
SCIENCE CHINA
Information Sciences

February 2026, Vol. 69, Iss. 2, 122203:1–122203:9

https://doi.org/10.1007/s11432-024-4390-2

c© Science China Press 2025 info.scichina.com link.springer.com

. RESEARCH PAPER .

Resource allocation for high-order multiagent systems
with uncertainties from non-neighboring nodes

Junlong HE1, Sen CHEN1* & Wenchao XUE2,3*

1School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, China
2State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China
3School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received 2 May 2024/Revised 16 January 2025/Accepted 20 April 2025/Published online 17 September 2025

Abstract This paper studies the distributed resource allocation problems of high-order multiagent systems with nonlinear uncertainties.

The nonlinear uncertainties consist of the external time-varying disturbances, the uncertain dynamics of agents, and the interferences

from the neighboring and non-neighboring nodes of agents. To accomplish the distributed resource allocation under various uncertain-

ties, this paper proposes a new algorithm based on actively estimating and compensating for the lumped uncertainty. By considering

the output-feedback situation, the algorithm is constructed based on a full-order extended state observer that offers the estimates of

lumped uncertainty and unmeasured states. For the uncertainties with nonlinear growth rates, the convergence analysis of the proposed

algorithm is given. The proposed theoretical results illustrate that the resource allocation task can be practically achieved with a tunable

optimization error. Finally, numerical simulations show the effectiveness of the proposed algorithms.

Keywords distributed resource allocation, nonlinear uncertainty, multiagent system, extended state observer, active disturbance rejec-

tion control
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1 Introduction

Distributed optimization has attracted great interest from both the research community and industrial sectors in
recent years. There are various types of distributed optimization problems, including resource allocation [1, 2],
source localization [3], and economic dispatch problems [4].

Among these, the resource allocation problem is an important issue in massive engineering applications, such
as smart grids [5], communication networks [6], and wireless networks [7]. For the distributed resource allocation
problem, each agent has a local cost function and a local resource demand. The objective of multiagent systems
is to minimize the total cost function consisting of all local cost functions subject to the total resource constraint.
Through a communication network, the agents exchange information with neighbors only. Over the last few years, a
number of resource allocation algorithms have been proposed for various dynamics of agents [8,9], different optimal
objectives [10, 11], and diverse constraints [12–14]. For instance, to solve the resource allocation problem in power
systems, Wang et al. [8] proposed a second-order continuous-time algorithm based on the saddle point dynamics.
Furthermore, Deng [9] developed a resource allocation algorithm for agents with high-order dynamics under an
undirected communication topology. Moreover, by considering the differential resource allocation problem under
connected digraphs, Chen and Li [10] proposed a projected gradient-based distributed algorithm. Based on the
subgradient method and local Lipschitz continuous functions, a distributed algorithm was proposed by Wei et al. [11]
to solve nonsmooth convex consensus optimization problems. In addition, by considering different optimization
constraints, a distributed algorithm based on the Lagrangian method was developed by Doan and Beck [12] under
equality network resource constraints. Moreover, Deng and Chen [13] studied a distributed resource allocation
problem under inequality network resource constraints and local inequality constraints. To solve the resource
allocation problem with local feasibility constraints for high-order multiagent systems, Zhang et al. [14] proposed an
innovative integrated event-triggered strategy. To deal with the optimization problem under constraints coupled with
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equalities and inequalities, Falsone and Prandini [15] proposed a novel augmented Lagrangian algorithm. Li et al. [16]
investigated an algorithm based on the Newton-Raphson method, which can successfully reduce communication
costs. In addition, a quantized event-triggered communication mechanism was used to reduce the communication
expenditure in a study by Li et al. [17], which considers the limited communication capacity. Although the research
on resource allocation problems has made great progress on different types of optimal objectives and constraints,
the study on agents with uncertain dynamics is still in its infancy, and further investigation is needed.

