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Appendix A Introduction and proof of Lemma

To simplify the proof of Theorem 1, the following two lemmas are introduced.

Lemma A1. [9] Consider the following system.



η̇1(t) = η2(t),

...

η̇n−1(t) = ηn(t),

η̇n(t) = −
n∑
l=2

εn−l+1kl−1ηl(t)− y(t)− f̃(η1(t)),

ẏ(t) = k1
εn−1 (Lz(t)− d+ η1(t))− 2ε

λN
Ly +

n∑
l=2

ε2−lkl−1ηl(t),

ż(t) = − k1
εn−1Ly(t)− k1

ε2n−2Lηn(t),

(A1)

where ηl(t) = col(η1l(t), · · · , ηNl(t)), y(t) = col(y1(t), · · · , yN (t)), ηil(t), yi(t), zi(t) ∈ R, d = col(d1, · · · , dN ), and

f̃(η1(t)) = col(f ′1(η11(t)), · · · , f ′N (ηN1(t))).

Denoting η∗1 = col(η∗11, · · · , η∗N1), y∗ = col(y∗1 , · · · , y∗N ), z∗ = col(z∗1 , · · · , z∗N ) and supposing that Assumptions 1-2 are

satisfied, then the following statements hold.

If (η∗, y∗, z∗) represents the equilibrium point of the system (A1), and η∗ = col(η∗1 , · · · , η∗n), η∗l = 0 ∈ RN for l = 2, · · · , n,

then η∗1 is the optimal solution for the resource allocation problem (5).

Let (η∗, y∗, z∗) be the equilibrium point of the system (A1) and define the following error variables.
x̄il = xil − η∗il, ȳi = yi − y∗i ,
z̄i = zi − z∗i , mil = xil − x̂il, l ∈ (1, · · · , n),

ϕi(t) = gi(x, t)− ĝi(t),
hi(t) = f ′i(xi1)− f ′i(η∗i1), i ∈ (1, · · · , N).

(A2)

Let ξ(t) = (T⊗ IN )

(
m(t)

ϕ(t)

)
, T = diag{ωno , · · · , ωo, 1}, m(t) =col(m1(t), · · · ,mn(t)), and ml(t) =col(m1l(t), · · · ,mNl(t))

for l ∈ (1, · · · , n).

Lemma A2. Considering the system (4) with the algorithm (9), if ‖x(t)‖ 6 ρ1,x, ‖y(t)‖ 6 ρ1,y , ‖ξ(t)‖ 6 ρ1,ξ, there

exists a function Φ̃(x) such that ‖dg
dt
‖ 6 Φ̃(ρ1,x).

Lemma A2 illustrates that the derivative of lumped uncertainty is bounded if the states are bounded. The proof of

Lemma A2 is given as follows.

Proof. Combining the system (4) with the algorithm (9) and the Assumption 3, one can conclude that d
dt
gi =∑N

j=1
∂gi
∂xj

ẋj + ∂gi
∂t

, ẋj = Axj + B1(gj + uj), and uj(t) = −yj(t) − f ′j(xj1(t)) −
∑n
l=2 ε

n−l+1kl−1x̂jl(t) − ĝj(t) for

j = 1, 2, · · · , N .
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Since ‖yj(t)‖ 6 ρ1,y , and ‖gj(t)− ĝj(t)‖ 6 ‖ξ(t)‖, then ‖gj(t)− ĝj(t)‖ 6 ρ1,ξ. Based on f ′j(·) is θj-Lipschitz continuous,

it can be concluded that ‖f ′j(xj1(t)) − f ′j(0)‖ 6 θ‖xj1(t)‖, then ‖f ′j(xj1(t))‖ 6 ‖f ′j(0)‖ + θρ1,x, where parameter θ =

max(θ1, θ2, · · · , θN ). Furthermore, the following inequality is established.

‖ẋj‖ 6 ‖A‖ρ1,x + ρ1,y + |f ′(0)|+ θρ1,x + ε̃k̄(n− 1)(ρ1,x + ρ1,ξ) + ρ1,ξ. (A3)

Finally, combining the inequality (A3) with the Assumption 3, the following result is yielded.

