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Abstract With economic prosperity on the rise, modern energy consumers are experiencing higher living standards and increasingly

demanding greater satisfaction from energy systems, especially in scenarios involving risk. Satisfaction with risk decisions means con-

sumers seek to make wise decisions when facing risks to optimize satisfaction. Yet, traditional optimization struggles with the increasing

decentralization of energy systems, posing significant challenges to optimizing satisfaction with risk decisions. Blockchain technology,

with its inherent decentralization, offers potential solutions to this challenge. However, blockchain systems encounter challenges in effec-

tively integrating consensus mechanisms that optimize energy allocation. To fill this gap, a proof-of-prospect (PoP) consensus mechanism

is presented in this paper, designed to enhance consumer satisfaction in the realm of risk decision-making. Recognizing that solutions

are challenging to identify but straightforward to validate, the PoP substitutes the resource-intensive hash puzzle in the proof-of-work

consensus mechanism with an optimization focused on consumer satisfaction. This shift not only boosts consumer satisfaction but

also mitigates energy expenditure. Our findings indicate that in contrast to traditional consensus models, the PoP promotes fairness,

decentralization, and reliability while improving consumer satisfaction and minimizing energy usage.

Keywords blockchain consensus mechanism, distributed energy systems, distributed optimization, prospect theory, risk decision, sat-

isfaction

Citation Xie Y Q, Tang C B, Chen Z Y, et al. Towards proof-of-prospect consensus mechanism for maximizing consumers’ satisfaction

in distributed energy systems. Sci China Inf Sci, 2026, 69(2): 122202, https://doi.org/10.1007/s11432-024-4438-5

1 Introduction

With the global economy’s expansion, the fulfillment of consumers’ fundamental needs has led to an increased
emphasis on their individual preferences, which directly shapes their expectations for satisfaction [1,2]. Consumers’
satisfaction is a key indicator for any service, as it is directly related to customer loyalty and market reputation [3].
In energy systems, consumers’ satisfaction is even more critical because it is not just about meeting basic energy
needs, but also about improving quality of life, promoting environmental sustainability, and ensuring economic
viability.

In the realm of energy systems, satisfaction often depends on decisions made under conditions of risk. Consumers
are driven to make choices that mitigate the risks associated with energy consumption, thereby increasing their
satisfaction levels [4]. For example, energy consumers must navigate the trade-offs between cost, reliability, and
environmental impact, all subject to various uncertainties and risks [5–7]. However, current centralized optimization
methods have limitations in optimizing satisfaction with risk decisions due to the decentralization of consumer
interactions [8].

Blockchain technology provides a solution to manage collaboration systems in a decentralized manner, reducing
the dependency on a central authority [9]. However, energy systems that utilize blockchain technology often treat
the consensus and application layers independently, posing two significant challenges. Firstly, as a cornerstone of
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blockchain, the consensus mechanism necessitates energy for the validation process, resulting in substantial energy
consumption [10]. The proof-of-work (PoW), exemplified by Bitcoin, incurs significant energy expenditure [11].
proof-of-stake [12] reduces energy use but risks centralization, while proof-of-capacity [13] improves efficiency but
requires substantial storage. Secondly, energy allocation has physical limits requiring complex optimization solvers
in the application layer, leading to unnecessary system operations [8]. For example, optimizing energy allocation to
minimize demand charges requires extra solvers [14].

Integrating validator selection in the consensus mechanism with satisfaction optimization could tackle the two
challenges. It reduces energy redundancy by replacing the centralized solver, and the energy in selecting validators
is utilized to solve the satisfaction optimization problem [8]. Chen et al. [8] proposed a proof-of-solution (PoSo)
consensus mechanism to integrate optimization problems. However, PoSo lacks a focus on consumer satisfaction
with risk decisions. Given the core idea of integrating the consensus mechanism with satisfaction optimization
problems, there are special issues that need to be addressed.

On the one hand, traditional systems narrowly measure satisfaction as a weighted assessment of economic ben-
efits, lacking a behavioral economic theory to qualitatively characterize it with risk decisions [15]. On the other
hand, psychological factors of consensus nodes affect mechanism efficiency, shaping consumer satisfaction. Current
consensus mechanisms assess these factors superficially through voting, without delving into the intricate psycholog-
ical behaviors through authoritative theory [16]. To accurately capture consumer satisfaction and node psychology,
incorporating robust behavioral economic theories is essential.

