)N1}(1 - ¥)’

where ¥ is defined in Lemma 3. Therefore, the proof is complete.

¢ 2 Thax
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Table 3 Previous indefinite function conditions.

No. FxT stability inequalities Condition Ref.
1 o< a(s)® — p10? — p,©° f:o $Hds < —A(s — <o) + N, A\, N are positive constants [36]
2 O < ()0 — (p1(5)Of + pa(c)©°)F f:r) H(s)ds < —A(s — <o) + N, A, N are positive constants [37]

Table 4 Previous and this paper intermittent FxT stability conditions.

No. Intermittent-type FxT stability inequalities Condition Ref.
(_;) < — 5] p«#sign(@fl). < < )
1 ) < —a(®)  SES eSS a>0,1<p<2 [11]
0 <0, s <6 < Spp
O < —a10 — ax(O)vFsisn(e=1), <5 < s,
2 )< —10 - a2(0) P SES eSS a1 oz, a3 >0,1< p<2 [12]
O < a30, Sp <6 < Gpq1
O < —10 — a®P — BOY, <5 < sg,
3 oS * A LN eSS I is indefinite, @, 3> 0,0 < p<1< g [13]
o <0, s <6 < St

- e p+sign(©(s)—1) <
{O(q) ~9H(5)8() — F(O(<)) Se S S < s $(s) is indefinite, F,p > 0,1 < p < 2 This paper

O(s) < —pO(s), 80 < ¢ < o1

Remark 3. Lemma 4 differs from those in [36,37] which impose unbounded conditions on the indefinite function.
Refer to Table 3 for particulars. Unbounded conditions may lead to unlimited growth of system states or control
inputs, thereby compromising the stability of the system. Unbounded conditions can make the system more sensitive
to external disturbances or parameter variations, reducing its robustness. Consequently, the FxT stability Lemma
4 offers more benefits. For more details, see Table 3.

Lemma 5. Assume that the function ©(s) is non-negative for ¢ € [¢p, +00). There are a function I' € Ko, an
indefinite function $) and a positive constant g, such that T(||X|]) < ©(X(c)) = O(s), VX € R™ \ {0}, ¢ > ¢p, and

: —$9(5)0(s) — F1(0(c))* T, 0(c) > 1,
o) < {—YJ(C)@( ) —F2(0(c)" 1, 0(s) < 1,

0(s) < —pO(s), ¢ < ¢ < seq1,

G <6< sy,

fora.e. ¢ > ¢y, where £ €D, F1 >0,F2>0,1 < p<2,F>0,p=sup{H(s)} and function § satisfies the inequality

$><o

(4). Then lim O(c) = 0 and 6(<) = 0if ¢ > Tonax, Where Thnax = Sremrommo + T omes 0 NI D

and ¥ is defined in Lemma 2.
Proof. The proof is similar to that in Lemma 4. We omit it.

Remark 4. The intermittent FxT stability Lemma 4 is formulated by an indefinite function and unite exponent
condition p + sign(©(¢s) — 1). Such inequality (see (3)) relaxes the negative definiteness of the derivative of © and
reduces the system-independent parameter inputs. The problem that @(c) < 0 (s¢ < ¢ < ry1) is not general has
been solved. Tt is easy to see that the intermittent inequality conditions in [11-13] are the special cases of (3), and
so are the periodic ones in [1,2,4]. For more details, see Table 4.

3.2 Intermittent practical FxT stability lemmas

Lemma 6. Assume that the function ©(c) is non-negative for ¢ € [¢p, +00). There are a function I' € Ko, an
indefinite function $) and a positive constant g, such that T(||X|]) < ©(X(c)) = O(s), VX € R™\ {0}, ¢ > ¢o, and

O(s) < —H()O(<) — F(O(c))r=EnOO=1 4 4 ¢ < ¢ < sy,
(C) < —pO(S) + K, 50 < § < Soq1,

for a.e. ¢ > ¢y, where £ eD , 1< p<2,§ >0, p=sup{H(s)} and function $H(-) satisfies the inequality (4). Then,
$><o
the state = of (1) achieves intermittent practical FxT stability with the residual set given as follows:

_ max # - # : i
_{ﬂ@(%)g {<s<1—¢>>> ’<%<1—¢>> ”"1’}}7 -

where ¢ € (0,1). And the estimation of ST to attain the residual set is

1 1
Tmax T oSdexp{—pNa}H (1 — ) + (2—p)Foexp{(2 — p)N1}(1 - V)’

(11)
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where U is defined in Lemma 2.
Proof. (1) For t € [t,,s,), from (11), it follows that

6(c) < = H(5)O(<) — F(O(¢))Heien®E© =1 4
<= H(9O() = FH(O(¢) eI —F(1 — 9)(O(c)) OO 4 o (14)

— 5(6)0(s) — FHO(c))FHEnOO-N if O(c) > (rl”y_ d)))ﬁ

N

(2) FOY t S ST‘7 17~+])7 we can Oblain
S K
= .

Based on Lemma 4, the state 2 of (1) achieves intermittent practical FxT stability with the residual set Q, which
is defined in (12). And, the estimation of ST to attain the residual set is given by (13).
The proof is completed.

O(s) <= pO(s) + £ < —p(1 — )O(s) — $pO(c) + K < —p(1 — $)O(c), if O(c) (15)

Remark 5. The practical FxT stability Lemma 6 is more generalized than those in the previous studies, such
as [20,21] since the first inequality in (11) can include the previous ones. It should point out that, in the represent
rest interval sy < ¢ < ¢pyq, the O < a0+ &5 in [21] is not rigorous since function © should be decreasing. The use
of an indefinite function can reduce the limitation, and most importantly, it can still ensure the decrease of the ©.
For details, see the proof in Lemma 6. The second inequality in (11) can ensure the decrease of the function ©.

Lemma 7. Assume that the function O(c) is non-negative for ¢ € [¢p, +00). There are a function I' € K, an
indefinite function $) and a positive constant g, such that T(||X|]) < ©(X(c)) = O(s), VX € R"™\ {0}, ¢ > <o, and

5006 — 51O 7,
Sl) < {—ﬁ(<)®(<) 520 47,
O(s) < —pO(s) + K, 80 < ¢ < i1,

S < ¢ < sy,

fora.e. ¢ > ¢, LeD, 1 <p <2 §1>0,F2>0,p=sup.{H(s)} and function $ satisfies the inequality (4).
Then, Eq. (1) achieves intermittent practical FxT stability with the residual set given as follows:

_ ax{ | ——t— h e E P
el o) 2

where ¢ € (0,1). And the estimation of the settling-time to attain the residual set is

1 1
T = s G exp{—pNa} (1= 1) | (2= )52 expl(2— 9)N. (1= )’

where VU is defined in Lemma 2.

Remark 6. Practical FxT stability can overcome the limitations of needing the global information. In this
respect, it has a wider application. Intermittent control can save more costs and is more practical in engineering.
So the intermittent-type practical FxT stability takes more advantages. The results in [20,21] have established the
intermittent-type practical FxT stability lemmas, which can improve the continuous time practical FxT stability
lemma in [17]. But the intermittent-type practical FxT stability lemmas in [20,21] also have some limitations.
Clearly, we can see that the proposed inequality (11) in Lemma 6 can include those in [17,20,21]. For more details,
see Table 5.

3.3 Network description

Consider coupled neutral Filippov systems on networks with mismatched parameters as follows:

N
(DX)(<) = = C"Xi() + ATF(Xi() + I+ D bi(9(%X5(6)) = 9(Xi(<))), (16)

j=1,j#i

where (DX;)(s) = Xi(s) — I'"X;(s — o(s)), here, i = 1, SN, Xi(<) (Xi1(), Xi2(s), - -

2,.. = JXin())T € R s
the state vector of node 7, the nonlinear term f(X;(s)) = (f1(Xi1(<)), f2(Xi2(S))s -+, fu(Xin()) T

€ R"” represents
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Table 5 Previous and this paper practical FxT stability conditions.

