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Appendix A Introduction and proof of Lemma

To simplify the proof of Theorem 1, the following two lemmas are introduced.

Lemma Al. [9] Consider the following system.

n(t) = n2(t),

Nn—1 (t) (t)7

= 'r]n
in(t) = — é ey (8) — y(t) — FOm (8), (A1)

§(t) = s (La(t) —d - m(®) = S5Ly + 3 & ham(®),
=2

en

2t) = — Hr Ly(t) — Ky Lna (D),

where m(t) = COl(nll(t)"" :an(t))v y(t) = COl(yl(t)v"' 7yN(t))» nil(t)’ yi(t)v Zi(t) € R, d = COl(dlv"' ,dN)7 and

Fm () = col(f{(m1(®)),- -, fiy (an1(2)))-

Denoting 0} = col(nfy, -+ ,nyq), ¥* = col(yf, -+ ,yk), 2% = col(z}, -+, z}) and supposing that Assumptions 1-2 are
satisfied, then the following statements hold.
If (n*,y*, 2*) represents the equilibrium point of the system (A1), and n* = col(nj, - ,n;,),n =0 € RN forl=2,--- ,n,

then 7} is the optimal solution for the resource allocation problem (5).

Let (n*,y*, 2*) be the equilibrium point of the system (A1) and define the following error variables.

Ty =T — My, Ui =Yi — Yy,

Zi =z — 25, my = xy — &y, L€ (1, ,n),
wi(t) = gi(z,t) — Gi(t),

hi(t) = fi(zi1) — fi(njy), 1€ (1,--- ,N).

(A2)

Let £(1) = (T ® Iy) (m(t)
o(t)

> , T = diag{w?, -+ ,wo, 1}, m(t) =col(mi(t), - ,mn(t)), and my(t) =col(mqi(t),-- ,mn;(t))
forl e (1,---,n).
Lemma A2. Considering the system (4) with the algorithm (9), if ||z(t)]] < p1,2, |ly®)]] < p1,y, IE@)]| < p1,¢, there
exists a function ®(z) such that ”%H < ®(p1.2).

Lemma A2 illustrates that the derivative of lumped uncertainty is bounded if the states are bounded. The proof of
Lemma A2 is given as follows.

Proof. Combining the system (4) with the algorithm (9) and the Assumption 3, one can conclude that %gi =

SN 99y 4 % iy = Axj + Bilgy + ug), and ui(t) = —y;(t) — fi(zji(t) — Spp e k1 25(t) — g;(t) for
j ¥ j
J=1,2,- N,
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Since [|y; ()| < pr.y. and [lg; () — ;O] < [IEO)]. then [|g;(¢) — 3;(DI| < p e Based on £1(-) is 6;-Lipschitz continuous,

it can be concluded that ||f](z;1(t)) — f;(0)|| < Ollzj1(¢)], then Hf]’(;rfjl(t))H 1550l + 0p1,2, where parameter § =
max(61,02, - ,0n). Furthermore, the following inequality is established.
5]l < 1Allp1.a + p1y + [f(0)] + 0p1,2 + Ek(n — 1) (P10 + pr,e) + p1e- (A3)

Finally, combining the inequality (A3) with the Assumption 3, the following result is yielded.

d -
9@ Ol < $lp1.) (N(IAllpre + p1y + 11/ (O)] + Opra +Ek(n = D(pra + p1e) +p1,6) +1). (A4)

®(p1.2) £ NP1llé(p1.a)(N([Allpra + pry + |f ()] + 0p1,0 + Ek(n = 1)(p1a + p1,6) + p1,6) + 1) (A5)

This completes the proof of Lemma A2.

