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Abstract In this paper, an asynchronous and aperiodic sampled-data control scheme for continuous-time multiagent systems (MASs)

with intermittent communication is investigated. We propose a novel time-based and aperiodic sampling scheme for data transmissions

among agents. In distributed MASs, the accurate timing alignment of different agents is difficult to guarantee; thus, data-sampling time

sequences are naturally asynchronous for different agents. Initially, a minimum allowable sampling period is enforced after each data

sampling to eliminate the Zeno behavior. The maximum allowable sampling periods play a crucial role in ensuring the consensus of

MASs. We focus on prolonging the intersampling periods while ensuring the consensus of MASs. A reverse average dwell time condition

is introduced, which can significantly improve the maximum allowable sampling periods. Moreover, additional dynamic clock variables

are introduced to characterize the sampling intervals. Based on hybrid system theories, some sufficient conditions that guarantee the

consensus of MASs are given. The results indicate that there exist certain trade-offs between the maximum allowable sampling period and

reverse average dwell time. Finally, some numerical simulations are provided to demonstrate the effectiveness of the obtained theoretical

results.
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1 Introduction

In recent years, the cooperative control of multiagent systems (MASs) has received considerable attention in various
fields, such as vehicle platooning [1–3], formation of mobile robots [4–6], reconnaissance of unmanned aerial vehicles
[7, 8], and games [9]. An important task in the cooperative control of MASs is to design distributed control
laws to achieve collaborative control goals [10]. In traditional consensus control, information interaction among
agents is generally assumed to be continuous in time. However, the computation and communication resources are
limited in practical systems; thus, continuous-time communication is unrealistic. To cope with the limitations of
communication resources in practical systems, time-based [11–15] and event-based [16–18] communication strategies
have been widely adopted in MASs and networked control systems. The main idea of event-based communications is
that communications are triggered whenever a predefined state-dependent criterion is satisfied. In event-triggered
communication schemes, the sampling instants can be determined based on the real-time fluctuation of agent
states [19], which usually requires the real-time monitoring of agent states. In contrast to event-based communication
schemes, time-based communication schemes can be state-independent.

The time-based data-sampling schemes mainly include periodic and aperiodic sampling strategies. In periodic
sampling strategies, data sampling is activated after a fixed elapsed time [20]. In [21], a time-based sampling scheme
with variable sampling periods was designed to solve leader-following consensus problems. In [22,23], the consensus
problems of linear MASs with a probabilistic periodic sampling strategy were investigated. The sampling periods
were assumed to switch between two different values. However, the explicit upper bounds of sampling periods were
not provided in the existing sampling strategies with variable periods [21–24].
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In the aforementioned literature, some sufficient conditions in terms of maximum allowable sampling periods
were given to ensure the achievement of the control objectives. Technically, as long as the upper bounds of the
sampling periods satisfy some specified conditions, the control objectives can be achieved. Therefore, we focus on
how to improve the estimates of the maximum allowable sampling periods while ensuring the consensus of MASs.
In [25–27], the use of the reverse average dwell time condition improves the estimates of the maximum allowable
sampling periods or impulsive intervals. However, the entire system is still required to respond synchronously at
sampling time instants. Different from traditional networked control systems, multiple agents cannot ensure clock
synchronization and accurate timing alignment in distributed MASs [28,29]. Notably, asynchronous behavior among
agents is ubiquitous in many large-scale networks of MASs [30–35]. Therefore, asynchronous sampling schemes for
MASs are more relevant in real scenarios. However, because of the complexity of coupled MASs, the theoretical
analysis of asynchronous MASs is more challenging than that of synchronous MASs.

In this study, we focus on the design of asynchronous and aperiodic sampled-data schemes for continuous-time
MASs with general linear dynamics. Different from traditional periodic sampling strategies [20], we propose a novel
time-based and aperiodic sampling strategy for MASs. However, one technical challenge in the event-triggered
sampling scheme is the exclusion of potential Zeno behavior. In our framework, a minimum allowable intersampling
period is enforced for each agent after each sampling instant, which rules out the Zeno behavior. Notably, the
enforcement of a minimum allowable intersampling period can negatively affect the convergence of systems [12],
whereas asymptotic convergence is guaranteed in this study. Moreover, the maximum allowable sampling periods
play a crucial role in ensuring the consensus of MASs. Naturally, the estimates of the maximum allowable sampling
periods could be as large as possible to relax the system consensus conditions. A reverse average dwell time
condition is obtained for each agent, and it can significantly improve the estimates of the maximum allowable
sampling periods. Therefore, the asynchronous and aperiodic sampling time sequence of each agent is subject
to the conditions of the minimum, maximum, and average allowable sampling periods. Compared with event-
based communication schemes [36–39], the proposed time-based sampling scheme is state-independent and the
communication time instants are precomputed offline, which means that the real-time monitoring of system states
is not required. In an asynchronous MAS, each agent has its sampling time sequence and each agent sends the
sampled data to its neighbors only at sampling instants. However, the analysis of the restriction on the “average”
in asynchronous and coupled MASs is technically challenging. We use the tools from hybrid systems to analyze and
solve this problem. The conditions for generating the sampling time sequences are state-independent, which leads
to difficulties in consensus analysis. To record the elapsed time after each sampling action, extra clock variables are
introduced. Then, a hybrid system model, which integrates system states, observer states, and two clock variables,
is established. The conditions that guarantee the consensus of MASs are derived from the designed Lyapunov
function.

This study analyzes the design and implementation of both aperiodic sampling and distributed control schemes
in asynchronous continuous-time MASs with intermittent communication. The main contributions of this study are
outlined as follows.

(1) For the investigated asynchronous sampled-data MASs with general linear dynamics, a novel asynchronous and
aperiodic sampling scheme is proposed to reduce communication costs. To improve the estimates of the maximum
allowable sampling periods on the premise of state consensus, the concept of the average allowable sampling period
under reverse average dwell time conditions, which requires that, on average, there is at least one sampling action in
the time interval of a length equal to the average allowable sampling period, is introduced. In addition, the minimum
allowable sampling period is enforced after each sampling action to naturally eliminate the Zeno behavior. The
proposed sampling scheme not only prevents the conservatism of traditional fixed-period sampling schemes but also
improves the estimates of the maximum allowable sampling periods.

(2) To solve the consensus problem of asynchronous sampled-data MASs, a distributed observer-based control
protocol is designed for each agent. In the case of unmeasurable system states, a state observer is designed to
observe the system states of each agent. Agents only transmit the state of their observer to neighbor agents at
sampling instants. In contrast to the sample-and-hold strategies [23], the sampled data of observers are indirectly
used in the consensus protocol, and the appropriate state estimation in terms of the sampled data is employed to
estimate the real-time states of observers.

(3) Some sufficient conditions in terms of the minimum and maximum allowable sampling periods and the reverse
average dwell time are derived to ensure consensus. To handle the analytical difficulties of the restriction on the
“average” in asynchronous and coupled MASs, technically, two additional dynamic clock variables are introduced in
the hybrid system model to assist in measuring the intersampling times. Then, a novel Lyapunov function, which
includes system states, observer states, and two prior unknown functions for clock variables, is designed to analyze
the consensus conditions of MASs. The results of this study show the existence of a trade-off between the maximum
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allowable sampling period and the reverse average dwell time.
The remainder of this paper is organized as follows. Some basic concepts are given in Section 2. The considered

problem is formulated and the hybrid system model is established in Section 3. The main results are discussed in
Section 4. A simulation example is given in Section 5. Finally, the conclusion and future work are presented in
Section 6.

2 Preliminaries

2.1 Notations

N and R denote the sets of natural and real numbers, respectively. Rn and R
n×m denote the n-dimensional Euclidean

space and the set of all n ×m real matrices, respectively. 0 (1) denotes the appropriate dimensional vector with
all elements being 0 (1). Im denotes the m×m identity matrix. ‖ · ‖ denotes the 2-norm. 〈·, ·〉 and ⊗ denote the
inner and Kronecker products, respectively. λmax(Γ) and λmin(Γ) denote the maximum and minimum eigenvalues
of the symmetric matrix Γ, respectively. For the set S, S denotes the closure of the set S.