Drawing from the previous analysis, this paper seeks to address the following two problems.

• How to design a consensus mechanism that maximizes consumer satisfaction within distributed energy systems?

• How to employ authoritative theories to measure satisfaction with risk decision-making and node psychology
within consensus mechanisms?

To tackle the first problem, a proof-of-prospect (PoP) consensus mechanism is designed in this paper to optimize
consumer satisfaction within the context of risk-based decision-making. The PoP consensus mechanism eliminates
the computationally intensive hash puzzle from PoW, substituting it with a satisfaction optimization task that is
complex to solve but simple to verify. By doing so, the PoP effectively redirects computational resources from
solving meaningless puzzles to addressing problems of significance.

To address the second problem, we utilize the prospect theory (PT), as introduced by Tversky and Kahneman in
1979, which delves into how individuals make risk decisions and their resulting satisfaction levels [17]. This theory
highlights that individual decision-making is influenced not only by rationality but also by psychological factors
like gain-loss perception, framing effects, and personal risk attitudes. Thus, PT serves as a powerful tool to model
and understand both consumers’ satisfaction with risk decisions and the psychological dynamics of nodes within
consensus mechanisms.

The contributions of this paper are summarized as follows.

• Diverging from prior research that predominantly hinged on economic benefits and a singular personality trait
to delineate satisfaction [15, 18], this study integrates PT to formulate a multidimensional consumer satisfaction
model. This model incorporates personality dimensions and psychological factors, thereby providing a nuanced
depiction of consumer satisfaction.

• Unlike existing consensus mechanisms relying on voting to mirror node psychology for validator eligibility [16,
19], this paper adopts PT to develop a subjective metric, the “prospect value”, as a key criterion for selecting the
validator. The concept of prospect value incorporates the subjective preferences of nodes, which not only aligns
with real-world scenarios but also contributes to an efficient selection process for the validator.

• After defining satisfaction and prospect value, this paper introduces a blockchain consensus mechanism that
integrates satisfaction optimization, named PoP. Unlike other consensus mechanisms that predominantly consider
the consensus layer [20, 21], the PoP incorporates the satisfaction optimization problem at the application layer.
Initially, the PoP consensus mechanism identifies a reliable subset of nodes, forming a delegation based on their
prospect values. Subsequently, the PoP selects a node from the delegation to be the validator through a satisfaction
optimization process.

• We apply the PoP to the energy grid of South-Eastern Australia. We detail the satisfaction optimization
problem and the operational process of the consensus mechanism in specific scenarios. The results demonstrate
that the PoP can significantly enhance the satisfaction levels of consumers, and achieve a high degree of fairness
while maintaining acceptable decentralization and reliability.
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2 Preliminaries

In this section, we introduce the prospect theory (PT) and compare it with the expected utility theory (EUT)
within risk-based decision-making. We use the example of a consumer choosing between two energy suppliers, s1
and s2, to explain the two theories. This decision is fraught with risk, as different suppliers may lead to divergent
outcomes and inherent uncertainties. When selecting producer s1, I potential events exist, each associated with
value ui, occurring with probability pi. Similarly, for producer s2, there are J potential events, each characterized
by value uj, occurring with probability pj .

The EUT is based on choosing the option that maximizes expected utility, thus rationalizing decision-making. For
producer s1, the expected utility, E[s1], is defined as the sum of the products of each value and its corresponding

probability, i.e., E[s1] =
∑I

i=1 uipi. By analogy, for producer s2, the expected utility is E[s2] =
∑J

j=1 ujpj.
Consequently, the consumer chooses between producers s1 and s2 based on a comparative evaluation of E[s1] and
E[s2]. The EUT offers a universal decision-making framework, assuming consistent behavior across consumers.
Yet, it fails to capture the individual’s unique risk attitudes and diverse preferences due to its one-size-fits-all
approach. Notably, Tversky and Kahneman’s seminal work reveals that decision-making is influenced by cognitive
biases and behavioral tendencies [17]. This underscores the necessity for a more sophisticated model that reflects
human decision-making.