‖
d

dt
g(x, t)‖ 6 φ(ρ1,x)(N(‖A‖ρ1,x + ρ1,y + |f ′(0)|+ θρ1,x + ε̃k̄(n− 1)(ρ1,x + ρ1,ξ) + ρ1,ξ) + 1). (A4)

Φ̃(ρ1,x) , N‖P̄1‖φ(ρ1,x)(N(‖A‖ρ1,x + ρ1,y + |f ′(0)|+ θρ1,x + ε̃k̄(n− 1)(ρ1,x + ρ1,ξ) + ρ1,ξ) + 1). (A5)

This completes the proof of Lemma A2.

Appendix B Parameters defined in the proof of Theorem 1

k̄ = max {k1, k2, · · · , kn−1} . (B1)

ρ0 = max
l∈{1,2,··· ,n−1}

{
(n+ 3)k2

l ε
n+1

4λ2k1
+
ε

2
kl

}
. (B2)

ρ̃1 ,ρ0 +
k1λ2

N (n+ 3)

4λ2εn−1
+
ε

2
kn−1 +

λNk1

2εn−1
. (B3)

ε̄ = min
{
ε, ε2, · · · , εn−1, 1

}
. (B4)

ε̃ = max
{
ε, ε2, · · · , εn−1, 1

}
. (B5)

σ = min
{1

2
(ε− (

(n− 1)p̄(θ2 + 1)

βk1
+ (2n− 1)p̄+

2k1

β
)

1

εn−1
− 2µρ̃1),

1
2
k1β − θ2

2εn−1
−

1

2εn−1
−
µk1(n+ 3 + 2λ2)

4λ2εn−1
,
−M0k1λ2

2(n+ 3)εn−1
+

µk1λ2

2εn−1(n+ 3)
,

1

2nεn−1
− µ(

k1(3λN + 2)

2εn−1
+

(n+ 3)εn+1

λ2k1
+ ε(

n−1∑
l=1

kl −
2λ2

λN
))
}
. (B6)

π0 =µ

(
(n+ 3)2k̄2εn+1

k1λ2
+
k̄ε

2
+

(n+ 3)λ2
Nk1

λ2εn−1
+
k1λ2

N

2εn−1

)
1

ε̄

+
k1(n+ 3)λ2

N

2M0λ2εn−1

1

ε̄
+

βk1

2εn−1
+
k2

1 + n

εn−1
+

(
(n− 1)εn+1k̄2

2
+ (n− 1)εn+1k2

1 k̄
2)

)
1

ε̄
. (B7)

ρ1,v ,
1

ε̄
(ρ1,x + ‖x∗‖2) + ρȳ + ρz̄ . (B8)

ρvk = max
{
λmaxρ1,v ,

2λmaxπ0c̄12ρ2
2,ξ

σc̄11

}
. (B9)

γ1 = max
{√

c̄12√
c̄11

ρ3,ξ;
2c̄12
c̄11

Φ̃(

√
ε̃ρvk
λmin

+ ‖x∗‖2)
}
.

γ2 = 1
2c̄12

.
(B10)

σ̃ =
λmax · π0 · c̄12 · ρ2

2,ξ

γ2σc̄11
+

4π0λmax(γ1)2

σ
. (B11)
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Appendix C Proof of Theorem 1

Before the detailed proof of Theorem 1, the error system of the optimization problem (5) is analyzed. With the combination

of (A1) and (A2), the following dynamics of error variables is obtained by substituting the control algorithm (9) into the

high-order multi-agent system (4).

˙̄x1(t) = x̄2(t),

...