2.2 Graph theory

Consider an MAS containing m nodes and M edges. The communication topology among agents is described
as an undirected graph G = (V , E) with a set of nodes V = {1, 2, . . . ,m} and a set of edges E = {1, 2, . . . ,M}.
A = [aij ] ∈ R

m×m denotes the adjacency matrix of graph G, where aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. Node
j is called the neighbor of node i if aij 6= 0. The set of neighbors of node i is represented by Ni = {j ∈ V : (j, i) ∈ E}.
L = [lij ]m×m denotes the Laplacian matrix of graph G, where lij =

∑

j∈Ni
aij if j = i and lij = −aij if j 6= i.

D = [diℓ] ∈ R
m×M denotes the incidence matrix of graph G, where diℓ = 1 if node i is the head of the ℓ-th edge,

diℓ = −1 if node i is the tail of the ℓ-th edge, and diℓ = 0 otherwise. In an undirected graph, L = DDT. For each
graph G, the eigenvalues of L can be listed in increasing order, as follows: 0 6 λ1(L) 6 λ2(L) 6 · · · 6 λm(L).
Assumption 1. The communication graph G is undirected and connected.

2.3 Hybrid systems

A hybrid system H = (C, F,D, G) is a tuple composed of a flow set C ∈ R
n, a jump set D ∈ R

n, a flow map
F : Rn → R

n, and a jump map G : Rn ⇉ R
n. When x ∈ C, the system can flow continuously. When x ∈ D, the

system can jump discontinuously. We recall some definitions related to hybrid systems [40].

Definition 1 (Hybrid time domains [40]). A set E ⊂ R × N is called a compact hybrid time domain if E =
∪S−1
k=0 ([tk, tk+1] , k) for a finite sequence of times 0 6 t0 6 t1 6 · · · 6 tS . A set E is called a hybrid time domain if

E ∩ ([0, T ]× {0, 1, . . . S}), ∀(T, S) ∈ E is a compact hybrid time domain.

Definition 2 (Solutions to hybrid systems [40]). A hybrid arc ϕ : dom(ϕ) → R
n is a solution to H if the following

conditions are satisfied: (i) ϕ(0, 0) ∈ C ∪ D; (ii) ϕ(t, k) ∈ C for any k ∈ N and ϕ̇(t, k) ∈ F (ϕ(t, k)) for almost all
t ∈ {t : (t, k) ∈ dom(ϕ)}; (iii) ϕ(t, k) ∈ D and ϕ(t, k+1) ∈ G(ϕ(t, k)) for all (t, k) ∈ dom(ϕ) and (t, k+1) ∈ dom(ϕ).

3 Problem formulation

3.1 MAS model

Consider a continuous-time MAS consisting of m agents. The dynamics of agent i is described as follows:
{

ẋi(t) = Axi(t) +Bui(t),

yi(t) = Cxi(t), i = 1, 2, . . . ,m,
(1)

where xi(t) ∈ R
nx and yi(t) ∈ R

ny are the state vector and the measured output of agent i, respectively; ui(t) ∈ R
nu

is the control input of agent i; and A, B, and C are constant matrices. We assume that (A,B) is stabilizable and
(C,A) is observable. Then, the following Riccati equations hold for the positive definite matrices P and Q:

ATP + PA− PBBTP + I = 0, (2)

and
QAT +AQ−QCTCQ+ I = 0. (3)
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Figure 1 (Color online) Illustration of the information interaction (the solid line denotes the transmission of continuous-time signals, and the

dashed line denotes the transmission of discrete-time signals).

Because the state xi(t) is indirectly measurable and only the output yi(t) are available, a state observer for agent
i is designed as follows:

ξ̇i(t) = Aξi(t) +Bui(t) + F (Cξi(t)− yi(t)), (4)

where ξi(t) is the observer state associated with agent i and F = − 1
2QC

T is the observer gain matrix.
In this study, we consider asynchronous time-based sampling schemes. We denote the sampling time sequence

as {tik}k∈N , {ti0, ti1, . . .}, where tik is the k-th sampling instant of agent i. The basic illustration of the informa-
tion interaction of MASs considered in this study is shown in Figure 1. For agent i, each observer observes the
corresponding agent state, and the sampled state ξi(t

i
k), k = 0, 1, 2, . . . , is transmitted to its neighbors at sampling

instants. The distributed consensus protocol ui(t) is expressed as follows:

ui(t) = −K
∑

j∈Ni

aij(ξ̂i(t)− ξ̂j(t)), (5)

where K = BTP is the feedback gain matrix and ξ̂i(t) is the state estimation of ξi(t) with the following dynamics:

{

˙̂
ξi(t) = Aξ̂i(t), t 6= tik,

ξ̂i(t) = ξi(t), t = tik.
(6)

The objective of this study is to design a distributed observer-based control protocol under asynchronous sampling
strategies for MASs (Eq. (1)) to achieve a consensus, i.e., limt→∞ ‖xi(t) − xj(t)‖ = 0, ∀i, j ∈ V . limt→∞ ‖xi(t) −
xj(t)‖ = 0, ∀i, j ∈ V .
Remark 1. In Figure 1, each agent broadcasts its observer states to its neighbors at its sampling instants and
receives the observer states of the neighbors at the sampling instants of the neighbors via networks. In addition, the
received discrete-time observer states are indirectly used in the consensus protocol. By contrast, the state estimation
ξ̂i(t) is used. It follows from (6) that ξ̂i(t) is implemented as an open-loop estimate during t ∈ [tik, t

i
k+1) and the

estimation values are reset to the sampling state at discrete time tik. Therefore, ui(t) is piecewise continuous.

3.2 Asynchronous sampling strategy

As shown in Figure 1, the data are sampled and broadcasted via networks at sampling instants. For different agents,
the data may be transmitted via different networks (e.g., wired/wireless networks). In our framework, the data
sampling of different agents is independent and asynchronous. For agent i, let hik = tik+1 − tik, where i ∈ V and
k ∈ N. For all agents, Assumption 2 restricts the sampling intervals.

Assumption 2. For agent i with i ∈ V , there exist the constants τ imax > 0 and τ imin ∈ (0, τ imax) such that

τ imin 6 hik 6 τ imax, ∀k ∈ N. (7)
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In Assumption 2, τ imax > 0 is called the maximum allowable sampling period and τ imin > 0 is called the minimum
allowable sampling period. Notably, Assumption 2 not only restricts the maximum sampling period τ imax to ensure
system stability but also restricts the minimum sampling period τ imin. Thus, the Zeno behavior is naturally excluded.
In the periodic [20] and aperiodic [21, 41] sampling, the key issue is how to determine the maximum sampling
interval so that the stability of a closed-loop sampled-data system is guaranteed. However, the estimated value
of the maximum allowable sampling period τ imax in (7) is preferred to be as large as possible to relax the system
consensus conditions. The utilization of the reverse average dwell time in [25,26] provides the possibility to prolong
the maximum allowable sampling period τ imax.

Remark 2. In Assumption 2, there exists a minimum allowable sampling period τ imin between any two sampling
instants. The minimum allowable sampling period τ imin can be determined by physical platforms if the finite
computing capacity of the hardware is considered in practical systems [28, 38]. The minimum allowable sampling
period τ imin can theoretically have an arbitrarily small value if it is only to prevent the potential Zeno behavior.

In [25,26], the reverse average dwell time can characterize the impulsive interval in impulsive systems. However, in
most existing studies (see [25–27]), there exists a requirement that the response of the system should be synchronous,
which is unsuitable for the MASs with asynchronous sampled-data control investigated in this study. Motivated by
the reverse average dwell time concept in [25–27], the following assumption is imposed upon the average allowable
sampling period.

Assumption 3. Given any t, T ∈ R>0 with T > t, let Ni(t, T ), i ∈ V denote the number of samples in the time
interval [t, T ). For agent i with i ∈ V , there exist the constants τ iR and N̄i > 1 such that

Ni(t, T ) >
T − t

τ iR
− N̄i (8)

for all t, T ∈ R>0 with T > t.