Appendix B Parameters defined in the proof of Theorem 1

k =max {k1,k2, - ,kn_1}. (B1)
(n+ 3)k12£"+1 €
= —— + k7. B2
PO ey { Dok, 2™ (B2)
k‘l/\2 (n+3) £ >\Nk51
~ A N
2 — N 4 Tk . B3
p1 =po + Drgen—1 + 5 n 1-i-2£ni1 (B3)
E:min{a,a2,~-~ 7a"’l,l}. (B4)
é:max{s,s2,~-- ,5"71,1}. (B5)
2! (n—1)p(6% + 1) 2k, 1 _
= - —(— 2n —_— -2 s
o mln{2(€ ( s +@n-1)p+ 5 )sn—l wp1)
%k‘lﬁ—QQ _ 1 _ ,ukl(n+3+2)\2) —Mogk1)2 pkiA2
2en—1 2en—1 4dgen—1 T 2(n+3)en—l  2en—1(n+3)’
1 ki(3An +2)  (n+3)entl Tl gy,

— kp — — . B6
2nen—1 u( 2en—1 + Aok +€(; ! AN ))} (B6)
(n+3)2k2ent!t ke N (n+3)AL k1 kird \ 1

T = — -

0 k1o 2 Agen—1 2en—=1 | &

ki(n+3)A% 1 Bk1 k?+n (n — 1)ent1E2 1272y ) 1
2Morgen 1 & | zen—1 T en-i 2 F = DeTRED ) 2 (B7)
1 *

P1w ég(pl,m—&- llz*|1?) + pg + p=- (BS8)

2>\max7r0012p
Pv;, =mMax {)\maxpl,vz — 2% } (B9)

oci1

_ Vi 12 LT 2
71 = max | Y22 py ¢ 2B [ 4 2| )}- (B10)

_ 1
727 %y

Amax - 70 - €12 - P2 4mo 2
max 2,€ + 0 max(’Yl) (Bll)

o= —
Y20C11 o
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Appendix C Proof of Theorem 1

Before the detailed proof of Theorem 1, the error system of the optimization problem (5) is analyzed. With the combination
of (Al) and (A2), the following dynamics of error variables is obtained by substituting the control algorithm (9) into the
high-order multi-agent system (4).

z1(t) = Z2(t),

Ba(t) = —5() — h(6) + 9(8) = 3y _ym(8) + ek ymy (o), ©1)
=2 =2
§(0) = L (La(t) + 31) — —oLg(t) + > e am(t) — 252 Uy _yma(t),
€ >\N I—2

- k1 _ k1 _ k1
) =-23 Ly(t) — 2n2 Lzn(t) + mLmn(t%

where Z;(t) =col(Z1i(t), -+ ,Zn1), §(t) =col(F1(t), -+, yn (1)), Z(t) =col(z1(t), -+, Zn (1)), and h(t) =col(hi(t), -, hn (1))
fori=1,2,--- ,n

Based on the error system (C1), the proof of Theorem 1 is divided into three sections. Firstly, the states of the system
(4) are proved to be bounded for t € [to,tw). Secondly, the boundedness analysis of tracking and estimate error is given for
t € [tu,+00). Thirdly, the convergence of the error system (C1) is analyzed for t € [y, +00).

Step 1: Analyzing the boundedness of variables for ¢ € [to, ty).

In the first step, the input of the agent ¢ is designed as u;(t) = 0. Substituting u;(¢) = 0 into the considered high-order
multi-agent system, the dynamics of the agent ¢ is shown as follows.

@;(t) =Ax;(t) + Bigi(z, t),

10) = (LE0) +31(0) — 2oL+ D0 a0) — S k), )
€ =2 =2
H0) = — LR — e Lan() +

Op—1 I
where B; = [0T_,,1]T, A = not et
0 of

n—1

1
1 -
If pjwo > 1, then iﬁmw
o

there exist positive constants 14, p1,z;, py and pz for wi > 1, such that

= 0. Since z;(t), g(t) and Z(t) have a bounded value at the initial time ¢g, then

sup [lzi (D) < p1,a;5

to<t<ty
sup  [lg@)| < pg,

0<t<ty (C3)
sup  [Z()] < pz,

to<t<ty

tu<t0+%i-

By defining p1,. = 1/25’ 1 p% 2z, then [2(#)]| < p1,z. Since x(t), ¥(t) and 2(t) are continuous at t,, we have ||z (tu)|| <

Pl,z, ”y(tu)” Py and ”Z(tu)” < pz for wo > UJl
Based on the system (4) with the extended state observer (8), the estimation error equation is written as follows.

m(t)) _ m(t) .
(¢(t)> =Bp®IN) <¢(t)> + (Bo ® In)g(t), (C4)

where g(t) = COl(gl(xat)z T 79N(x»t))’ Bo = CO](O'Z: 1):

B/Bz . Dol 1 . (C5)
—Bn 00---01
—Br+1 00 ---00

To analyze the stability of the estimation error equation (C4), the following Lyapunov function is constructed.