˙̄xn−1(t) = x̄n(t),

˙̄xn(t) = −ȳ(t)− h(t) + ϕ(t)−
n∑
l=2

εn−l+1kl−1x̄l(t) +
n∑
l=2

εn−l+1kl−1ml(t),

˙̄y(t) =
k1

εn−1
(Lz̄(t) + x̄1)−

2ε

λN
Lȳ(t) +

n∑
l=2

ε2−lkl−1x̄l(t)−
n∑
l=2

ε2−lkl−1ml(t),

˙̄z(t) = −
k1

εn−1
Lȳ(t)−

k1

ε2n−2
Lx̄n(t) +

k1

ε2n−2
Lmn(t),

(C1)

where x̄l(t) =col(x̄1l(t), · · · , x̄Nl), ȳ(t) =col(ȳ1(t), · · · , ȳN (t)), z̄(t) =col(z̄1(t), · · · , z̄N (t)), and h(t) =col(h1(t), · · · , hN (t))

for l = 1, 2, · · · , n.

Based on the error system (C1), the proof of Theorem 1 is divided into three sections. Firstly, the states of the system

(4) are proved to be bounded for t ∈ [t0, tu). Secondly, the boundedness analysis of tracking and estimate error is given for

t ∈ [tu,+∞). Thirdly, the convergence of the error system (C1) is analyzed for t ∈ [tu,+∞).

Step 1: Analyzing the boundedness of variables for t ∈ [t0, tu).

In the first step, the input of the agent i is designed as ui(t) = 0. Substituting ui(t) = 0 into the considered high-order

multi-agent system, the dynamics of the agent i is shown as follows.

ẋi(t) =Axi(t) + B1gi(x, t),

˙̄y(t) =
k1

εn−1
(Lz̄(t) + x̄1(t))−

2ε

λN
Lȳ(t) +

n∑
l=2

ε2−lkl−1x̄l(t)−
n∑
l=2

ε2−lkl−1ml(t),

˙̄z(t) =−
k1

εn−1
Lȳ(t)−

k1

ε2n−2
Lx̄n(t) +

k1

ε2n−2
Lmn(t),

(C2)

where B1 = [0Tn−1, 1]T , A =

(
0n−1 In−1

0 0Tn−1

)
.

If ρ̃
1
n
0 ωo > 1, then lim

ωo→+∞
ln(ρ̃

1
n
0 ωo)

ωo
= 0. Since xi(t), ȳ(t) and z̄(t) have a bounded value at the initial time t0, then

there exist positive constants ηd, ρ1,xi , ρȳ and ρz̄ for ω∗1 > 1, such that

sup
t06t<tu

‖xi(t)‖ 6 ρ1,xi ,

sup
t06t<tu

‖ȳ(t)‖ 6 ρȳ ,

sup
t06t<tu

‖z̄(t)‖ 6 ρz̄ ,

tu 6 t0 + ηd
2
.

(C3)

By defining ρ1,x =
√∑N

i=1 ρ
2
1,xi

, then ‖x(t)‖ 6 ρ1,x. Since x(t), ȳ(t) and z̄(t) are continuous at tu, we have ‖x(tu)‖ 6
ρ1,x, ‖ȳ(tu)‖ 6 ρȳ , and ‖z̄(tu)‖ 6 ρz̄ for ωo > ω∗1 .

Based on the system (4) with the extended state observer (8), the estimation error equation is written as follows.(
ṁ(t)

ϕ̇(t)

)
= (Bβ ⊗ IN )

(
m(t)

ϕ(t)

)
+ (B0 ⊗ IN )ġ(t), (C4)

where g(t) = col(g1(x, t), · · · , gN (x, t)), B0 = col(0Tn , 1),

Bβ =


−β1 1 0 · · · 0 0

...
...

... · · ·
...

...

−βn 0 0 · · · 0 1

−βn+1 0 0 · · · 0 0

 . (C5)

To analyze the stability of the estimation error equation (C4), the following Lyapunov function is constructed.

V1(t) = ξT (P̄1 ⊗ IN )ξ, (C6)
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where the positive definite matrix P̄1 satisfying Ā
T
1 P̄1 + P̄1Ā1 = −In+1.