An inequality constraint condition of asynchronous sampling for individual agents is given in Assumption 3.
Intuitively, to ensure the desired control performance, the number Ni(t, T ) of samples cannot be too few in a
certain time interval [t, T ). In Assumption 3, τ iR is called the reverse average dwell time of agent i, which provides
the maximum allowable sampling period in the condition expressed in (8). If sampling does not occur, then we
derive the expression 0 > (T − t)/τ iR − N̄i; thus, the maximum allowable sampling period is in the form of τ iRN̄i.
We can choose N̄i > τ imax/τ

i
R with τ iR 6 τ imax such that the condition expressed in (8) ensures that there exists

an upper bound smaller than or equal to the maximum allowable sampling period τ imax on the sampling intervals
[tik, t

i
k+1).

Remark 3. Compared with that reported in [25, 26], there are two main differences. First, the reverse average
dwell time is used to characterize the impulsive interval in impulsive systems in [25, 26], which requires that the
response of the entire impulsive system is synchronous. However, the reverse average dwell time is introduced
for each agent, and asynchronous sampling schemes for MASs are designed in this study because it is difficult for
multiple agents to ensure clock synchronization in distributed MASs. Second, the width of the impulsive interval
is determined only under the reverse average dwell time condition in [25, 26], whereas the length of the sampling
interval is not only subject to the reverse average dwell time condition but also subject to the minimum and
maximum allowable sampling period conditions.

In this study, we consider the aperiodic sampled-data scheme satisfying Assumptions 2 and 3, i.e., the sampling
time instants ti0, t

i
1, . . . of agent i are subject to both (7) and (8). However, Assumptions 2 and 3 are given for

individual agents. The analysis of the overall MAS in an asynchronous setting is quite challenging. The theory of
hybrid systems provides a powerful modeling and analytical tool. In our framework, the consensus protocol ui(t) is
piecewise continuous and could produce jumps only at sampling instants. Therefore, each sampling action of agents
can be regarded as a jump action in the modeled hybrid system. To characterize the sampling intervals of agent
i described in Assumptions 2 and 3, we introduce two timer variables, i.e., τi(t, k) ∈ R>0 and si(t, k) ∈ R>0 with
τ(0, 0) ∈ [0, τ imax] and si(0, 0) ∈ [0, τ imax − τ imin]. The hybrid system model can be established as follows:























τ̇i(t, k) = 1,

ṡi(t, k) = 0,
for τi(t, k) ∈ [0, τ imax],

τ+i (t, k + 1) = max{0, τi(t, k)− τ iR},
s+i (t, k + 1) = max{0, τi(t, k)− τ iR},

for τi(t, k) ∈ [si(t, k) + τ imin, τ
i
max].

(9)

It follows from (9) that τi(t, k) and si(t, k) are not always reset to zero when a jump occurs, which is determined
based on the sampling conditions expressed in (7) and (8). The concept of the average allowable sampling period
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Figure 2 (Color online) Trajectories of the timer variables.

under the reverse average dwell time condition expressed in (8), which requires that, on average, there is at least one
sampling action in the time interval of a length equal to the average allowable sampling period τ iR, is introduced.
Eq. (9) shows that τi(t, k) is at most decreased by τ iR time units and si(t, k) is reset to the same value as τi(t, k)
when a jump occurs. If the timer variables are reset to zero when a jump occurs [42], then the elapsed time for the
subsequent jump could always be τ imax, which directly results in the jump of the timer variables in a fixed period.
Therefore, τi(t, k) and si(t, k) are not always reset to zero after jumps. Notably, ṡi(t, k) = 0 and τ̇i(t, k) = 1 between
two consecutive jumps; thus, si(t, k) records the last jump value of τi(t, k), which is significant for calculating the
elapsed time from the k-th sampling instant to the current instant. Notably, τi(t, k)− si(t, k), t ∈ [tik, t

i
k+1) is the

elapsed time from the k-th sampling instant to the current instant. Assumption 2 specifies the minimum sampling
period τ imin, which indicates that the subsequent jump is allowed at least after τ imin time units when a jump occurs.
si(t, k) is introduced to precisely characterize the limitation of the minimum sampling period τ imin.

Figure 2 shows an example of possible jump scenarios of the timer variables. Figure 2 also shows that τi(t, k+1)
and si(t, k + 1) are reset to τi(t, k)− τ iR when the jump occurs in Area I and τi(t, k + 1) and si(t, k + 1) are reset
to zero when the jump occurs in Area II. In other words, τ+i (t, k + 1) = s+i (k + 1) = τi(t, k)− τ iR. In addition, the
jump of the timer variables cannot occur in Area III, which is attributed to the enforcement of a minimum allowable
intersampling period τ imin after each sampling instant. Intuitively, two consecutive jumps of the timer variables are
separated by at least τ imin time units, and the time between jumps should not be greater than τ iR time units. For
example, a jump occurs at τi(t, k) = τ imax and τi(t, k + 1) is reset to zero after the jump expressed in (9), which
directly leads to the fact that the elapsed time for the subsequent jump could be τ imax. The reverse average dwell
time τ iR in Assumption 3 is ineffective if the aforementioned process is always repeatedly performed. Therefore,
τi(t, k) is at most decreased by τ iR time units rather than always reset to zero after jumps.

Lemma 1 describes the relationship between the hybrid time domain Ei = dom(τi(t, k), si(t, k)) for the solution
(τi(t, k), si(t, k)) to (9) and its jump instant tik satisfies (7) and (8).

Lemma 1 (Proposition 1 in [27]). For the solution (τi(t, k),si(t, k)) with initial state set I0 = [0, τ imax] ×[0, τ imax−
τ imin] in (9), Ei is a hybrid time domain of (τi(t, k), si(t, k)) if and only if the jump time sequence {tik} satisfies (7)
and

Ni(t, T ) >
(T − t)− τ imax

τ iR
, (10)

where i ∈ V , τ imin 6 τ iR 6 τ imax, and Ni(t, T ) is the jump number of the hybrid system expressed in (9) in the time
interval [t, T ).

Remark 4. In Lemma 1, the condition expressed in (10) is equivalent to (8) with N̄i = τ imax/τ
i
R. The sam-

pling/jump time sequence of different agents is independent; thus, Proposition 1 in [27] can be used here for agent
i. However, the MAS is not a decoupled system, which will be shown subsequently in the hybrid formulation of
MASs.

3.3 Hybrid systems formulation of MASs

We construct the continuous-time MAS model with discrete-time communication in networks based on the hybrid
system framework. The agent and observer states of agent i remain unchanged at sampling instant tik, i.e., x

+
i (t, k+
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1) = xi(t, k) and ξ
+
i (t, k + 1) = ξ(t, k), but the state estimation is reset at sampling instant tik, i.e., ξ̂

+
i (t, k + 1) =

ξ(t, k). Combined with the clock variables defined in (9), a hybrid system for agent i can be formally defined as
follows:



























































































ẋi(t, k) = Axi(t, k) +Bui(t, k),

ξ̇i(t, k) = Aξi(t, k) +Bui(t, k) + F (Cξi(t, k)− yi(t, k)),
˙̂
ξi(t, k) = Aξ̂i(t, k),

τ̇i(t, k) = 1,

ṡi(t, k) = 0,

for τi(t, k) ∈ [0, τ imax],

x+i (t, k + 1) = xi(t, k),

ξ+i (t, k + 1) = ξi(t, k),

ξ̂+i (t, k + 1) = ξi(t, k),

τ+i (t, k + 1) = max{0, τi(t, k)− τ iR},
s+i (t, k + 1) = max{0, τi(t, k)− τ iR},

for τi(t, k) ∈ [si(t, k) + τ imin, τ
i
max].

Let x = [xT1 , x
T
2 , . . . , x

T
m]T, ξ = [ξT1 , ξ

T
2 , . . . , ξ

T
m]T, ξ̂ = [ξ̂T1 , ξ̂

T
2 , . . . , ξ̂

T
m]T, τ = [τ1, τ2, . . . , τm]T, s = [s1, s2, . . . , sm]T,

and η = [xT, ξT, ξ̂T, τT, sT]T. Then, the overall hybrid system is modeled as follows:
{

η̇ = F (η), for η ∈ C,
η+ ∈ G(η), for η ∈ D.