Vi(t) =T (P1®IN)E, (C6)
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where the positive definite matrix P satisfying Aff’l +P1A; = —T,41.

Since ||z(t)|| < p1,o for t € [to,tu], the equation (C2) and Assumption 3 indicate that &;(¢t) and g;(t) are bounded
and the bounds of #;(¢) and gz(t) are obtained easily for ¢ € [to,tw]. Based on the Lyapunov function (C6), we have
11 ||£(t)H2 Vi(t) < ci2 Hf(t)” where ¢11 and 12 are the minimum and maximum eigenvalues of Pj, respectively. Then
the derivative of (C6) is obtained.

fW ﬁ+

(C7)
NETe

where ¢ = ||P1|| Né(p(1,2)) (1Al p(1,2) + D(p(1,2)) + 1)-
Combining Bellman-Grownwall inequality with the bounds of £(tg) and ||m(¢o)|| < po, the boundedness of 1/ Vi (ty) for

wo > wr is shown as /VA(E) < Y222 (50 + ¢(p1 2) + |a(to)[) + 222 2 Let ] ¢ 2 Y222 (50 + No(p1 ) + (ko)) +
2¢12 iy N3
S5 e then [€(0a)] < T

It ﬁé“‘ wo < 1, the initial value z(tg) exists and is bounded, then £(¢t0) < 1 + N¢(p1,2) + [|G(to)]|. Denote T e 2
- N 3
V(1 + No(p1.z) + [19(to)l]), then [|€(to)]| < 2E.

Remark 1. Based on the definition of ¢y, it can be concluded that limy,— o0 tu = to, and t, can approach tg by
regulating the parameter w,. Thus, the controller has the similar performance with the commonly designed controller

whose initial value is zero. Moreover, the selection of ¢, is to avoid the effect of the peaking phenomenon.

Step 2: Analyzing the boundedness of variables for t € [t,, +00).

In this step, by utilizing coordinate transformation and Lyapunov function, the tracking error and estimation error
are proved to be bounded. Define ;i (t) = = L_my(t) and &;(t) = Ell_liil(t) for I = 1,2,--+,n, and denote m(t) =

col(my (t), Mgy (t) -+ ,mni(t)) € RN, & (t) = col(@1,(t), T21(t) - -+ , Eni(t)) € RY, and mi(t) = col(1ha(t), ms(t) - - ,hn(t)) €
R(n—1)N

Define the following coordinate transformations.

Hi(t) = col(Hui (t), Ha1(t)) = [r R]"ma(2), (C8)
Hy(t) = col(Hy(t), Hy(t)) = [r R] iy (t), (C9)
7 = col(r1, ) = [r R]Tzy, (C10)
i1 = col(ry(_1), T2—1)) = [r R]T &, (C11)
¢ = col(¢1,¢2) = [r R]T'g, (C12)

w = col(w1,w2) = [r R]TE, (C13)
P = col(y1,92) = [r R (2), (C14)

where Hi1(t) €R, H(t) ER, 71 €R, 7y(y_1) €R, {1 €R, w1 € R, ¢1 € R, Ho(t) € RV, Hy(t) e RN7L, 7 e RN,
To—1) ERN 7L G e RN7L wmp e RN gy e RV~ for 1 € {2,3,--- ,n}.

The vector r = ﬁlN satisfies that rTR = OE 15 RTR =1Iy_;, and RRT =1y — %11\;1%. Hence, Lr = Ox and
rTL:OQI\;.