In engineering applications, disturbances and uncertainties always interfere with the actual effect of the designed
algorithm. Hence, it is a significant issue to tackle the distributed resource allocation problem with disturbances
and uncertainties. To accomplish the distributed optimization tasks with disturbances, some modified optimization
algorithms have been proposed. For instance, an optimal steady-state regulation problem with internal disturbances
was solved by an embedded design based on the internal model principle in the work by Tang [18]. To deal
with the internal continuous disturbances in distributed high-order multiagent systems, an algorithm based on an
adaptive optimal protocol was proposed by Yu et al. [19]. Based on finite-time disturbance observer techniques,
a control framework was proposed by Wang et al. [20] to solve finite-time optimization problems with unknown
external disturbances. Furthermore, by using the internal model principle and adaptive technique, a consensus
optimization problem for a class of nonlinear dynamical systems with the disturbances generated by external systems
was solved [21]. To tackle the mismatched disturbances, Wang et al. [22] proposed a nonsmooth control framework
based on finite-time design. Moreover, Zhang et al. [23] investigated the distributed optimization problem for
multiagent systems disturbed by general noise under a weight-balanced and strongly connected directed graph. The
time-varying external disturbances and internal uncertainties generated by known external systems have been fully
studied in existing research [18–23]. However, nonlinear uncertainties widely exist in multiagent systems, including
nonlinear interferences from neighboring agents and non-neighboring agents. To the best of the authors knowledge,
the problem of resource allocation with nonlinear uncertainties from non-neighboring nodes has not been solved
yet.

In this paper, the resource allocation for high-order multiagent systems with nonlinear uncertainties from non-
neighboring nodes is investigated. The output-feedback case is considered in this paper, and the proposed algorithms
are based on an extended state observer [24–26], which is a powerful online estimator for lumped uncertainty, as
shown in marine systems [27], power systems [28], and unmanned driving systems [29]. Furthermore, based on the
gradient descent method, the algorithm takes into account the guarantee of the equality constraints as well as the
privacy preservation of the agents. The main contributions of this paper are presented as follows.

(1) Compared with previous research [18–23], this paper considers high-order multiagent systems, wherein the
closed-loop stability is challenging to analyze due to the complexity of high-order dynamics. Furthermore, it is
difficult to perform the convergence analysis when only the outputs of the agents are acquired.

(2) In this paper, the considered nonlinear uncertainties include the unmodeled dynamics of agents and the inter-
ference from other agents. More specifically, the nonlinear interference from non-neighboring agents is considered.
For the nonlinear coupling uncertainties dependent on the states of all agents, it is a formidable task to design
the distributed algorithm to achieve resource allocation. To handle nonlinear coupling uncertainties, this paper
proposes a new algorithm based on actively estimating and compensating for the lumped uncertainty.

(3) In contrast to the assumption of bounded disturbances [19, 20], the preassumed bounded condition is not
rational for the nonlinear coupling uncertainties. Moreover, the uncertainties in this paper exhibit a nonlinear
growth rate related to the states of all agents rather than Lipschitz continuity. Based on a weakened assumption for
nonlinear uncertainties, this paper rigorously analyzes the closed-loop stability. The rest of the paper is presented
as follows. In Section 2, the preliminaries and problem formulation are presented. In Section 3, the algorithms
for the state-feedback case and output-feedback case are proposed. The convergence of the proposed algorithms is
studied in Section 4, and the numerical results and conclusion are shown in Sections 5 and 6.

2 Preliminaries and problem formulation

2.1 Preliminaries

Some basic notations are introduced in this section. Here, Rn and R denote the n-dimensional Euclidean space and
the set of real numbers, respectively. The symbol ⊗ represents the Kronecker product, whereas ‖·‖ denotes the spec-
tral norm of a vector or a matrix. In addition, In denotes the n×n dimensional identity matrix. diag{a1, a2, . . . , an}
represents a diagonal matrix, where ai ∈ R for i = 1, 2, . . . , n. Let 1N = [1, 1, . . . , 1]T and 0N = [0, 0, . . . , 0]T. For
vectors x1, . . . , xn, define col(x1, . . . , xn) = [xT

1 , . . . , x
T
n ]

T.
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Some concepts of graph theory are explained in the following. An undirected graph is defined as G = {V , E}, where
V = {1, 2, . . . , N} and E ∈ V×V are the vertex set and edge set, respectively. If node j could receive the information
from node i, then node j is one neighbor of node i. The graph G is connected if there exists a directed path between
any two nodes i and j. Moreover, graph G is an undirected connected graph if and only if there are (i, j) ∈ V and
(j, i) ∈ V . Let A = [aij ] ∈ R

N×N denote the weighted adjacency matrix, where aii = 0, aij > 0 for (i, j) ∈ E ;

otherwise, aij = 0. The Laplacian matrix of G is defined as L = D−A, where D = diag
{

∑N
j=1 a1j , . . . ,

∑N
j=1 aNj

}

.

Let λ1, . . . , λN be the eigenvalues of L, where λi 6 λj if i 6 j. According to Deng [9], communication topology G
is connected if and only if λ2 > 0.