(11)

For the hybrid system expressed in (11), the flow set C is derived as follows:

C =R
mnx × R

mnx × R
mnx × [0, τ1max]× · · · × [0, τmmax]× [0, τ1max]× · · · × [0, τmmax],

and the flow map F (η) is obtained as follows:

F (η) =[(Im ⊗A)x− (L ⊗BK)ξ − (L ⊗BK)e, (Im ⊗A)ξ − (L ⊗BK)ξ − (L ⊗BK)e

+ FC(ξ − x), (Im ⊗A)ξ̂,1,0]T,

where e = [eT1 , e
T
2 , . . . , e

T
m]T and ei = ξ̂i − ξi, i ∈ V . The jump set D is derived as follows:

D =R
mnx × R

mnx × R
mnx × [s1 + τ1min, τ

1
max]× · · · × [si + τmmin, τ

m
max]× R

m,

and the jump map G(η) is obtained as follows:

G(η) = {∪Gi(η) : i ∈ V and τi ∈ [si + τ imin, τ
i
max]},

whereGi(η) = [x, ξ, ξ̂T1 , . . . , ξ̂
T
i−1, ξ

T
i , ξ̂

T
i+1, ξ̂

T
m, τ1 . . . , τi−1,max{0, τi−τ iR}, τi+1, . . . , τm, s1 . . . , si−1,max{0, τi−τ iR},

si+1, . . . , sm]T.
The states of the hybrid system expressed in (11) include the agent, observer, and estimator states and two timer

variables. Based on the definitions of flow set C and jump set D, the timer variable τ determines whether the system
jumps or not. Moreover, the hybrid system expressed in (11) generates a jump if agent i exists such that τi jumps.
Specifically, if tik is the k-th sampling instant of agent i, then the jump map G(η) only updates the estimator state
of agent i and resets the timer variables τi and si. In other words, the hybrid system expressed in (11) undergoes
a jump whenever agent i exists such that τi jumps. Therefore, Eq. (11) can be rewritten as follows:

{

η̇ = F (η), ∀i ∈ V , τi ∈ [0, τ imax],

η+ ∈ G(η), ∃i ∈ V , τi ∈ [si + τ imin, τ
i
max].

Remark 5. In the hybrid system expressed in (11), as long as one clock variable jumps, the system expressed in
(11) generates a jump. In this setting, the time sequence of jumps for the system expressed in (11) is an integration
of the sampling time sequence of all agents. Notably, we can redefine the jump time sequence of the system expressed
in (11). Let {t̃s}s∈Z>0

, {tik, i ∈ V , k ∈ N} with t̃s+1 > t̃s denote the set of total sampling instants for MASs (Eq.

(1)). Then, {t̃s} is the set of jump instants of the hybrid system expressed in (11). Similar definitions can be found
in [29]. An example is shown in Figure 3.
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Figure 3 (Color online) Sampling instants of the hybrid system expressed in (11).

4 Main results

In this section, the theory of hybrid systems [40] is used to analyze MASs (Eq. (1)). We state that the function
V (η) is a Lyapunov function for the hybrid system expressed in (11) if V (η) is positive definite, locally Lipschitz,
and radially unbounded to η and satisfies the following relations:

〈∇V (η), F (η)〉 6 −δV (η), ∀i ∈ V , τi ∈ [0, τ imax], (12a)

V (G(η)) − V (η) 6 0, ∃i ∈ V , τi ∈ [si + τ imin, τ
i
max], (12b)

where δ > 0 is a constant.

Remark 6. The Lyapunov function V of the hybrid system expressed in (11) is not required to be continuous for
t ∈ R>0. However, two conditions need to be satisfied [40], i.e., (i) C∪D∪G(D) ⊂ dom(V ) and (ii) V is continuously
differentiable on an open set containing C. In event-triggered control, the appropriate and predetermined Lyapunov
function for MASs was designed to guarantee that the relations expressed in (12a) and (12b) are satisfied (see [38,43]).
However, two prior unknown and state-independent functions are contained in the Lyapunov function V (η) in this
study, which will be reflected in the proof of Theorem 1.

We now establish the main result.

Theorem 1. Consider MASs with the dynamics expressed in (1) and the observer-based control protocol expressed
in (5). Suppose that Assumptions 1–3 hold. The MAS (Eq. (1)) achieves a consensus if the reverse average dwell
time τ iR and the maximum allowable sampling period τ imax with τ imin 6 τ iR 6 τ imax satisfy the following relations:

τ iR <

∣

∣

∣

∣

∣

−(δ̃ − δi)τ
i
min + ln(ε2)

2
√
piqi + bi

∣

∣

∣

∣

∣

, (13)

τ imax =



















4
√
σi

µ2

i
−σi

, if b2i = 4piqi,

2√−σ̃i
arctan

2
√
σi

√−σ̃i

µ2

i
−σ̃i−σi

, if b2i < 4piqi,

2√
σ̃i
arctanh

2
√

σi

√
σ̃i

µ2

i
−σ̃i−σi

, if b2i > 4piqi,

(14)

where δ̃ = min{ᾱλ−1
max(P ), α̃λ

−1
max(Q

−1)}, 0 < δi < δ̃, pi = γiλmax(P )(β
−1
2 λmax(Γ)+β4), bi = δ̃+λ−1

max(P )(λmax(Γ)+
2λ2m(L)λmax(Γ) − 1) > 0, qi = (β1γi)

−1λ−1
max(P )λ

2
m(L)λmax(Γ), σi = (bi + µi)

2 − 4piqi, σ̃i = b2i − 4piqi, µi =
−(δ̃−δi)τ

i
min

+ln(ε2)

τ i
R

, ᾱ = 1− (1− (2−β1−β2)λ2(L))λmax(Γ) > 0, α̃ = αλmin(Q
−1Q−1)− (β−1

3 +β−1
4 )‖PFC‖2, α > 0,

and β1, β2, β3, β4 ∈ (0, 1) are constants.

Proof. See Appendix A.
The aperiodic sampling scheme proposed in this study only requires that the sampling time sequence of each

agent satisfy (7) and (8). In Theorem 1, the reverse average dwell time τ iR and the maximum allowable sampling
period τ imax rely on the communication graph, system matrices, and several designed parameters. Moreover, on the
premise of excluding the Zeno behavior and disregarding the hardware constraints, the minimum allowable sampling
period τ imin can be set to be arbitrarily small, which facilitates the improvement in the reverse average dwell time
τ iR and the maximum allowable sampling period τ imax.
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Figure 4 (Color online) Relationship between the values of τ i
R and τ i

max
in Theorem 1 with b2i = 4piqi (the scale ratio of the horizontal and

vertical coordinates is 1 to 10). The relationship between the values of τ i
R and τ i

max
also follows a similar change tendency for the scenarios of

b2i > 4piqi and b2i < 4piqi.

Figure 5 (Color online) Trajectories of the system states of the five

agents.

Figure 6 (Color online) Trajectories of the observer and estimator

states of the five agents.

Notably, some coupled conditions in terms of the minimum allowable sampling period τ imin, reverse average dwell
time τ iR, and maximum allowable sampling period τ imax are presented in Theorem 1. Intuitively, Theorem 1 shows
that the reverse average dwell time τ iR is influenced by the minimum allowable sampling period τ imin, and the
maximum allowable sampling period τ imax is influenced by both the minimum allowable sampling period τ imin and
the reverse average dwell time τ iR. It follows from (13) in Theorem 1 that, for a given minimum allowable sampling
period τ imin, the estimated value of the maximum allowable sampling period τ imax increases as the reverse average
dwell time τ iR decreases. Figure 4 exemplifies this characterization. Therefore, there exists a trade-off between
maximum allowable sampling period τ imax and reverse average dwell time τ iR. In general, if the minimum allowable
sampling period τ imin is preselected, then choosing a smaller τ iR value can improve the estimate of the maximum
sampling period τ imax.