Let

Hy = col(Hia,Wis, -+ ,H1n), Ha = col(Haz, Ha3, -, Hap), (C15)

71 = col(T11, 712, - - ,Tl(n,l)), To = col(721, 22, - - ,7’2(”,1)). (C16)

Substituting (C1) and (C4) into (C8)—(C16), the following equations hold.

1 =T, (C17a)
T2 =€T21, (C17b)
. kl n n
Q=== 7’1+Z€kz—17'1(zf1) —ZakZ—le (C17¢)
=2 =2
H kl T T k‘
(2 = I R°LRw> — 7R LR(2 + v + Z‘Ekl 1T2(1—1) — ZEkl 1Hoy, (C17d)
¢ A =2 =2
w1 =0, (C17e)
. k1 T k1 T k1 T
Gy = — T—l RTLRC, — Sn—_lR LR7Ty(,_1) + ﬁR LRHo,, (C171)
Ti(n—1) = ZEklflTl(lfl) — (G +r"h) + g 1¢1 t)+26kl 1Hu, (C17g)

=2
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To(n—1) = Zekl 1731-1) — =7 (G2 + RTh) + —=2(t) + ifk‘lasz, (C17h)
1=2
71 =eApT1 — Th) (Xn: ek;_1 Hyy), (C171)
=2
7o =e(Ap @ In_1)72 — ETL%(Bz QIn_1)(¢2 +RTh)
+ Enl—l (B2 ®@In_1)2(t) + (B2 ® IN—l)(i ki1 Hay), (C17j)

=2

where By = [07_,,, 1]T.

Based on the above coordinate transformation (C8)-(C16), to prove the convergence of the error system (C1), the stability
of the dynamics (C17) will be analyzed next.

According to the equations in (C17), the Lyapunov function V() is similar to one given in [9]. The parameter p in the
reference [9] satisfies the following condition.

_ 2
0<Mo<u<miﬂ{2ﬁ1(5 %H%fl)m%)anl_l),
1 Ao (k1B — 262 — 2) (C18)

)

n((3An + 2)k1 + % + 2en| nzl by — 22 ) ki(n+ 3+ 2X2)
=1

The Lyapunov function V(t) can be rewritten as V(t) = 97 @9, where ¥ =col(ry,71,(1, T2, 72,(2,™2), and & =
diag {®1,P2}. Parameters Apmin, Amax are the minimum and maximum characteristic root of ®, respectively. The def-
initions of ®; and ®2 can be found in [9].

By combining the orthogonal transformation specified in (C8) with the consideration of the convexity of cost functions and
the Lipschitz property of the gradients of cost functions, along with the Schur Complement Lemma and the connectedness
of undirected topology, the derivative of V' (t) can be written as follows.

d 1 (n—1)p(62% +1) 2k, 1 en2
—V@E)<—-= A i @2n—1 2y -2
7 (®) 2( ( B +(@2n—-1)p+ 3 )an,1 wp1)|I 7l
1618 — 02 1 pki(n+3+2X) 2
2en—1  ggn—1 4 pen—1
—Moki o k12 ) 2
(2 (n+3)en—1 + 2e"~1(n + 3) 2]
n+1 n—1
B k1(3)\N +2) (n+3) Z ky — & el
2nen—1 2en—1 Aok
+3)2k2entt ke n+3)A%k k1AZ 1
(n LRl )_N Ly BAN 2
klAQ 2 Agen—1 2en—17"¢g
ki(n+3)A% 1 Bk kE24+n  (n—1)e"t1k? 41,252 5
= - Kk . C19
PMorper—1 st ot +( 5 +(n—1)e ) IEDII (C19)

where 7 =col(71,72), H =col(Hy, Ha). Further, the inequality (C19) can be rewritten as

%V(t) < —all@* + mollE®)II?, (C20)

where o and 7 are positive constants presented in Appendix B.

Combining the definition of V(t) = 9T &9 with the continuity of §, Z and Z for t € [to,ty), there has ||9(t)|? <
%(Pl,z + |lz*||?) + pg + pz, and the definition of & is shown in Appendix B.