Since ‖x(t)‖ 6 ρ1,x for t ∈ [t0, tu], the equation (C2) and Assumption 3 indicate that ẋi(t) and ġi(t) are bounded

and the bounds of ẋi(t) and ġi(t) are obtained easily for t ∈ [t0, tu]. Based on the Lyapunov function (C6), we have

c̄11 ‖ξ(t)‖2 6 V1(t) 6 c̄12 ‖ξ(t)‖2, where c̄11 and c̄12 are the minimum and maximum eigenvalues of P̄1, respectively. Then

the derivative of (C6) is obtained.

d

dt

√
V1(t) 6

−ωo
2c̄12

√
V1(t) +

φ̃
√
c̄11

, (C7)

where φ̃ =
∥∥P̄1

∥∥Nφ(ρ(1,x))(‖A‖ ρ(1,x) + φ(ρ(1,x)) + 1).

Combining Bellman-Grownwall inequality with the bounds of ξ(t0) and ‖m(t0)‖ 6 ρ̃0, the boundedness of
√
V1(tu) for

ωo > ω∗1 is shown as
√
V1(tu) 6

√
c̄12
ρ̃0

(ρ̃0 + φ(ρ1,x) + ‖ĝ(t0)‖) + 2c̄12
ω∗

1

φ̃√
c̄11

. Let η̃∗1,ξ ,
√
c̄12
ρ̃0

(ρ̃0 + Nφ(ρ1,x) + ‖ĝ(t0)‖) +

2c̄12
ω∗

1

φ̃√
c̄11

, then ‖ξ(tu)‖ 6
η̃∗1,ξ√
c̄11

.

If ρ̃
1
n
0 ωo 6 1, the initial value x(t0) exists and is bounded, then ξ(t0) 6 1 + Nφ(ρ1,x) + ‖ĝ(t0)‖. Denote η̃∗2,ξ ,

√
c̄12(1 +Nφ(ρ1,x) + ‖ĝ(t0)‖), then ‖ξ(t0)‖ 6

η̃∗2,ξ√
c̄11

.

Remark 1. Based on the definition of tu, it can be concluded that limωo→+∞ tu = t0, and tu can approach t0 by

regulating the parameter ωo. Thus, the controller has the similar performance with the commonly designed controller

whose initial value is zero. Moreover, the selection of tu is to avoid the effect of the peaking phenomenon.

Step 2: Analyzing the boundedness of variables for t ∈ [tu,+∞).

In this step, by utilizing coordinate transformation and Lyapunov function, the tracking error and estimation error

are proved to be bounded. Define m̃il(t) = 1
εl−1mil(t) and x̃il(t) = 1

εl−1 x̄il(t) for l = 1, 2, · · · , n, and denote m̃l(t) =

col(m̃1l(t), m̃2l(t) · · · , m̃Nl(t)) ∈ RN , x̃l(t) = col(x̃1l(t), x̃2l(t) · · · , x̃Nl(t)) ∈ RN , and m̃(t) = col(m̃2(t), m̃3(t) · · · , m̃n(t)) ∈
R(n−1)N .

Define the following coordinate transformations.

H1(t) = col(H11(t), H21(t)) = [r R]Tm1(t), (C8)

Hl(t) = col(H1l(t), H2l(t)) = [r R]T m̃l(t), (C9)

τ = col(τ1, τ2) = [r R]T x̄1, (C10)

τl−1 = col(τ1(l−1), τ2(l−1)) = [r R]T x̃l, (C11)

ζ = col(ζ1, ζ2) = [r R]T ȳ, (C12)

$ = col($1, $2) = [r R]T z̄, (C13)

ψ = col(ψ1, ψ2) = [r R]Tϕ(t), (C14)

where H11(t) ∈ R, H1l(t) ∈ R, τ1 ∈ R, τ1(l−1) ∈ R, ζ1 ∈ R, $1 ∈ R, ψ1 ∈ R, H21(t) ∈ RN−1, H2l(t) ∈ RN−1, τ2 ∈ RN−1,

τ2(l−1) ∈ RN−1, ζ2 ∈ RN−1, $2 ∈ RN−1, ψ2 ∈ RN−1 for l ∈ {2, 3, · · · , n}.
The vector r = 1√

N
1N satisfies that rTR = 0TN−1, RTR = IN−1, and RRT = IN − 1

N
1N1TN . Hence, Lr = 0N and

rTL = 0TN .