Remark 7. In the event-triggered communication strategies [34,37], the online monitoring of the real-time states
of agents is usually required. However, the online monitoring of the real-time states of agents requires sensors,
controllers, and/or actuators to collect data on agents. In practice, imperfections in network communications, such
as packet losses [44], are inevitable such that the real-time states of the system are not continuously monitored.
Notably, the communication time instants are generated offline in the time-based communication strategy proposed
in this study, which avoids the online monitoring of the real-time states of agents.

Remark 8. In event-triggered sampling schemes [37, 38], events could occur intensively in some time intervals.
However, the sampling instants can be uniformly located over the entire time domain for each agent in our designed
time-based sampling schemes. Notably, the sampling time sequence of agents needs to satisfy (7) and (8) in the
proposed sampling scheme. Our designed aperiodic sampling scheme can be considered an event-triggering scheme.
The sampling instants are determined whenever Eqs. (7) and (8) are violated, which indicates that Eqs. (7) and (8)
can be considered the event-triggered conditions. Different from the state-dependent event-triggered conditions in
event-triggered schemes [45, 46], the time-based sampling conditions expressed in (7) and (8) are state-dependent,
and only the intersampling times and the number of samples are restricted. Therefore, our proposed aperiodic
sampling scheme not only avoids continuous monitoring of system states but also can be implemented in an event-
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Figure 7 (Color online) Communication instants and inter-

sampling times of the five agents.

Figure 8 (Color online) Trajectories of the Lyapunov function V (η)

in (A1).

Table 1 Comparison of different sampling schemes.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Aperiodic sampling
Number of samples 45 45 41 47 39

Maximum intersampling times (s) 0.37 0.36 0.37 0.38 0.37

in this study
Minimum intersampling times (s) 0.08 0.09 0.09 0.08 0.09

Average intersampling times (s) 0.22 0.22 0.24 0.21 0.26

Periodic sampling
Number of samples 45 45 47 47 47

Fixed intersampling times (s) 0.22 0.22 0.21 0.21 0.21

triggered manner.

5 Numerical example

Consider a second-order MAS, which has been widely used in the formation of mobile robots [4] and vehicle
platooning [3], with the following dynamics:

[

ṗi(t)

v̇i(t)

]

=

[

0 1

0 0

][

pi(t)

vi(t)

]

+

[

0

1

]

ui(t),

yi(t) =
[

1 0
]

[

pi(t)

vi(t)

]

,

where pi(t) ∈ R and vi(t) ∈ R are the position and velocity, respectively. The Laplacian matrix is L = [3,−1,−1,−1,
0;−1, 3, 0,−1,−1;−1, 0, 2,−1, 0;−1,−1,−1, 4,−1; 0,−1, 0,−1, 2].

Based on Theorem 1, the controller and observer gains are K = [1.0000, 1.7321] and F = [−1.7321, −0.5000]T,
respectively. The initial states of five vehicles are [p1(0), v1(0)]

T = [1.5, 0.1]T; [p2(0), v2(0)]
T = [−1.2, 0.4]T; [p3(0),

v3(0)]
T = [0.5, −0.2]T; [p4(0), v4(0)]

T = [−0.5, 0.5]T; and [p5(0), v5(0)]
T = [0.8, −0.8]T. Figure 5 shows the

trajectories of the system states of the five agents. Notably, the states of all agents achieve a consensus, which
overcomes the bounded consensus in [12]. Figure 6 shows the trajectories of the observer and estimator states of
the five agents. Figure 6 indicates that the estimator states can track the observer states. The communication
instants and intersampling times of each agent are presented in Figure 7. Figure 8 shows the trajectories of the
Lyapunov function V (η) in (A1), where γi = 0.5, i ∈ {1, 2, 3, 4, 5}, χi(τi) is governed by (A8) and ψi(τi) is governed
by (A10). Notably, the Lyapunov function V (η) satisfies (12a) and (12b) and converges to zero. Therefore, the
communication and control strategies designed in this study are feasible.

Figure 9 shows the trajectories of the system states of the five agents in the fixed periodic sampling with h1 =
h2 = 0.22 s and h3 = h4 = h5 = 0.21 s, and Figure 10 shows the trajectories of the system states of the five agents
in the fixed periodic sampling with h1 = h2 = 0.22 s and h3 = h4 = h5 = 0.23 s. Notably, all agents cannot achieve
a consensus when h1 = h2 = 0.22 s and h3 = h4 = h5 = 0.23 s. However, the maximum intersampling times are
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Figure 9 (Color online) Trajectories of the system states of the five

agents with the sampling periods h1 = h2 = 0.22 s and h3 = h4 =

h5 = 0.21 s.

Figure 10 (Color online) Trajectories of the system states of the

five agents with the sampling periods h1 = h2 = 0.22 s and h3 =

h4 = h5 = 0.23 s.

greater than 0.23 s in the aperiodic sampling scheme designed in this study; see Table 1 for the details. The results
of the comparison between the aperiodic sampling scheme designed in this study and the fixed periodic sampling
scheme are given in Table 1, in which the maximum allowable sampling period in this study is greater than the fixed
sampling period. Furthermore, Figure 10 shows that agents cannot achieve a consensus even if the fixed sampling
period is less than the maximum allowable sampling periods. Therefore, the aperiodic sampling scheme proposed
in this study provides a significant improvement in the maximum allowable sampling periods.

6 Conclusion

In this study, the time-based asynchronous sampled-data control for general linear MASs was investigated. In the
case of time-based communication, the concept of the average allowable sampling period under the reverse average
dwell time condition was introduced. The proposed sampling criterion was state-independent, which could improve
the maximum allowable sampling period of agents while ensuring a consensus. Based on the hybrid system theory,
some sufficient conditions were derived to guarantee the consensus of MASs. In future work, we will consider a
combination of time-based and event-based sampling strategies for MSAs.
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7 Stipanović D M, İnalhan G, Teo R, et al. Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica,
2004, 40: 1285–1296

8 Dong X W, Yu B C, Shi Z Y, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans
Contr Syst Technol, 2015, 23: 340–348

9 Liu L J, Chen X J, Perc M. Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies. Nonlinear
Dyn, 2019, 97: 749–766

10 Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat
Contr, 2004, 49: 1520–1533

11 Wang X, Jiang G P, Su H, et al. Consensus of continuous-time linear multiagent systems with discrete measurements. IEEE Trans
Cybern, 2022, 52: 3196–3206

12 Ding L, Zheng W X. Consensus tracking in heterogeneous nonlinear multi-agent networks with asynchronous sampled-data communication.
Syst Control Lett, 2016, 96: 151–157

13 Su H, Liu Y F, Zeng Z G. Second-order consensus for multiagent systems via intermittent sampled position data control. IEEE Trans
Cybern, 2020, 50: 2063–2072

https://doi.org/10.1016/j.trc.2015.08.019
https://doi.org/10.1109/TITS.2014.2320133
https://doi.org/10.1109/TIE.2022.3176242
https://doi.org/10.1080/00207720902974603
https://doi.org/10.1080/00207721.2013.822609
https://doi.org/10.1007/s11432-015-5504-6
https://doi.org/10.1016/j.automatica.2004.02.017
https://doi.org/10.1109/TCST.2014.2314460
https://doi.org/10.1007/s11071-019-05010-9
https://doi.org/10.1109/TAC.2004.834113
https://doi.org/10.1109/TCYB.2020.3010520
https://doi.org/10.1016/j.sysconle.2016.08.001
https://doi.org/10.1109/TCYB.2018.2879327


Zhang X D, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122204:12

14 Wang L, Wu Z G, Chen S M. Sampled-data stabilization for Boolean control networks with infinite stochastic sampling. IEEE Trans
Cybern, 2022, 52: 333–343

15 Cristofaro A, Mattioni M. Hybrid consensus for multi-agent systems with time-driven jumps. Nonlinear Anal-Hybrid Syst, 2021, 43:
101113