Next, the boundedness of Z1(t) and £(t) is analyzed. We will prove that there exists wj > w} such that

@10, €(1) € @ = {(@1,6) € RNV <y, VI < Vaizpae ) (C21)

- ok
M, M2¢
Ve’ Ve

is satisfied for wo > wj and t > ty, where py ¢ = max{ }, and py,, can be found in Appendix B. By reductio, the

proof of (C21) is composed of the following two steps.
(S1) Assuming there exists t* > t,, such that V(t* pogs VVI(ET) = aizpa,e and LY S o Then [|e(t*)] <

P P _ Epo
e, W) < f2 Since a1 ()] + 35 cbrlla()l? < L2, there are [a(e)]? < $24 and la(e)|? <
5pvk

S [l

min
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Amin

From Lemma A2, we have |P1]|[|g] < & < SPui + :1:*||2> Then the derivative of \/Vi (t*) is written as

O/ ||x*2>
o

d

—/V1(t*) < -+ C22

GV < s = (C22)
According to (C22), there exists wj > w} such that % Vi(t*) < 0,wo > wj. Hence, the assumption for proof by

contradiction is invalid.

(S2) Assuming there exists t* > t, such that V(t*) = py,, \/V1(t*) < VCi2p2,¢, and d V(t*) > 0. The derivative
of V(t*) is %V(t*) < —o ;::X + 7 2? p2 ¢ According to the definition of py;, we have ;tV(t*) < 0. The assumption
%V(t*) > 0 does not hold.

Due to (S1) and (S2), there exists w3 > w} such that (Z1(t),&(t)) € Q for t > ¢y and wo, > wj. Based on (C21), the

following inequalities hold for any wo, > w3 .

sup lE@I < 2 P2.e £ P,

V (t) VPoy
sup 190y < YVO k|
sup PO < Xo” < VAmin

(C23)

N

Remark 2. In order to prove that the tracking error and estimation error are bounded for ¢ € [t,, +00), the procedures
(S1) and (S2) are presented. Since the derivatives of Lyapunov functions are non-positive, the uniform boundedness of
estimation error and tracking error is proved by reductio ad absurdum.

Step 3: Analyzing the convergence of the system.

By the analyses in Step 1 and Step 2, Z1(t) and £(¢) are proved to be bounded. In this step, a detailed analysis of the
boundaries of Z1(t) and £(¢t) will be delved into.

Based on Lemma A2 and (C21), the derivative of 1/V7(¢) is shown as follows.

ép
o+ ||:c*|2>

min

“
W ﬁ+

= (C24)
Vel
According to Bellman-Grownwall inequality, the inequality (C24) indicates the following inequality.
Epu N
- ‘I’< oot ||2>
ty) C12
Vi(t) < e?e12 VCi2p3.¢ + — . C25
Then, the bound of ¢ is obtained as follows.
1
€@ < ya(emr2woltt) 4 —), (C26)
Wo
where the definition of 43 and 72 can be found in Appendix B.
Based on (C26), the inequality of the derivative of V(¢) (C20) implies that
o t —o
V() < exmax TV (1) + / eXmax "o l¢(7)|2dr. (C27)
tu

According to (C23) and (C26), the bound for the estimation error satisfies that ||£(t)]|? < 2';’ p2 ¢ for by <t <tu+ }Y’;‘:j"

and [|€(t)] < % for t > tu + fy’;—“:)‘; Then, by the inequality scaling method in [26], the following bound for the integral
term in inequality (C27) can be derived.

[T S AmaxT0C1203 ¢ | 4dmo 21
/ exmes () g () ||2dr < X020 e Inwo | A0 Amax (1) =. (C28)
to Y20¢€11 Wo c w2
Finally, combing (C27) and (C28) with V(t)=97 &9, the following results are obtained.
TO (f—ty) A o 1 Ilnw
e o)l < \/m (ot ey O (L, ), (C20)
min min ws Wo
_ _ 1
6l < 71 (e 2001 4 ), (C30)
o

This completes the proof of Theorem 1.
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