No. Practical FxT stability inequalities Condition Ref.
- —T T
1 O< -0 1 — a0’ d t¢ a1, 02,6 >0,0< 2 <1 [17]
@ < —a10P — 009, << < s,
5 < —an a2 e <5< s >0 0<p<l<q (20]
Se <6 < Spq1
O<7o¢0p70¢0q70¢\/ s <5 < sg,
3 S 2 s D “ ar,az,a3,04 >0,0<p<1<ygq [20]
O < a4V, sp < s < Seq1
O < —a10P — a0 — azV <6 < sy,
1 S O Tt masl b s @< a1, oz, 03, s €1,62 > 0,0 < p <1< q (21]
O < auV + &, se <6 < Soq1
@(g) < —95(9)O() — S’(@(g))b+sign(@(§)*1) + 7,60 <5 < s¢, $(s) is indefinite, This paper
O(s) < —pO(s) + K, 50 < < g1, Fpk,7,>0,1< p<2

discontinuous activation, and the nonlinear coupling function g(X;(s)) = (91(X;1(s), 92X;2(S), - - -, gnXjn (s )T R

is continuous. The matrix C? = diag{ct,c}, ..., n} is the neuron self-inhibition with ¢; > 0 (j = 1,2,...,n),
A = (a},) € R™" T = (I'},) € R™™™ (I,k = 1,2,...,n) represents the connection weight rnatrlx, Vector
I' = (I, Ii,...,I') denotes the constant external input for different nodes i = 1,2,..., N, and o denotes the delay.
In addition, outer coupling matrix B = (b;;) € R¥*Y denotes the topology structure satisfying: if node i
receives information from node j, b;; > 0; otherwise, b;; = 0, and the diagonal elements are b;; = 0. Therefore, the
corresponding Laplacian matrix L can be defined as l;; = —b;; for j # i and diagonal elements l;; = >, _; ;; bij (i =
1,2,...,N). Thus, the controlled network can be written as
(DX)(s) = — C'Xi(s) + AT f(Xi(s)) + I' — Zlug ) +ui(s), i=1,2,...,N. (17)

Remark 7. As was pointed out by Hale [38, pp. 24-26], the main reason for considering the neutral equation
with the difference is that it will be included without imposing too many smoothness conditions on the initial data.
So, the (Dx)(s) is more generalized to show the neutral terms.

For convenience, the following assumptions are given.

Assumption 1. For each ¢ = 1,2,...,n, f; : R® — R is piecewise continuous, 0 € ©o[f;(0)], and there ex-

ist nonnegative constants l; and m; such that sup € = n| < L]z — y| + my, where @o[f;(0)] =
¢€co(fi(w)],necolfi(y)]

(min{ £ (6), f; (0)}, max{f;"(9), f; (6)}].

Assumption 2. For k = 1,2,...,n, there exists positive constant pj such that for all x € R, we have |gx(z)| <

prlz|.

Lemma 8 (See [39]). IfT = mlaé({I‘lik} < 1, the inverse of D, denoted by D! exists and satisfies sup_cp |[D7*(<)] <

1/(1-T1).
From Lemma 8, we can see that D! exits. Let (DX;)(s) = 1:(s), then X;(s) = (D~'n;)(s). Thus, Eq. (17) could
be translated into the following system. For convenience, let X;(s) denote state, that is,

Xi(¢) == O"%i(<) = C'T(D X)) (c —o(e) + 1" + AT f (D™ Zlug D7X5)(<)) + uil<).

Based on differential inclusion theory in [31] and the measurable selection theorem [40], there exists measurable
function ¢;(<) € co[f((D1X;)(s))]. Then the controlled system can be described as

Xi(<) = = C'Xi(¢) = CTHD'X:)(s = 0(<)) + A'ils Zlug D71E))()) + 1"+ wis), (18)

where wu;(<) is the controller to be designed.
Let a = max; {|a},|}, ¢ = maxij{cé-}, c = minij{cé-}, I = max;;{|l;;|}, I = maxij{|lj|}, L = max;{l;},
m = max;{m;}, and p = maxy{pg}.
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4 FxT stability analysis of (18)

Based on the arctangent function, we design the following bounded controller:

u;(¢) = —sign(X;(s)) [(n am + nl) + +(—cn+ o — Nlp)| arctan(m2X;(<))]
H()IXi(s)] + §larctan(r2Xi(s))[" + (raXi(s — U(<)))|} ot S 6 < st (19)
u;(s) = —sign(X;(s)) [(n am +nl) + +(—cn+12 ain t+ Nip+ w)|arctan(r2X;(<))|
(rai(s = o))l 50 < € < s,
where £ € D, v = p + sign(V — 1), H(s) satisfies the inequality (4), and w > 0 is a constant.
4.1 FxT stability via Lemma 5
In this section, we will establish some criteria to guarantee FxT stability for (18) based on Lemma 5.
Theorem 1. If Assumptions 1 and 2 hold, the following inequality holds:
p > max { sup {ﬁ(G)}}- (20)
$><o
Then the origin of (18) achieves FxT stability and the estimation of ST is
Tmax = ! + ! 21
max @gl exp{—pTlNg}(l —\If) (2_ p)SQ exp{(Z— p)le}(l _\I/)’ ( )
where
§1 = min { gy v, (L) o)
" (22)