16 Li X D, Bai Y M, Dong X W, et al. Distributed time-varying formation control with uncertainties based on an event-triggered mechanism.
Sci China Inf Sci, 2021, 64: 132204

17 Zhang X D, Xiao F, Wei B, et al. Resilient control for networked control systems with dynamic quantization and DoS attacks. Intl J
Robust Nonlinear, 2024, 34: 71–90

18 Zhang Y F, Wu Z G, Wu Z Z, et al. Resilient observer-based event-triggered control for cyber-physical systems under asynchronous
denial-of-service attacks. Sci China Inf Sci, 2022, 65: 142203

19 Zhang X M, Han Q L, Ge X H, et al. Sampled-data control systems with non-uniform sampling: a survey of methods and trends. Annu
Rev Control, 2023, 55: 70–91

20 Gao Y P, Wang L. Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans
Automat Contr, 2011, 56: 1226–1231

21 Ding L, Guo G. Sampled-data leader-following consensus for nonlinear multi-agent systems with Markovian switching topologies and
communication delay. J Franklin Inst, 2015, 352: 369–383

22 He W L, Zhang B, Han Q L, et al. Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans
Cybern, 2017, 47: 327–338

23 Du S L, Xia W G, Ren W, et al. Observer-based consensus for multiagent systems under stochastic sampling mechanism. IEEE Trans
Syst Man Cybern Syst, 2018, 48: 2328–2338

24 Dhullipalla M H, Yu H, Chen T W. A framework for distributed control via dynamic periodic event-triggering mechanisms. Automatica,
2022, 146: 110548

25 Lu J Q, Ho D W C, Cao J D. A unified synchronization criterion for impulsive dynamical networks. Automatica, 2010, 46: 1215–1221
26 Hespanha J P, Liberzon D, Teel A R. Lyapunov conditions for input-to-state stability of impulsive systems. Automatica, 2008, 44:

2735–2744
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where γi is a positive constant and χi(τi), ψi(τi) : [0, τ imax] → R>0 are functions with strictly positive lower and upper bounds, i.e.,

there exist the constants χ
i
, χi ∈ R>0, ψi, ψi ∈ R>0 such that

χ
i
6 χi(τi) 6 χi, (A2a)

ψ
i
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for all τi ∈ [0, τ imax] and i ∈ V . Moreover, let VP = ξT(t)(L ⊗ P )ξ(t) + αζT(t)(Im ⊗Q−1)ζ(t) and VC = eT(t)(Im ⊗ P )e(t), where α is

a positive constant and ζ(t) = ξ(t)− x(t).

When η ∈ C, the derivative of V (η) is obtained as follows:

〈V (η), F (η)〉 =
m
∑

i=1

(

χ̇i(τi)
(

ξT(L ⊗ P )ξ + αζT(Im ⊗Q−1)ζ + γiψi(τi)(τi)e
T(Im ⊗ P )e

)

+ χi(τi)ξ
T(L ⊗ ATP )ξ

+ χi(τi)ξ
T(L ⊗ PA)ξ − 2χi(τi)ξ

T(LL ⊗ Γ)ξ − 2χi(τi)ξ
T(LL ⊗ PBK)e+ 2χi(τi)ξ

T(L ⊗ PFC)ζ

+ αχi(τi)ζ
T(Im ⊗ (ATQ−1 +Q−1A))ζ + 2αχi(τi)ζ

T(Im ⊗Q−1FC)ζ + γiχi(τi)ψ̇i(τi)e
T(Im ⊗ P )e

+ γiχi(τi)ψi(τi)e
T(Im ⊗ (ATP + PA))e+ 2γiχi(τi)ψi(τi)e

T(L ⊗ Γ)ξ + 2γiχi(τi)ψi(τi)e
T(L ⊗ Γ)e

− 2γiχi(τi)ψi(τi)e
T(Im ⊗ PFC)ζ

)

, (A3)

where Γ = PBBTP . Notably,

− 2χi(τi)ξ
T(LL ⊗ Γ)e 6 β1χi(τi)ξ

T(LL ⊗ Γ)ξ + β−1
1 χi(τi)e

T(LL ⊗ Γ)e, (A4a)

2γiχi(τi)ψi(τi)e
T(L ⊗ Γ)ξ 6 β2χi(τi)ξ

T(LL ⊗ Γ)ξ + β−1
2 γ2i χi(τi)ψ

2
i (τi)e

T(Im ⊗ Γ)e, (A4b)

2χi(τi)ξ
T(L ⊗ PFC)ζ 6 β3χi(τi)ξ

T(LL ⊗ Inx)ξ + β−1
3 χi(τi)ζ

T(Im ⊗ PFC)2ζ, (A4c)

− 2γiχi(τi)ψi(τi)e
T(Im ⊗ PFC)ζ 6 β4γ

2
i χi(τi)ψ

2
i (τi)e

Te+ β−1
4 χi(τi)ζ

T(Im ⊗ PFC)2ζ, (A4d)

where β1, β2, β3, β4 ∈ (0, 1) are constants. Then, the substitution of (A4a) to (A4d) into (A3) yields the following expression:

〈∇V (η), F (η)〉 6
m
∑

i=1

(

χ̇i(τi)ξ
T(L ⊗ P )ξ + χi(τi)ξ

T(L ⊗ ATP )ξ + χi(τi)ξ
T(L ⊗ PA)ξ − (2− β1 − β2)χi(τi)ξ

T(LL ⊗ Γ)ξ

+ β3χi(τi)ξ
T(LL ⊗ Inx)ξ + αχ̇i(τi)ζ

T(Im ⊗Q−1)ζ + αχi(τi)ζ
T(Im ⊗ (ATQ−1 +Q−1A))ζ + 2αχi(τi)

⊗ ζT(ImQ
−1FC)ζ + (β−1

3 + β−1
4 )χi(τi)ζ

T‖PFC‖2ζ + γiχi(τi)ψ̇i(τi)e
T(Im ⊗ P )e+ γiχ̇i(τi)ψi(τi)e

T(Im

⊗ P )e+ γiχi(τi)ψi(τi)e
T(Im ⊗ (ATP + PA))e+ 2γiχi(τi)ψi(τi)e

T(L ⊗ Γ)e+ β−1
1 χi(τi)e

T(LL ⊗ Γ)e

+ β−1
2 γ2i χi(τi)ψ

2
i (τi)e

T(Im ⊗ Γ)e+ β4γ
2
i χi(τi)ψ

2
i (τi)e

Te
)

. (A5)

Based on (2) and (3) and F = − 1
2
QCT, we derive the following expression:

〈∇V (η), F (η)〉 6
m
∑

i=1

(

χ̇i(τi)ξ
T(L ⊗ P )ξ − χi(τi)ξ

T(L ⊗ Inx)ξ + χi(τi)ξ
T(L ⊗ Γ)ξ − (2− β1 − β2)χi(τi)ξ

T(LL ⊗ Γ)ξ

+ αχ̇i(τi)ζ
T(Im ⊗Q−1)ζ − αχi(τi)ζ

T(Im ⊗Q−1Q−1)ζ +

(

1

β3
+

1

β4

)

χi(τi)ζ
T‖PFC‖2ζ

+ γiχi(τi)ψ̇i(τi)e
T(Im ⊗ P )e+ γiχ̇i(τi)ψi(τi)e

T(Im ⊗ P )e+ γiχi(τi)ψi(τi)e
T(Im ⊗ Γ)e

− γiχi(τi)ψi(τi)e
Te+ 2γiχi(τi)ψi(τi)e

T(L ⊗ Γ)e+
1

β1
χi(τi)e

T(LL ⊗ Γ)e

+
1

β2
γ2i χi(τi)ψ

2
i (τi)e

T(Im ⊗ Γ)e+ β4γ
2
i χi(τi)ψ

2
i (τi)e

Te
)

. (A6)

To satisfy (12a), let

χ̇i(τi)ξ
T(L ⊗ P )ξ − χi(τi)ξ

T(L ⊗ Inx)ξ + χi(τi)ξ
T(L ⊗ Γ)ξ − (2− β1 − β2)χi(τi)ξ

T(LL ⊗ Γ)ξ

+ αχ̇i(τi)ζ
T(Im ⊗Q−1)ζ − αχi(τi)ζ

T(Im ⊗Q−1Q−1)ζ +

(

1

β3
+

1

β4

)