Let ℵi = {k|(k, i) ∈ E} denote the neighboring set of agent i, and let ℵ̄i = {k|(k, i) /∈ E} denote the non-
neighboring set of agent i. Next, the following concepts of convex and Lipschitz functions are introduced [30].

Definition 1. A function f : Rn → R is convex, if

f(ςx+ (1 − ς)y) 6 ςf(x) + (1− ς)f(y), ∀x, y ∈ R
n, ∀ς ∈ [0, 1]. (1)

Definition 2. A differentiable function f : Rn → R is β-strongly convex with β > 0, if

(x− y)T(∇f(x)−∇f(y)) > β‖x− y‖2, ∀x, y ∈ R
n. (2)

Definition 3. A function f : Rn → R is θ-Lipschitz with θ > 0, if

‖f(x)− f(y)‖ 6 θ‖x− y‖, ∀x, y ∈ R
n. (3)

2.2 Problem formulation

Considering multiagent systems composed of N agents on the communication graph G, the agent i ∈ V satisfies the
following high-order nonlinear dynamics:



































ẋi1(t) = xi2(t),

...

ẋin−1(t) = xin(t),

ẋin(t) = ui(t) + vi(xi(t)) +
∑

j∈ℵi

gij(xj(t)) +
∑

k∈ℵ̄i

gik(xk(t)) + qi(t),

(4)

where xil(t) ∈ R is the decision from agent i for l ∈ {1, 2, . . . , n}; ui(t) ∈ R is the control input of agent i;
vi(xi(t)) ∈ R represents the internal unmodeled dynamics of agent i; gij(xj(t)) ∈ R with j ∈ ℵi represents the
disturbances from the neighboring nodes of agent i; gik(xk(t)) ∈ R with k ∈ ℵ̄i denotes the disturbances from the
non-neighboring node of agent i; and qi(t) ∈ R represents the external time-varying disturbance affecting agent i.

Remark 1. Let
∑

j∈ℵi
gij(xj(t)) denote the lumped uncertainties from all neighboring nodes of agent i. Let

∑

k∈ℵ̄i
gik(xk(t)) denote the lumped uncertainties from all non-neighboring nodes of agent i. Compared with

existing studies [18, 21, 31], this paper not only considers the external disturbances but also addresses the internal
nonlinear uncertainties originating from the non-neighboring nodes. The main challenge lies in effectively handling
the internal uncertainties originating from non-neighboring nodes.

The distributed resource allocation of multiagent systems can be summarized by the following problem:

min
x̃∈RN

f(x̃(t)), f(x̃(t)) =

N
∑

i=1

fi(xi1(t)), subject to

N
∑

i=1

xi1(t) =

N
∑

i=1

di, (5)

where di ∈ R is the local resource demand of agent i, fi(xi1(t)) is the local cost function for agent i, f(x̃(t)) is the
total cost function, and x̃(t) = col(x11(t), . . . , xN1(t)). The objective of resource allocation is to design an algorithm
based on local information to ensure that each agent can converge to the optimal solution of the problem (5) with
the high-order dynamics (4).

The following basic assumptions for graph G and the local cost function fi are introduced. From Assumption
2, there exists a unique optimal solution of the optimization problem (5), and the optimal solution is defined as
x̃∗ = col(η∗11, . . . , η

∗
N1) for η

∗
i1 ∈ R and i = 1, 2, . . . , N .

Assumption 1. The undirected graph G is connected.
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Assumption 2 ([30]). The local cost function fi is βi-strongly convex for some βi > 0, and f ′
i(xi1) is θi-Lipschitz

for some θi > 0.

Let x(t) = col(x1(t), . . . , xn(t)) and xi(t) = col(xi1(t), . . . , xin(t)). The notation gi(x, t) = vi(xi(t))+
∑

j∈ℵi
gij(xj(t)) +

∑

k∈ℵ̄i
gik(xk(t)) + qi(t) represents the lumped uncertainty of agent i. The following assumption

for the lumped uncertainty gi is presented, which allows the nonlinear growth rate of uncertainties.