Let

H̃1 = col(H12,W13, · · · , H1n), H̃2 = col(H22, H23, · · · , H2n), (C15)

τ̃1 = col(τ11, τ12, · · · , τ1(n−1)), τ̃2 = col(τ21, τ22, · · · , τ2(n−1)). (C16)

Substituting (C1) and (C4) into (C8)–(C16), the following equations hold.

τ̇1 =ετ11, (C17a)

τ̇2 =ετ21, (C17b)

ζ̇1 =
k1

εn−1
τ1 +

n∑
l=2

εkl−1τ1(l−1) −
n∑
l=2

εkl−1H1l, (C17c)

ζ̇2 =
k1

εn−1
RTLR$2 −

2ε

λN
RTLRζ2 +

k1

εn−1
τ2 +

n∑
l=2

εkl−1τ2(l−1) −
n∑
l=2

εkl−1H2l, (C17d)

$̇1 =0, (C17e)

$̇2 =−
k1

εn−1
RTLRζ2 −

k1

εn−1
RTLRτ2(n−1) +

k1

εn−1
RTLRH2n, (C17f)

τ̇1(n−1) =−
n∑
l=2

εkl−1τ1(l−1) −
1

εn−1
(ζ1 + rT h) +

1

εn−1
ψ1(t) +

n∑
l=2

εkl−1H1l, (C17g)



Sci China Inf Sci 5

τ̇2(n−1) =−
n∑
l=2

εkl−1τ2(l−1) −
1

εn−1
(ζ2 + RT h) +

1

εn−1
ψ2(t) +

n∑
l=2

εkl−1H2l, (C17h)

˙̃τ1 =εAk τ̃1 −
1

εn−1
B2(ζ1 + rT h) +

1

εn−1
B2ψ1(t) + B2(

n∑
l=2

εkl−1H1l), (C17i)

˙̃τ2 =ε(Ak ⊗ IN−1)τ̃2 −
1

εn−1
(B2 ⊗ IN−1)(ζ2 + RT h)

+
1

εn−1
(B2 ⊗ IN−1)ψ2(t) + (B2 ⊗ IN−1)(

n∑
l=2

εkl−1H2l), (C17j)

where B2 = [0Tn−2, 1]T .

Based on the above coordinate transformation (C8)-(C16), to prove the convergence of the error system (C1), the stability

of the dynamics (C17) will be analyzed next.

According to the equations in (C17), the Lyapunov function V (t) is similar to one given in [9]. The parameter µ in the

reference [9] satisfies the following condition.

0 < M0 < µ < min

{
1

2ρ̃1
(ε− (

(n− 1)p̄(θ2 + 1)

βk1
+ (2n− 1)p̄+

2k1

β
)

1

εn−1
),

1

n((3λN + 2)k1 +
(2n+6)ε2n

λ2k1
+ 2εn|

n−1∑
l=1

kl − 2λ2
λN
|)
,
λ2(k1β − 2θ2 − 2)

k1(n+ 3 + 2λ2)

 ,

(C18)

The Lyapunov function V (t) can be rewritten as V (t) = ϑTΦϑ, where ϑ =col(τ1, τ̃1, ζ1, τ2, τ̃2, ζ2, $2), and Φ =

diag {Φ1,Φ2}. Parameters λmin, λmax are the minimum and maximum characteristic root of Φ, respectively. The def-

initions of Φ1 and Φ2 can be found in [9].