χi(τi)ζ
T‖PFC‖2ζ

6 −δiχi(τi)VP . (A7)

Thus, it follows that χi(τi) : [0, τ
i
max] → R>0 is governed by the following relation:

χ̇i(τi) =(δ̃ − δi)χi(τi), (A8)

where 0 < δi < δ̃, δ̃ = min{ᾱλ−1
max(P ), α̃λ−1

max(Q
−1)}, ᾱ = 1 − (1 − (2 − β1 − β2)λ2(L))λmax(Γ) > 0, α̃ = αλmin(Q

−1Q−1) − (β−1
3 +

β−1
4 )‖PFC‖2 > 0. Similarly, let

γiχi(τi)ψ̇i(τi)e
T(Im ⊗ P )e+ γiχ̇i(τi)ψi(τi)e

T(Im ⊗ P )e+ γiχi(τi)ψi(τi)e
T(Im ⊗ Γ)e− γiχi(τi)ψi(τi)e

Te

+ 2γi × χi(τi)ψi(τi)e
T(L ⊗ Γ)e+

1

β1
χi(τi)e

T(LL ⊗ Γ)e+
1

β2
γ2i χi(τi)ψ

2
i (τi)e

T(Im ⊗ Γ)e+ β4γ
2
i χi(τi)ψ

2
i (τi)e

Te

6 −δiγiχi(τi)ψi(τi)VC . (A9)
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Thus, it also follows that ψi(τi) : [0, τ
i
max] → R>0 is governed by the following nonlinear differential equation:

ψ̇i(τi) = −piψ2
i (τi)− biψi(τi)− qi, (A10)

where pi = γiλmax(P )(β−1
2 λmax(Γ)+β4) > 0, bi = δ̃+λ−1

max(P )(λmax(Γ)+2λ2m(L)λmax(Γ)−1) > 0, and qi = (β1γi)−1λ−1
max(P )λ2m(L)×

λmax(Γ) > 0. Based on (A6) to (A10), we obtain the following expression:

〈∇V (η), F (η)〉 6 −
m
∑

i=1

δi (χi(τi) (VP + γiψi(τi)VC)) 6 −δV (ξ), (A11)

where δ = min{δ1, . . . , δm}. It follows from (A11) that Eq. (12a) is satisfied.

When η ∈ D, VP (G(ξ)) = VP (ξ) because ξ and ζ in VP do not undergo jumps. Moreover, ei(t) = 0 when a jump occurs. In the

asynchronous communication strategy, not all ei(t), i ∈ V are reset to 0 simultaneously. Generally, there exists the constant ε ∈ [0, 1]

such that e+Te+ 6 ε2eTe. If a jump occurs, then there exists i ∈ V such that τi ∈ [si + τ imin, τ
i
max]. To formally simplify the analysis,

we suppose that a unique agent i performs the sampling action when a jump occurs. A similar analysis can be performed when multiple

agents perform the sampling action at the same time. Hence, we obtain the following expression:

V (G(η)) =
∑

j∈V\{i}

(

χj(τj )
(

ξT(L ⊗ P )ξ + αζT(Im ⊗Q−1)ζ + γjψj(τj)ε
2eT(Im ⊗ P )e

)

)

+ χi(max{0, τ iR})
(

ξT(L ⊗ P )ξ

+ αζT(Im ⊗Q−1)ζ + γiψi(max{0, τ iR})ε2eT(Im ⊗ P )e
)

, (A12)

where i ∈ V . Based on (A8), we obtain χi(max{0, τ iR}) 6 e−(δ̃−δi)τiminχi(τi). Because τi > τ imin and τ imin 6 τ iR in Assumptions 2 and

3, we obtain the following expression:

e−(δ̃−δi)τiminχi(τi) 6 χi(τi). (A13)

Based on (A12) and (A13), we derive the following expression:

V (G(η)) − V (η) =
∑

j∈V\{i}

(

γj(ε
2 − 1)χj(τj)ψj(τj)e

T(Im ⊗ P )e
)

+ χi(max{0, τ iR})
(

ξT(L ⊗ P )ξ + αζT(Im ⊗Q−1)ζ

+ γiε
2ψi(max{0, τ iR})eT(Im ⊗ P )e

)

− χi(τi)
(

ξT(L ⊗ P )ξ + αζT(Im ⊗Q−1)ζ + γiψi(τi)e
T(Im ⊗ P )e

)

6e−(δ̃−δi)τiminχi(τi)
(

ξT(L ⊗ P )ξ + αζT(Im ⊗Q−1)ζ + γiε
2ψi(max{0, τ iR})eT(Im ⊗ P )e

)

− χi(τi)
(

ξT(L ⊗ P )ξ + αζT(Im ⊗Q−1)ζ + γiε
2ψi(τi)e

T(Im ⊗ P )e
)

6e−(δ̃−δi)τiminγiε
2χi(τi)ψi(max{0, τ iR})eT(Im ⊗ P )e− γiχi(τi)ψi(τi)e

T(Im ⊗ P )e. (A14)

Based on (A14), to satisfy (12b), we should have

e−(δ̃−δi)τiminε2ψi(max{0, τ iR}) 6 ψi(τi). (A15)

To satisfy (A15), the decreasing value of ψi(τi) in any time interval of length less than or equal to τ iR should not be greater than

e−(δ̃−δi)τiminε2. We ensure that Eq. (A15) holds by limiting the rate of change of ψi(τi). Let

ψ̇i(τi) > µiψi(τi), (A16)

where µi is the bound of the derivative of ψi. It holds for any τ1i , τ
2
i ∈ [0, τ imax] with 0 < τ2i − τ1i 6 τ iR that

ψi(τ
2
i ) > eµi(τ

2

i −τ1i )ψi(τ
1
i ) > eµiτ

i
Rψi(τ

1
i ). (A17)

Let τ1i = τi and τ2i = max{0, τ iR}. Based on (A15) and (A17), we derive eµiτ
i
R = e−(δ̃−δi)τiminε2. Thus, we obtain the following

expression:

µi =
−(δ̃ − δi)τ

i
min + ln(ε2)

τ i
R

. (A18)

Hence, if Eq. (A16) holds, then we can derive V (G(η)) − V (η) 6 0 for η ∈ D. Based on (A10) and (A16), we obtain the following

expression:

piψ
2
i (τi) + (bi + µi)ψi(τi) + qi 6 0. (A19)

Notably, the left side of (A19) is a quadratic trinomial of ψi(τi). We determine that the inequality expressed in (A19) has a nonempty

solution set when the inequality |bi + µi| > 2
√
piqi holds. Furthermore, the lower bound ψ

i
and upper bound ψi of the function ψi(τi)
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are calculated as ψ
i
= − 1

2pi
(
√

(bi + µi)2 − 4piqi+(bi+µi)) and ψi =
1

2pi
(
√

(bi + µi)2 − 4piqi−(bi+µi)). To ensure a strictly positive

upper bound ψi, bi + µi < 0 must hold. Hence, we obtain the following expression:

τ iR <

∣

∣

∣

∣

∣

−(δ̃ − δi)τ
i
min + ln(ε2)

2
√
piqi + bi

∣

∣

∣

∣

∣

. (A20)

Because ψ
i
= qi

pi
(ψi)

−1, the lower bound of ψi is strictly positive, indicating that if τ iR satisfies (A20), then the condition expressed

in (A2b) holds. Therefore, the bound of τ imax can be determined based on the time it takes for ψi(τi) to evolve from ψi(0) = ψi to

ψi(τ imax) = ψ
i
. Based on (A10), we derive τ imax =

∫ ψ
i

ψi

− dψi

piψ
2

i
+biψi+qi

, where pi = γiλmax(P )(2λmax(Γ)+
1
2
), bi = δ̃+4γiλmλmax(Γ),

and qi =
2
γi
λmax(P )λ2mλmax(Γ). Furthermore, we derive the following expression:

τ imax =



















4
√
σi

µ2

i
−σi

, if b2i = 4piqi,

2√−σ̃i
arctan

2
√
σi

√−σ̃i
µ2

i
−σ̃i−σi

, if b2i < 4piqi,

2√
σ̃i

arctanh
2
√
σi

√
σ̃i

µ2−σi−σ̃i , if b2i > 4piqi,

where σi = (bi + µi)
2 − 4piqi and σ̃i = b2i − 4piqi.