- t p—1 t
% — min {STlp 1,g(arc an(Tgr)) }7 ) = min {wn, arc an(Tgr)w},

r r
and V¥ is defined in Lemma 2.

Proof. Consider the following Lyapunov function.

N N n
00 = K0l = 3 X x50l (23)

In view of the switching characteristics of intermittent controller, the proof will be divided into two parts, one is
S € [q, 8¢), the other is ¢ € [sg,541), £ € D.
First, for Vs € [¢r, s¢), calculating the time derivative of O(s), by (18) and (19), it can deduce that

N
S) _Zsign(%i(g)){ —C'Xi(s) = C'THD X)) (s — 0(s)) + A'¢i(s legg DX (5) + I’

— sign(X;(s))

<—m+§g%+Nm>mwmmﬁ&»+m®&mﬂ (24)

}.

T
+ Flarctan(m2X;(s))|" " + 1C_

Hmmmma@_dqm+m%m+ﬂ)

Using Assumption 1 and Lemma 8, we have

N n n
ZSIgn NAGi(s) <Y DD laiil Ul (D™ 245)(9)] + )

i=1 =1 k=1 i=1

2

N
I+ > n*anm. (25)
=1
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Since lj; = l;; < 0, j # i, combining with Assumption 2, we can obtain

—ZZSIgn Deiig(25()) < 30 Sl D lgw(x

i=1 j=1 i=1j k=1

- !

N N n
<SSO S X (] < Nip Y 26,

i=1 j=1 k=

_.
-
Il

-

Meanwhile, note that

N _ N
- Zsign(%i(C))lei(C) < —an 1Xi(<)I,
i=1 '

N N n _121 N
> sign(X ()<Y NI nl,
i=1 i=1j=1 i=1
— Zs&gn NOTHD %) (s — o(s cn Z |Xi(s—o(s

Thus, the following two cases should be discussed according to Lemma 1.
e Case 1. For |X(¢)| < o, using (19), we get

— Z sign(X;(<))sign(X;(s)) T

H(S)|Xi(s)| + F| arctan(r2X;(<))|” +

E_FF |arctan(m2X;(s — o(<)))]

1
a alLn . N N
§ - Z <—QTL + ﬁ + Nlﬁ) 7’1|xi(§)| + Zﬁ(§)|%l(§)| — ZST“%l(g)
’L];l EF . i=1 =1
_Zn F|%i(< o(s ))|—Z(n a4 nl).
i=1 i=1

Substituting (25)-(27) and (28) into (24), it gives that O(c) < vazl ()X ()| — vazl S1Xi(s)]".

Consider the following cases.
(1) If V > 1, we can deduce from Lemma 3 that

ZY) G ZgTﬂx AV =g INTEOT

(2) If 0 < V < 1, we can deduce from Lemma 3 that

N
LG |—ZsTf|ae SOV~ Fri o

e Case 2. For o < |X(s)| < r, using (19), we get

— Z sign(X;(<))sign(X; (<)) r

H (1% ()] + §| arctan(m2X:(<))]” + 1

| arctan(m X;(s — U(C)m]

al aLn -\ arctan(rer) al
g—z<—0n+ﬁ+mp>%|3€()l+ﬁ Znamﬂ”ﬂ

=1 1=

N arct t X
Zlc FarC&nTg'f‘ Z|% g—o’ |_Zs<ar(ja.n7_2'f'> Z|x1
=1

=1 =1 1=1

o al ~
(n?am +nl) + (—cn + ffn + Nlip) arctan(m2X;(s))

(n%am +nl) + ( —cn+ IL + Nlp) arctan(m2X;(<))

(28)

(30)
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Substituting (25)-(27) and (31) into (24), it gives that O(¢) < Zilﬁ(c)&l(cﬂ - Zleg(m)v |, ().