Assumption 3. The unknown function gi(x, t) is differentiable. There exists a known function ϕ(x), such that

sup
t>t0

{

|gi(x, t)| ,

∣

∣

∣

∣

∂gi
∂xj

(x, t)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂gi
∂t

(x, t)

∣

∣

∣

∣

}

6 ϕ(x). (6)

Remark 2. By defining φ(α) = sup
‖x‖6α

ϕ(x), the following inequality is satisfied for ‖x‖ 6 α:

sup
t>t0

{

|gi(x, t)|,

∣

∣

∣

∣

∂gi
∂xj

(x, t)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂gi
∂t

(x, t)

∣

∣

∣

∣

}

6 φ(α). (7)

Since the lumped nonlinear uncertainties depend on the states of all agents, it cannot be directly assumed that
gi(x, t) is bounded for t > t0. It is necessary to prove that all states are bounded and then infer that the lumped
uncertainty gi(x, t) and the derivative of gi(x, t) are bounded. Compared with the bounded assumption [18–23],
Assumption 3 generalizes the assumption for uncertainties.

Remark 3. Since the design and analysis progress for addressing the nonlinear coupling uncertainties gi(x, t) are
highly complex, this paper simplifies this analysis progress by considering the optimization problem (5) over an
undirected graph. The research results in this paper can be naturally generalized to a weight-balanced, directed,
and strongly connected graph based on the properties of directed graphs given in the work by Deng et al. [32].

3 Resource allocation

3.1 Algorithm design

The algorithms are shown in this section. The decision xi1(t) of the agent i is measurable, whereas the decision xil

of the agent i is unmeasurable for l = 2, 3, . . . , n, and a full-order extended state observer of agent i is established
to actively estimate the unmeasurable decision xil(t) and lumped uncertainty gi(t), as follows:































˙̂xi1(t) = x̂i2(t)− β1(x̂i1(t)− xi1(t)),
...
˙̂xi(n−1)(t) = x̂in(t)− βn−1(x̂i1(t)− xi1(t)),
˙̂xin(t) = ui(t) + ĝi(t)− βn(x̂i1(t)− xi1(t)),
˙̂gi(t) = −βn+1(x̂i1(t)− xi1(t)),

(8)

where x̂il(t) is the estimated value of xil(t), ĝi(t) is the estimated value of gi(t), βi = φiω
i
o for i = 1, 2, . . . , n+ 1,

and ωo > 0. The constants φi are selected, such that the following matrix Ā1 is Hurwitz, and a feasible choice is

φi =
(n+1)!

i!(n+1−i)! [25]:

Ā1 =















−φ1 1 · · · 0
...

...
. . .

...

−φn 0 · · · 1

−φn+1 0 · · · 0















.

Based on the estimation from the observer (8), the following resource allocation algorithm composed of active
disturbance compensation is designed for the system (4):

ui(t) =− yi(t)− f ′
i(xi1(t))−

n
∑

l=2

εn−l+1kl−1x̂il(t)− ĝi(t), (9a)
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Figure 1 (Color online) Proposed design based on disturbance compensation.

ẏi(t) =
k1

εn−1





N
∑

j=1

aij(zi(t)− zj(t))− di + xi1(t)



 −
2ε

λN

N
∑

j=1

aij(yi(t)− yj(t)) +

n
∑

l=2

ε2−lkl−1x̂il(t), (9b)

żi(t) =−
k1

εn−1

N
∑

j=1

aij(yi(t)− yj(t))−
k1

ε2n−2

N
∑

j=1

aij(x̂in(t)− x̂jn(t)), (9c)

where yi(t) ∈ R and zi(t) ∈ R are used to satisfy the privacy protection and constraint conditions, respectively;
f ′(xi1(t)) ∈ R is utilized for seeking the optimal solution; the constant λN represents the maximum eigenvalue
of the Laplace matrix L; and the parameters ε and ki are the variables to be tuned for i = 1, 2, . . . , N . The
detailed discussion on the selection of parameters ε and ki is given in Subsection 3.2. The design framework for the
distributed optimization anti-disturbance algorithm (9) is shown in Figure 1.

Remark 4. For the output-feedback situation, only the information xi1 can be obtained to design the distributed
resource allocation algorithm, which adds new challenges to the algorithm design and theoretical analysis. Then,
a full-order extended state observer is employed to estimate the unmeasurable state variables and the lumped
uncertainty, including the disturbances from the non-neighboring nodes.

3.2 Parameter selection

A detailed introduction of parameters is given in this subsection. The constant k1 is chosen, such that k1 > 2(θ2+1)
β

,

where θ = max{θ1, . . . , θN} and β = min{β1, . . . , βN}. Then, the constants k2, . . . , kn−1 are selected, such that the
following matrix is Hurwitz:

Ak =

[

0n−2 In−2

−k1 [−k2, . . . ,−kn−1]

]

.

Since Ak is Hurwitz, there exists a positive define matrix Pk satisfying the following equation:

AT
kPk +PkAk = −In−1.