By combining the orthogonal transformation specified in (C8) with the consideration of the convexity of cost functions and

the Lipschitz property of the gradients of cost functions, along with the Schur Complement Lemma and the connectedness

of undirected topology, the derivative of V (t) can be written as follows.

d

dt
V (t) 6−

1

2
(ε− (

(n− 1)p̄(θ2 + 1)

βk1
+ (2n− 1)p̄+

2k1

β
)

1

εn−1
− 2µρ̃1)‖τ̃‖2

−
(

1
2
k1β − θ2

2εn−1
−

1

2εn−1
−
µk1(n+ 3 + 2λ2)

4λ2εn−1

)
‖τ‖2

−
(
−M0k1λ2

2(n+ 3)εn−1
+

µk1λ2

2εn−1(n+ 3)

)
‖$2‖2

−
(

1

2nεn−1
− µ(

k1(3λN + 2)

2εn−1
+

(n+ 3)εn+1

λ2k1
+ ε(

n−1∑
l=1

kl −
2λ2

λN
))

)
‖ζ‖2

+

(
µ(

(n+ 3)2k̄2εn+1

k1λ2
+
k̄ε

2
+

(n+ 3)λ2
Nk1

λ2εn−1
+
k1λ2

N

2εn−1
)
1

ε̄

+
k1(n+ 3)λ2

N

2M0λ2εn−1

1

ε̄
+

βk1

2εn−1
+
k2

1 + n

εn−1
+ (

(n− 1)εn+1k̄2

2
+ (n− 1)εn+1k2

1 k̄
2)

1

ε̄

)
‖ξ(t)‖2. (C19)

where τ̃ =col(τ̃1, τ̃2), H̃ =col(H̃1, H̃2). Further, the inequality (C19) can be rewritten as

d

dt
V (t) 6 −σ‖ϑ(t)‖2 + π0‖ξ(t)‖2, (C20)

where σ and π0 are positive constants presented in Appendix B.

Combining the definition of V (t) = ϑTΦϑ with the continuity of ȳ, z̄ and x̄ for t ∈ [t0, tu), there has ‖ϑ(tu)‖2 6
1
ε̄

(ρ1,x + ‖x∗‖2) + ρȳ + ρz̄ , and the definition of ε̄ is shown in Appendix B.

Next, the boundedness of x̄1(t) and ξ(t) is analyzed. We will prove that there exists ω∗2 > ω∗1 such that

(x̄1(t), ξ(t)) ∈ Ω =
{

(x̄1, ξ) ∈ RN(n+2)
∣∣∣V 6 ρvk ,

√
V1 6

√
c̄12ρ2,ξ

}
(C21)

is satisfied for ωo > ω∗2 and t > tu, where ρ2,ξ = max{
η̃∗1,ξ√
c̄11

,
η̃∗2,ξ√
c̄11
}, and ρvk can be found in Appendix B. By reductio, the

proof of (C21) is composed of the following two steps.

(S1) Assuming there exists t∗ > tu, such that V (t∗) 6 ρvk ,
√
V1(t∗) =

√
c̄12ρ2,ξ and

d(
√
V1(t∗))

dt
> 0. Then ‖ξ(t∗)‖ 6

√
c̄12√
c̄11

ρ2,ξ, ‖ϑ(t∗)‖2 6
ρvk
λmin

. Since ‖x̄1(t∗)‖2 +
n∑
l=2

1
εl−1 ‖x̄l(t∗)‖2 6

ρvk
λmin

, there are ‖x̄(t∗)‖2 6
ε̃ρvk
λmin

and ‖x(t∗)‖2 6

ε̃ρvk
λmin

+ ‖x∗‖2.
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From Lemma A2, we have ‖P̄1‖‖ġ‖ 6 Φ̃

(√
ε̃ρvk
λmin

+ ‖x∗‖2
)

. Then the derivative of
√
V1(t∗) is written as

d

dt

√
V1(t∗) 6

−ωo
2
√
c̄12

ρ2,ξ +

Φ̃

(√
ε̃ρvk
λmin

+ ‖x∗‖2
)

√
c̄11

. (C22)

According to (C22), there exists ω∗2 > ω∗1 such that d
dt

√
V1(t∗) 6 0, ωo > ω∗2 . Hence, the assumption for proof by

contradiction is invalid.