Then, it needs to make the following discussions.
(1) If V > 1, we can deduce from Lemma 3 that

al N arctan(7or) b arctan(7or) ot B
HOIX() =) F| ——— | X" <HE)V =F| ———= N—9Q9tL, 32
+1 ( )

r r

(2) If 0 < V < 1, we can deduce from Lemma 3 that

al N arctan(ror) h arctan(rar) o -
ZNO&&)I—ZS(T) |xi(§)|0<f)(§)v—s<7> CLas (33)

r

Thus, from (29), (30), (32) and (33), we can have

: =H(<)0(c) = F1(O()**,8(5) > 1,
O() < < ¢ < sy 34
© {—mc)@(g) RO el <1, CIES oY
On the other hand, for Vs € [sg,p41), it is easy to get that
O(s) < —pO(s), < € [se,5041); (35)

where p is well defined in (22).

Based on the Lemma 5, (34) and (35), we can conclude that Eq. (18) can achieve FxT stability under the
bounded intermittent controller (19), and the estimation of ST is given in (21).

Up to now, the proof is complete.

Remark 8. From (19), it is clear to see that whether ¢y < ¢ < sp or s < ¢ < 41, u;(s) is always bounded,
which can guarantee the control constraint and solve the large value problems arising in the designed intermittent
controllers, such as [7-10, 13,20, 21].

Moreover, quantized intermittent control in [41] can ensure the control constraint, but it cannot capture the
complete information of the system. The designed control strategy u;(¢) can ensure the global information of the
system since there is no restriction on the state. Consequently, the designed control strategy (19) is effective and
offers more advantages.

4.2 Practical FxT stability via Lemma 7

In this section, we will establish some criteria to guarantee practical FxT stability under intermittent control for
(18) based on Lemma 7, which is an absolutely new result.
Design the following bounded intermittent controller:

u;(s) = —sign(X;(s)) [(nerh +nl — ) + ( —cn+ % + Niﬁ)| arctan(2X;(<))|
+ o arctan(ro X (s — (<)) + H(<)|Xi(s)| + J arctan(Tﬁi(C)ﬂ”}a% < <se,
ui(s) = —sign(%:(s)) [(nQdm +nl = k) + (—cn+ 22 + Nip+ w)|arctan(ra Xi(s)))|

(36)

+ = arctan(roZi(s — o(<)l ] e < < <,

where £ € D, v = p + sign(0(s) — 1), H(s) satisfies the inequality (4), and w,x = N&,v = N4 > 0 are constants.
Theorem 2. If Assumptions 1 and 2 hold, inequalities in (20) are satisfied. Then, we have the following results.
(i) CNCNs (18) achieves intermittent practical FxT stability with the residual set given as follows:

= max ¥ o T ﬁi
“—{%'G’(%K {(&(1—@) ’(m—(b)) ’p¢}}’

where ¢ € (0,1). And the estimation of ST to attain the residual set is
1 n 1
ES10exp{—priNo}(1 = W) (2 - p)Fadexp{(2 — p) 220 N (1 — @)

where VU is defined in Lemma 2, §1, §2 and p are defined in (22).
(ii) After entering the residual set Q, Eq. (18) achieves asymptotic stability, i.e.,

Tmax =

m |X(s)] =0.

li
s—+oo



Kong F C, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122206:14
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Figure 1 (Color online) Time evolution of states without controller.

Proof. First, construct the same Lyapunov function as that in (23). Based on the proof in Theorem 1, we can
obtain that the result (i).

As for (i), based on the proof in Theorem 1, we have O(c) < Zi\il ()| Xi(s)| — Zi\il Fri|Xi ()Y It is easy to
see that © = 0 requires X; = 0. By the LaSalle’s invariance principle, it follows that Eq. (18) with (36) achieves
the asymptotic stability.

Up to now, the proof is complete.

Remark 9. From the previous practical FxT stability results in [20,21], one can easily see that the stability
lemmas cannot be applied to obtain the results in Theorems 1 and 2 since their stability lemmas are the special
cases of Lemmas 6 and 7. Moreover, as pointed out in [17], after the state enters the residual set, the dynamical
behaviors of the state should be discussed, but there is no related discussion in [20,21]. From the proof in Theorem
2, one can see that, under the bounded intermittent control strategy (36), Eq. (18) achieves the asymptotic stability
after the state enters the residual set, and ¢ — +00. The result is absolutely new.