The PT refines the analysis of subjective evaluations by considering potential values and probabilities, providing a
nuanced framework for decision-making under uncertainty. Central to the theoretical framework of PT are the value
function and the probability weighting function. The value function substitutes the value in the EUT. The value
function’s S-shaped curve, with a concave gain region and a convex loss region, reflects the asymmetric psychological
perception of gains and losses relative to a reference point. The curve is steeper for the loss region than for the gain
region, which reflects that individuals tend to amplify the perceived intensity of losses. In the case of producer s1,
the value function that follows Tversky and Kahneman’s model is [22]

V (ui) =

{

(ui − ue)
α
, if ui > ue,

−γ (ue − ui)
β , if ui 6 ue,

(1)

where ue acts as the reference point, explicitly defined as the consumer’s expected value. The parameters α and β,
both constrained by 0 < α, β < 1, capture the consumer’s risk attitudes. A higher value of α and β indicates a greater
propensity for the consumer to embrace risk in the pursuit of gains or in facing losses. The parameter γ quantifies
the consumer’s loss aversion. Specifically, γ > 1 denotes heightened sensitivity to potential losses. In the subsequent
sections, the prospect value of nodes, ordinary nodes’ willingness to participate in the PoP consensus mechanism,
and consumer satisfaction are all modeled using the unified form of (1). This generalization is rooted in the reference-
dependence principle of PT, where the definition of the reference point ue in (1) is dynamically reinterpreted across
scenarios. This flexibility ensures that the same theoretical framework can model decision-making contexts through
scenario-driven redefinition of the reference point. The probability weighting function supplants the objective
probability in the EUT with subjective weights, which reflect an individual’s perception. This function tends to
overstate the importance of low-probability events while understating the significance of high-probability events.
For producer s1, the weighting function, as proposed by Prelec [23], is defined as W (pi) = exp(− (− ln pi)

φ
) , where

φ dictates how objective probabilities are translated into subjective weights by the consumer. The prospective
value is derived from the product of the value function and the weighting function. For producer s1, the prospect
value is derived from P [s1] =

∑I
i=1 V (ui)W (pi), and similarly for producer s2, it is P [s2] =

∑J
j=1 V (uj)W (pj).

Ultimately, the consumer’s decision between producers s1 and s2 is predicated on a comparison of P [s1] and P [s2],
providing a nuanced approach to decision-making under risk. Despite sharing a logical basis for decision-making in
uncertainty, the two theories diverge fundamentally in essence, structure, and risk preference handling. Contrasting
PT with EUT in risk-based decision-making highlights PT’s distinctive merits in capturing risk decision pathways
that conventional EUT models fail to accommodate.

3 The principle of the PoP

The PoP consensus mechanism involves two phases: delegate formation and the validator election from the dele-
gation, as delineated in Subsections 3.1 and 3.2. First, the system constructs prospect value attributes for nodes
based on PT. These attributes reflect nodes’ popularity and trustworthiness. It then forms a delegation of high-
quality nodes based on prospect value to prepare for subsequent tasks. Second, the system constructs a satisfaction
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function based on PT and optimizes key variables to maximize consumer satisfaction. Delegates in the delegation
propose solutions and the one who first proposes the optimal solution is designated as the validator. The validator,
distinguished by a high prospect value and consumer trust, ensures the security of data recording. Meanwhile,
the solution proposed by the validator maximizes consumer satisfaction, thereby endowing the system with strong
market competitiveness. Furthermore, Subsection 3.3 delves into the incentive mechanism of the PoP consensus
mechanism, aimed at maintaining the system’s long-term stability.