Finally, the constant ε is designed as follows:

ε > n

√

(n− 1)p̄(θ2 + 1)

βk1
+ (2n− 1)p̄+

2k1
β

, (10)
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Figure 2 (Color online) Communication topology.

where

p̄ = max
{

(2p1(n−1) + k2)
2, . . . , (2p(n−2)(n−1) + kn−1)

2, (2p(n−1)(n−1) + 1)2, (2p(n−1)(n−1) + 2)2
}

, (11)

and pi(n−1) is the last element of the i-th row vector of the positive define matrix Pk.

4 Convergence analysis

In this section, the convergence results of the algorithms for the output-feedback case are presented. The following
theorem shows the convergence result for the output-feedback case.

Theorem 1. Consider the system (4) with the resource allocation algorithm (9) under Assumptions 1–3. If
ui(t) = 0 for t ∈ [t0, tu), and ui(t) satisfies (9) for t ∈ [tu,+∞), then there exist positive constants ω∗

o > 1 and tT ,
such that, for any ωo > ω∗

o and t > tT , the following inequalities hold for the i-th agent:

‖xi1(t)− η∗i1‖ 6

√

e
−σ

λmax
(t−tu)λmax

λmin
ρ1,v +

σ̃

λmin
max

{

1

ω2
o

,
lnωo

ωo

}

, (12)

‖xil(t)− x̂il(t)‖ 6 γ1

(

e−γ2ωo(t−tu) +
1

ωo

)

, l = 1, 2, . . . , n, (13)

‖gi(x, t)− ĝi(t)‖ 6 γ1

(

e−γ2ωo(t−tu) +
1

ωo

)

, (14)

where tu = t0 + 2nc̄12
ln(ρ̃

1

n

0
ωo)

ωo
; the positive constant ρ̃0 satisfies

√

∑N

i=1

∑n

l=1 |xil(t0)− x̂il(t0)|2 6 ρ̃0; c̄12 is the

maximum eigenvalue of P̄1; the parameters λmax and λmin represent the maximum and minimum eigenvalues of
the positive definite matrix Φ = diag {Φ1,Φ2}, respectively; the definitions of Φ1 and Φ2 are given in Appendix
C; and the definitions of the positive constants ρ1,v, σ, σ̃, γ1, γ2 are shown in Appendix B.

Remark 5. Compared with previous research [18–23], this paper considers the lumped uncertainties with a
nonlinear growth rate. To address the nonlinear lumped uncertainties, a new distributed optimization algorithm is
designed based on an extended state observer. Moreover, it is complicated to analyze the closed-loop stability in
detail for the lumped uncertainties dependent on the states of all agents.

The proofs of Theorem 1 are given in Appendix C.

5 Simulation

In this section, the simulation for an economic dispatch problem of electric power grids is presented. Consider a
smart grid consisting of five generation systems. The communication topology of generators is given in Figure 2.

The economic dispatch problem is described as follows:

min
W (t)∈R5

f(W (t)) =

5
∑

i=1

fi(Wi(t)), subject to

5
∑

i=1

Wi(t) =

5
∑

i=1

di, (15)
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Table 1 Performance indicators for the proposed algorithm and the algorithm in [9].

Agent
Integral of squared tracking error Max steady-state error (t > 10 s)

Algorithms (8) and (9) Algorithm in [9] Algorithms (8) and (9) Algorithm in [9]

1 10.2786 5.5572×103 0.0574 80.5737

2 38.7611 1.8162×103 0.0292 44.2881

3 18.5238 28.8739 0.1278 4.1642

4 4.7146 541.3599 0.0467 24.4902

5 12.5985 21.3743 0.1583 3.8134

where Wi(t) ∈ R is the output power of the i-th generator; fi(Wi(t)) is the cost function of the i-th generator; di
is the local constraint of the i-th generator; and W (t) = col(W1(t),W2(t), . . . ,W5(t)). According to Sharifian and
Abdi [33], the cost function of the i-th generator is given by the following quadratic function:

fi(Wi) = OiW
2
i + SiWi +Qi, (16)

where Oi, Si, and Qi are constant parameters. Based on the work by Guo et al. [34], the i-th generation system
can be written as follows:

{

Ẇi(t) = − 1
Ui
Wi(t) +

Ci

Ui
Yi(t),

Ẏi(t) = − 1
Fi

Yi +
1
Fi

ui(t) + gi(W (t), t),
(17)

where ui(t) is the control input of the i-th generator, and gi(W (t), t) is the nonlinear uncertainties of the i-th
generator. The uncertainty gi(W (t), t) includes the interference from non-neighboring agents.