5 Application and simulations

In [42], a drilling system described by a switched neutral type delay equation with nonlinear perturbations has
been considered. But, the nonlinear perturbations were bounded and continuous. In the section, a drilling system
described by the CNCNs (17) is considered, which is more generalized.

Example 1. Consider the drilling system described by CNCNs (17), let the coefficients be
ol 0.1 0 o2 0.1 0 o3 0.1 0 Al 2 —0.1 A2 2 —-0.14
0 01)° 001/ 001/ 4 42 )’ 4 43 )’
45— 2 —0.12 - 0.2 —0.1 2 _ —-0.3 —0.1 s —0.1 —0.2
4 41 )7 —0.1 —0.2)’ 03 —02)’ 0.1 04 )

I'=1(03,02)", I? =(0.1,0.2) ", I* =(0.2,0.4) 7,

-1 -1

and the Laplacian matrix is L = ( | o

). Moreover, let the discontinuous function be f(X) = 0.1tanh(X) +

2v1 + 0.3 sin vy,
1.8v5 + 0.6 cos va.
and p = 2.4. Then, Assumptions 1 and 2 hold. Let ¢y = 0 and let the initial state be X(0) = [6, -2, —10,10] .

Without control inputs, the states will not achieve stability at the origin within a fixed time, see Figure 1.

Let $(s) = 0.5cos(s) — ﬁ, ¢ > 0. Then we can choose N7 = 0.5 and Ny = 1.5. Select the control gains as

a1 =428, =43,a3=41,6=01,¢=01,1=2,1, =03, 1,=02,13=04,T=05~v=1, k = 0.6, w = 9.6,

0.1sign(X), and the nonlinear coupling function is defined as g(v) = { Select L = 0.2, 7 = 0.2
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Figure 2 (Color online) Time evolution of states under bounded Figure 3 (Color online) Time evolution of states under bounded
intermittent controller (37). intermittent controller (38).

§=199and p=11,v=11+ Sign(Z?zl |X;(s)| — 1). Design the bounded control as follows:

ui(s) = —sign(X1(c)) [4.24 + 17.64| arctan(m2X;(s))| + (0.5 cos(s) — ﬁﬂ%l(gﬂ
+19.9] arctan(r2X1())|” + 0.1] arctan(m2X1 (¢ — O'(C)))ﬂ 60 <6 < sy,
u1(s) = —sign(X1(s)) [4.24 + 27.24| arctan(2X1(s))| + 0.1] arctan(72X1 (s — U(()))ﬂ 50 <6 < Sy,

us(s) = —sign(Xa(s)) 424+ 17.64] arctan(m2X2(<))| + (0.5 cos(s) — ﬁﬂ%g(cﬂ
+19.9] arctan(r, X2(6))|* + 0.1 aretan(7 Xa(s — o(s))]] o <5 < 50, (37)
uz(s) = —sign(X2(s)) 424+ 27.24| arctan(72X2(s))| + 0.1| arctan(r2 X2 (s — U(()))|:| 80 <6 < Seq1,
uz(s) = —sign(X3(c)) 424+ 17.64] arctan(r2%5(c))| + (0.5 cos(<) — o2)|%3(<)]
+19.9] arctan(mXs(6))|" + 0.1] arctan(mXs(s — o(9))]] <0 < s < st
us(s) = —sign(Xs(c)) [4.24 + 2724 arctan(r,Xs(<))| + 0.1] axctan(n X (s — o(6))]] 52 < s < ra1.

Lemma 1 holds with 7 = 1, 9 = 5, 0 = 1.43, r = 1.5. By direct calculation, we can get that the inequality in
Theorem 1 holds and

1 1

Tmax = +
E81exp{—pmiN2}(1 = ¥) (2 — 0)Fs exp{(2 — p) T N (1 - )

~ 1.137 (s),

where

p+1
t
5, = min {Wﬂ N-®, g(M) N—p} ~ 5441,
T

r

o—1
Fo = min {W‘l,s<w> } ~ 18.218, p = min {wrl, mw} ~ 9.205.