3.1 Delegation formation

In the system, there are typically two types of interacting nodes, such as producers and consumers. Centered
around one type, it treats the other as service providers. For example, when centered around consumers, producers
are regarded as service providers. In this context, nodes often confront the challenge of selecting service providers.
To address this challenge, node selection employs predefined criteria to evaluate each service provider. Typically,
rational nodes establish their evaluation criteria based on EUT, which involves calculating the expected value
for decision-making. However, due to subjective individual preferences or objective constraints in information
acquisition, nodes are not fully rational. Instead, they might opt to employ PT to calculate the prospect value of
service providers, thereby serving as a basis for evaluation. The prospect value represents the potential associated
with each node and is used as a metric to gauge how attractive a service provider node might be for interaction.
Taking the interaction between producers and consumers as an example, the system assigns a prospect value
attribute to each producer based on the consumers’ expected product prices and personal preferences. This attribute
reflects the producer’s popularity and trustworthiness among consumers. We adapt the general structure of the PT
value function in (1) to the context of prospect value. Specifically, we retain the core idea of evaluating gains and
losses relative to a reference point, which in this case is the expected utility ue,t

j of node j rather than the generic
reference point ue in (1). The time is divided into time slots, based on the value function (1) of PT, at the t-th
time slot, the prospect value of node i from the perspective of node j is

P t
i,j = V

(

ue,t
i

)

=

{

(

ue,t
i − ue,t

j

)αi

, if ue,t
i > ue,t

j ,

−γi
(

ue,t
j − ue,t

i

)βi

, if ue,t
i 6 ue,t

j .
(2)

The parameters ue,t
i , ue,t

j are the expected utility of i and j, and V (·) is the value function of PT. Since the expected

utility of node i is ascertained, the W (·) is omitted in P t
i,j . P

t
i,j is the perceived utility for node j to interact with

node i, as well as the perceived acceptability of node i by node j. Assuming that each of the I nodes can interact
with any one of the J nodes. Each interaction generates a prospect value which can be organized into a matrix
(Pi,j)I×J . Considering the previous T rounds, the cumulative prospect value for node i up to time slot t is

P t
i =

t
∑

l=t−T+1

lt−l1

1

J

J
∑

j=1

P l,′
i,j , (3)

where l1 is the temporal decay factor diminishing the influence of prospect value over time and P l,′
i,j = P l

i,j/
∑I

i=1 P
l
i,j

normalizes the prospect values. The prospect value indicates a node’s receptiveness, with nodes exhibiting high
receptivity being favored for recording critical information.

Then, three indicators for PoP are identified. Indicators of fairness Fai, decentralization Dec, and reliability
Rel are meticulously chosen to reflect aspects of human behavior and risk decision-making. By emphasizing these
indicators, we establish a solid foundation for delegation formation. To operationalize these indicators, we define a
threshold for the prospect value, denoted as P0. The threshold operates as a selection criterion to filter a subset of
candidate nodes from the node set I.

To evaluate the fairness Fai of the PoP, we employ the Gini index, which is a standard measure of equality. In the
context of PoP, it quantifies the distribution of prospect values among the nodes. We introduce a binary variable
ιk to denote whether a node’s prospect value exceeds the threshold P0. Specifically, ιi = 1 if Pi > P0, and ιi = 0
otherwise. Fai is then calculated as follows:

Fai = 1−
1

2Iιi

∑

i6=i′

∑

i′

|ιi − ιi′ | . (4)

The parameter ιi is the average value of ιi across I. Building upon the assessment of fairness, we address the
aspect of decentralization through the Nakamoto index, represented by Dec. This index measures the potential
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threats, revealing the minimum number of nodes that could compromise the integrity of the blockchain system
when colluding [24]. Dec is given by

Dec = |{i ∈ I | Pi > P0}| /I. (5)

Now we consider the reliability of the PoP, denoted by Rel. Rel assesses the trustworthiness of the nodes within
the delegation. The reliability is calculated using the highest Pmax and lowest Pmin prospect values among the
applicants

Rel =
(

P0 − Pmin
)

/
(

Pmax − Pmin
)

. (6)

This formula provides a normalized measure of reliability, ensuring that delegates with higher prospect values
are recognized for their potential contribution to the system’s stability. All three metrics satisfy the condition
Fai,Dec,Rel ∈ [0, 1], with higher values indicating better performance of the respective indicators. A comprehensive
indicator Com is established to describe the comprehensive performance

Com =
ρ21 + ρ22 + (1− ρ1 − ρ2)

2

ρ2
1

Fai +
ρ2
2

Dec +
(1−ρ1−ρ2)2

Rel

, (7)

where ρ1 and ρ2 represent the weighted importance of Fai and Dec. These weights are constrained by ρ1, ρ2 > 0,
and ρ1 + ρ2 6 1, ensuring a balanced contribution of each indicator to Com.