Finally, we prove that the MAS (Eq. (1)) achieves a consensus based on the invariance principle of hybrid systems [40]. We first

prove that any maximal solution to (11) is nontrivial. Assume that η ∈ C \ D. If η is the interior of C, then we obtain TC(η) = R4m+1,

where TC(η) is the tangent cone in C. If η ∈ C \ D and η is not in the interior of C, then there exists i ∈ V such that a jump occurs. In

this case, TC(ξ) = R
3mnx × R

i−1 × [0,+∞)× R
m−i × R

i−1 × [0,+∞)× R
m−i and F (ξ) ∈ TC(ξ). Therefore, any maximal solution to

(11) is nontrivial (Proposition 6.10 in [40]). Because the solution of the system expressed in (11) cannot be guaranteed to be bounded,

we introduce an auxiliary system to cope with this issue. z = [z1, z2, . . . , zM ] with zp = ξi− ξj , p ∈ {1, 2, . . . ,M}, and M is the number

of the edges of graph G. Let z = (DT ⊗ Inx)ξ, where D is the incidence matrix of graph G. Consider the following hybrid systems:



























































































ż = (DT ⊗ Inx)((Im ⊗ A)ξ − (L ⊗BK)e+ (Im ⊗ FC)(ξ − x)),

ζ̇ = (Im ⊗ (A+ FC))ζ,

ė = (Im ⊗ A+ L ⊗ BK)e+ (L ⊗BK)ξ − (Im ⊗ FC)ζ,

τ̇ = 1,

ṡ = 0,

∀τi ∈ [0, τ imax],



















z+

ζ+

e+

τ+

s+



















∈ G̃, ∃τi ∈ [si + τ imin, τ
i
max],

(A21)

where G̃ = {∪G̃i : i ∈ V and τi ∈ [si + τ imin, τ
i
max]}, and G̃i = [z, ζ, eT1 , . . . , e

T
i−1, 0, e

T
i+1, e

T
m, τ1 . . . , τi−1,max{0, τi − τ iR}, τi+1, . . . ,

τm, s1 . . . , si−1,max{0, τi − τ iR}, si+1, . . . , sm]T. We denote

{

˙̃η = F̃ (η̃), for η̃ ∈ C̃,
η̃+ ∈ G̃(η̃), for η̃ ∈ D̃,

(A22)

where η̃ = [z, ζT, eT, τT, sT]T, C̃ = {η̃ : ∀i ∈ V , τi ∈ [0, τ imax]}, and D̃ = {η̃ : ∃i ∈ V , τi ∈ [si + τ imin, τ
i
max]}.

Let Ṽ = V be the Lyapunov function of the system expressed in (A22). Based on the previously presented analysis, we derive the

following expression:

〈∇Ṽ (η̃), F̃ (η̃)〉 6 uc,

Ṽ (G̃(η̃)) − Ṽ (η̃) 6 ud,

where

uc =











−δ
m
∑

i=1
(χi(τi) (VP + γiψi(τi)VC )) , if η̃ ∈ C̃,

−∞, otherwise,

ud =

{

0, if η̃ ∈ D̃,
−∞, otherwise.

Based on (A11), the function uc can be considered the upper bound of the rate of change of Ṽ if η ∈ C. Similarly, the function ud can

be considered the upper bound of the rate of change of Ṽ if η ∈ D. Therefore, the rate of change Ṽ along any solution is bounded by

uc and ud.
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Let η̃ be a maximal solution to (A22). Because G̃(D̃) ∈ C̃ and η̃ is bounded, η̃ does not grow infinitely in a finite time interval. Thus,
˜̃η is complete, i.e., dom(η) is unbounded (Proposition 6.10 in [40]). Notably, uc and ud are nonpositive, and we have proven that any

maximal solution to (A22) is precompact. Therefore, any maximal solution to (A22) approaches the largest weakly invariant subset S′

of

Ṽ −1(r) ∩ U ∩
[

u−1
c (0) ∪

(

u−1
d

(0) ∩ G̃
(

u−1
d

(0)
))]

,

where U = R(2nx+2)m and r ∈ Ṽ (U). Because u−1
c (0) = {η̃ : η̃ ∈ C̃, (L ⊗ Inx)ξ = 0 , ζ = 0, and e = 0} and u−1

d
(0) = D̃, the

aforementioned set can be rewritten as follows:

Ṽ −1(r) ∩
[

{η̃ : η̃ ∈ C̃, ξi − ξj = 0, ζi = 0, ei = 0,∀i, j ∈ V} ∪ (D̃ ∩ G̃(D̃))
]

.

Because S′ is weakly forward invariant, q ∈ S′ such that η̃(0, 0) = q and η̃(t, k) ∈ S′ for any (t, k) ∈ dom(η̃). Suppose that q /∈ u−1
c (0).

Then, we have q ∈ D̃ ∩ G(D̃). The solution η̃ undergoes a finite number of jumps ℓ′ until all of the clocks are reset. After jumps,

η̃(0, ℓ′) ∈ C̃ \ D̃, which indicates that η̃(0, ℓ′) ∈ u−1
c (0). Therefore, q ∈ u−1

c (0). Because ζ and ξ are unaffected by system jumps and

must remain in u−1
c (0) almost all of the time on flows, we have

ζ(t, k) = ζ(0, 0), ξ(t, k) = ξ(0, 0)

for any (t, k) ∈ dom(η̃). This result has two consequences. The first consequence is that the domain of η̃ is unbounded. Hence, there

exists a finite number of jumps k′ ∈ N, after which all of the clock variables and the sampled state variables have undergone a jump,

i.e., (t′, k′) ∈ dom(η̃) such that ξ̂(t, k) = ξ(0, 0) for all (t, k) ∈ dom(ξ) with t′ + k′ > t + k. Hence, we can obtain VC = 0 for any

(t′, k′) ∈ dom(ξ) with t′ + k′ > t+ k. The second consequence is that, for almost all t > t′ such that (t, k) ∈ dom(ξ) and t′ + k′ > t+ k,

u(t, k) = 0, VP always equals to 0 along η̃. Then, r = 0 if Ṽ (η̃(t, k)) = r for any (t, k) ∈ dom(ξ). Therefore, the set Ṽ −1(0) is

globally attractive. Notably, Ṽ −1(0) = {η ∈ Rm(3nx+2)|ξi − ξj = 0, ζi = 0, ei = 0,∀i, j ∈ V}. Consequently, the MAS (Eq. (1)) with

observer-based control protocol (Eq. (5)) achieves a consensus.

Remark 9. In the proof of Theorem 1, prior unknown and state-independent functions χi(τi) and ψi(τi) are contained in the Lyapunov

function V (η), which plays a significant role in deriving (13) and (14). These functions have strictly positive lower and upper bounds.

A challenging issue in the proof is to construct the functions χi(τi) and ψi(τi) to ensure that Eqs. (12a) and (12b) and Eqs. (A2a) and

(A2b) are satisfied. In Theorem 1, the maximum allowable sampling period is determined based on the time it takes for the function

ψi(τi) to evolve from the upper bound to the lower bound. In literature (see [36, 43]), a similar idea was applied in event-triggered

control schemes. In the existing event-triggered schemes [36, 43], an event occurs if the auxiliary clock variable evolves to the set value.

However, the auxiliary clock variable is state dependent in event-triggered control. In this paper, the sampling time sequence is state

independent. On the premise of consensus, we derive the relationship among the minimum allowable sampling period τ imin, reverse

average dwell time τ iR, and maximum allowable sampling period τ imax by developing the evolution rules of the auxiliary functions χi(τi)

and ψi(τi).
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