Moreover, by making the use of Theorem 1, it can yield that Eq. (16) achieves FxT stability via Lemma 5 with the
intermittent controller (19). See Figure 2 for details.
Furthermore, select v = 1, k = 0.6, and design the following bounded control:

u1(s) = —sign(X1(c)) [3.91 + 17.64| arctan(2X1(<))| + 0.1] arctan(r2 X1 (s — o (s)))|
+(0.5cos(s) — ) 1X1(s)| + 19.9] arctan(m2 X1 (<))]" [, ¢ < ¢ < s¢,
ui(s) = —sign(X1(c)) [4.04 + 27.24] arctan(m2X1(s))| + 0.1 arctan(m2 X1 (s — ()], s¢ < ¢ < Sot1,
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ua(s) = —sign(Xa(c)) [3.91 + 17.64| arctan(72X2(c))| + 0.1] arctan(re X2 (s — o (c)))|

+(0.5cos(s) — (1_%)2)|%2(§)| +19.9| arctan(7'23€2(§))|”},§g < ¢ < sy,

us(s) = —sign(%s(c)) [4.04 + 27.24| arctan(rsXa(c))| + 0.1] arctan(rsXa (s — a(g)))@ 50 < S < Gt

us(s) = —sign(Xs(s)) {3.91 + 17.64| arctan(12X3(s))| + 0.1] arctan(r2X3(s — 0(s)))|
+(0.5cos(<) — ry2) X3 ()] +19.9] arctan(m%s(G))l”} 50 <5 < sy, (38)
us(s) = —sign(Xs(s)) [4.04 + 27.24| arctan(12X3(c))| + 0.1| arctan(r2 X3 (s — U(c)))ﬂ 80 <6 < Syt

Then, by direct calculation, we can get that the conditions in Theorem 2 hold. Let ¢ = 0.95 in Theorem 2. Then

Eq. (16) achieves practical FxT stability via Lemma 7 and intermittent controller (38) with the residual set given
1 1

as follows: Q = {X|©(X) < 0.4964}, where max { (M) o (M) o p%} ~~ 0.4964. And the estimation

of ST to attain the residual set is Tynax = 1.197(s), see Figure 3 for details. As pointed out in Remark 1, the residual

set can be adjusted to the desired level by adjusting the parameter ¢.

Comparisons and discussions.

e The construction of the intermittent FxT stability lemma is of paramount importance. Since the intermittent
intervals are discontinuous, this renders the intermittent FxT stability lemma considerably more complex than
its continuous-time counterpart. Nonetheless, the negative definiteness of the derivative of the V-function is an
immutable attribute. Existing literature has sought to refine the inequality of the V-function’s derivative; yet it
has overlooked the necessity to preserve the negative definiteness of the V-function’s derivative. In comparison to
the lemmas in [12,20,21], the negative derivative of the Lyapunov function is guaranteed in the newly established
intermittent FxT stability lemmas in the paper, which provides the theoretical underpinning for the closed-loop
system to ultimately achieve FxT stability and practical FxT stability, see Figure 2.

e In the study of FxT stability, the use of bounded feedback is very rare. Bounded control is an indispensable
aspect of control system design, as it ensures the system operates stably, safely, and efficiently under various working
conditions by restricting the range of control inputs. Different from the FxT control in [11-13], and practical FxT
control in [17-21], in the paper, the bounded control has been designed. When the FxT stability is achieved, from
(37) and (38), the controllers converge to zero, which signifies the accomplishment of the control objective and the
cessation of the control operation.

6 Conclusion

This paper investigates the FxT stability and practical FxT stability of CNCNs with mismatched parameters.
New intermittent stability lemmas are proposed. The indefinite function and unified exponent condition on the
Lyapunov function are utilized, which can encompass and improve upon previous results. As highlighted in many
studies, the unavailability of global information is inevitable. Therefore, practical FxT stability is more realistic.
Intermittent practical FxT stability lemmas are also derived. More generalized inequality conditions are provided.
New estimations of the ST to reach the residual set are presented, which are determined by the constant parameters
of the system. Based on the newly established stability lemmas, the FxT stability and practical FxT stability of
the considered CNCNs are studied using bounded controllers.

Time delay is an unavoidable factor in networked control systems, making the investigation of practical FxT
stability for mismatched CNCNs with time delays both a challenging and fascinating problem.
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