(S2) Assuming there exists t∗ > tu such that V (t∗) = ρvk ,
√
V1(t∗) 6

√
c̄12ρ2,ξ, and d

dt
V (t∗) > 0. The derivative

of V (t∗) is d
dt
V (t∗) 6 −σ ρvk

λmax
+ π0

c̄12
c̄11

ρ2
2,ξ. According to the definition of ρvk , we have d

dt
V (t∗) < 0. The assumption

d
dt
V (t∗) > 0 does not hold.

Due to (S1) and (S2), there exists ω∗2 > ω∗1 such that (x̄1(t), ξ(t)) ∈ Ω for t > tu and ωo > ω∗2 . Based on (C21), the

following inequalities hold for any ωo > ω∗2 .
sup
t>tu

‖ξ(t)‖ 6
√
c̄12√
c̄11

ρ2,ξ , ρ3,ξ,

sup
t>tu

‖ϑ(t)‖ 6
√
V (t)

λmin
6
√ρvk√
λmin

.
(C23)

Remark 2. In order to prove that the tracking error and estimation error are bounded for t ∈ [tu,+∞), the procedures

(S1) and (S2) are presented. Since the derivatives of Lyapunov functions are non-positive, the uniform boundedness of

estimation error and tracking error is proved by reductio ad absurdum.

Step 3: Analyzing the convergence of the system.

By the analyses in Step 1 and Step 2, x̄1(t) and ξ(t) are proved to be bounded. In this step, a detailed analysis of the

boundaries of x̄1(t) and ξ(t) will be delved into.

Based on Lemma A2 and (C21), the derivative of
√
V1(t) is shown as follows.

d

dt

√
V1(t) 6

−ωo
2c̄12

√
V1(t) +

Φ̃

(√
ε̃ρvk
λmin

+ ‖x∗‖2
)

√
c̄11

. (C24)

According to Bellman-Grownwall inequality, the inequality (C24) indicates the following inequality.

√
V1(t) 6 e

−ωo
2c̄12

(t−tu)√
c̄12ρ3,ξ +

2c̄12

ωo

Φ̃

(√
ε̃ρvk
λmin

+ ‖x∗‖2
)

√
c̄11

. (C25)

Then, the bound of ξ is obtained as follows.

‖ξ(t)‖ 6 γ1(e−γ2ωo(t−tu) +
1

ωo
), (C26)

where the definition of γ1 and γ2 can be found in Appendix B.

Based on (C26), the inequality of the derivative of V (t) (C20) implies that

V (t) 6 e
−σ
λmax

(t−tu)
V (tu) +

∫ t

tu

e
−σ
λmax

(t−τ)
π0‖ξ(τ)‖2dτ. (C27)

According to (C23) and (C26), the bound for the estimation error satisfies that ‖ξ(t)‖2 6 c̄12
c̄11

ρ2
2,ξ for tu 6 t < tu + lnωo

γ2ωo

and ‖ξ(t)‖ 6 2γ1
ωo

for t > tu + lnωo
γ2ωo

. Then, by the inequality scaling method in [26], the following bound for the integral

term in inequality (C27) can be derived.

∫ t

tu

e
−σ
λmax

(t−τ)
π0‖ξ(τ)‖2dτ 6

λmaxπ0c̄12ρ2
2,ξ

γ2σc̄11

lnωo

ωo
+

4π0λmax(γ1)2

σ

1

ω2
o

. (C28)

Finally, combing (C27) and (C28) with V (t)=ϑTΦϑ, the following results are obtained.

‖x̄1(t)‖ 6

√
e

−σ
λmax

(t−tu) λmax

λmin
ρ1,v +

σ̃

λmin
max(

1

ω2
o

,
lnωo

ωo
), (C29)

‖ξ(t)‖ 6 γ1(e−γ2ωo(t−tu) +
1

ωo
). (C30)

This completes the proof of Theorem 1.
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