Let xi1(t) = Wi(t) and xi2(t) = − 1
Ui

Wi(t) +
Ci

Ui

Yi(t); then, Eq. (17) is rewritten as follows:

{

ẋi1(t) = xi2(t),

ẋi2(t) = Ni(x, t) +
Ci

UiFi
ui(t),

(18)

where xi(t) = col(xi1(t), xi2(t)) is the state vector, and Ni(x, t) = − 1
FiUi

xi1(t) − ( 1
Ui

+ 1
Fi

)xi2(t) +
Ci

Ui

gi(x, t) is
the total disturbance of the i-th generator. Let Q = col(Q1, . . . , Q5), S = col(S1, . . . , S5), O = col(O1, . . . , O5),
U = col(U1, . . . , U5), F = col(F1, . . . , F5), and C = col(C1, . . . , C5). The system parameters in the simulation are
shown as







































Q = col(15.00, 25.00, 35.00, 45.00, 55.00),

S = col(24.30, 12.10, 20.60, 28.40, 30.60),

O = col(0.30, 0.28, 0.26, 0.25, 0.10),

U = col(0.34, 0.37, 0.50, 0.43, 0.40),

F = col(0.12, 0.27, 0.23, 0.17, 0.30),

C = col(1.13, 1.42, 1.26, 1.33, 2.00).

(19)

The parameters in the proposed algorithm are selected as k1 = 3, aij = 1, ε = 0.7, λN = 5, ω0 = 200. The local
demand is chosen as d = col(25, 17, 12, 30, 20), and the initial value of W(0) is selected as W(0) = col(1, 1, 1, 1, 1).
Furthermore, the nonlinear uncertainties are chosen as follows:































g1(x, t) = sin(x11(t)) + sin(t) + 2x21(t) + 3x2
31(t),

g2(x, t) = cos(x21(t)) + cos(t) + 3x11(t) + 2 log10(1 + |x41(t)|),

g3(x, t) = cos(x31(t)) + 4x41(t) + 3x21(t) + 2x2
51(t) + 66,

g4(x, t) = cos(x41(t)) + 5x51(t) + 3x31(t) + 4,

g5(x, t) = cos(x51(t)) + sin(t) + 2x11(t) + 4x21(t).

(20)

To quantitatively describe the property of the proposed algorithm, some indices are given, as shown in Table 1.
Compared with the method by Deng [9], the proposed algorithm can address the distributed resource allocation
problem despite nonlinear uncertainties.

Comparing the algorithm in [9], the simulation results are shown in Figures 3 and 4. From Figure 3, the output
power of each generator can converge to the optimal output based on the proposed algorithm, whereas the output
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Figure 3 (Color online) (a) The power outputs Wi(t) based on algorithms (8) and (9); (b) the power outputs Wi(t) according to algorithm

in [9].

Figure 4 (Color online) (a) The gradient term of fi(t) based on algorithms (8) and (9); (b) the gradient term of fi(t) according to algorithm

in [9].

power based on the algorithm in [9] is oscillating. As shown in Figure 4, the gradient terms ḟi(t), i = 1, 2, . . . , 5 of
the proposed algorithm can converge to the same value. From the work by Deng [9], the optimal problem (5) is
solved if and only if the gradient terms ḟi(t), i = 1, 2, . . . , 5 are equal to each other. Combining with Figure 4(a),
the optimal problem (5) under nonlinear uncertainties is solved by the proposed algorithm. As shown in Figure
4(b), the algorithm in [9] cannot deal with the optimal problem (5) under nonlinear uncertainties.

6 Conclusion

This paper has investigated the resource allocation problem of high-order multiagent systems with nonlinear un-
certainties. To accomplish this resource allocation problem under lumped uncertainty, the algorithms have been
proposed on the basis of a privacy protection protocol, gradient descent method, and disturbance rejection design.
More specifically, a disturbance rejection strategy based on an extended state observer has been proposed. By effec-
tively estimating and compensating for the lumped uncertainties, the proposed method ensures privacy protection
and the constraints of resource demand. Based on the Lyapunov stability theory, it is rigorously proven that the
outputs of agents can exponentially converge to a narrow region around the optimal solution. Finally, a simulation
of smart grids illustrates the effectiveness of the proposed algorithm in solving the resource allocation problem with
uncertainties of non-neighboring agents.
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