Lastly, the threshold of prospect value P0 is optimized to achieve a balanced assessment of the PoP and then form
the delegation. P0 is formulated as Problem 1, which seeks to maximize Com over the range of possible prospect
values.

Problem 1 (Optimal prospect value threshold).

P ∗0 = argmax
P0∈[Pmin,Pmax]

Com. (8)

Nodes with a prospect value above P0 are chosen for the delegation D. Each delegation is dissolved at the end of
its time slot, making way for a new one. Note that validators’ prospect values are reset to 0 upon disbandment,
other delegates’ values remain, ensuring their ongoing participation in the next slot.

3.2 Validator election

The consumer satisfaction optimization function is formulated based on PT, which serves as the core objective
for the application layer. This function is designed to optimize key variables (e.g., energy allocation volume) to
maximize consumer satisfaction, taking into account subjective consumer perceptions. The consensus layer leverages
a delegation-based mechanism where delegates propose solutions to the satisfaction optimization problem. The first
delegate to propose the optimal solution is selected as the validator, ensuring that the solution is both optimal and
trustworthy.

First, we construct an optimization problem to maximize consumer satisfaction based on their expectations
and personalized parameters. Even when confronted with the same outcomes, the perceived satisfaction may
vary significantly due to differences in their expectations and personalized parameters [25]. The satisfaction of
consumers is fundamentally shaped by PT’s value function, which quantifies how consumers perceive outcomes
relative to their expectations. Specifically, consumer j’s satisfaction Sj is determined by objective utility, expected
utility, and personalized parameters. Objective utility uj(x) is the actual utility derived from the decision vector
x (e.g., energy allocation volume). Expected utility ue

j is the consumer’s subjective reference point, which serves
as a psychological benchmark. Personalized parameters αj , βj , γj are the coefficients capturing risk attitudes and
loss aversion as defined in (1). Consumer j’s satisfaction function Sj integrates these elements through the function
V (·) defined in (1). The resulting satisfaction function is given by

Sj(x) = V (uj(x)) =

{

(

uj(x)− ue
j

)αj
, if uj(x) > ue

j,

−γj
(

ue
j − uj(x)

)βj
, if uj(x) 6 ue

j,
(9)

where the explicit form of uj(x) depends on application-specific factors, such as energy consumption patterns or
financial incentives. Similar to (1), Eq. (9) applies the PT value function to measure consumer j’s satisfaction.
The reference point here is the expected utility ue

j , analogous to the reference point ue in (1) but specific to the



Xie Y Q, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122202:6

consumer’s expectations. Eq. (9) directly maps the prospect value to satisfaction measurement. The total consumer
satisfaction aggregates individual satisfaction across all J consumers

Stotal(x) =

J
∑

j=1

Sj(x). (10)

Formally, we formulate the optimization Problem 2 to maximize total consumer satisfaction within the feasible
region X.

Problem 2 (Maximize satisfaction).
x
∗ = argmax

x∈X

Stotal(x). (11)

Then, each member of the delegation has the right to propose solutions to Problem 2 within T1 seconds. The
member who first presents an optimal solution earns the role of validator. We claim the members of the delegation
as delegates. The collective set of solutions from delegation D is denoted as xD = {xd|d ∈ D}. Verifiers, denoted
by b ∈ B, receive and validate the solutions proposed by the delegates. The PoP incorporates reliable broadcast
(RBC) and asynchronous binary agreement (ABA) principles to ensure all verifiers reliably receive the delegate
solutions [26].

If Problem 2 is convex or concave, verifiers can use the Karush-Kuhn-Tucker (KKT) conditions to identify the
optimal solution within the set xD. The first delegate to submit the optimal solution is appointed as the validator.
For non-convex/non-concave Problem 2, verifiers assess the objective values of Stotal(x) to determine the best
solution. If xd stands out among xD, then d is the validator. It is worth noting that xd is relatively optimal with
respect to the set xD, and may not be globally optimal.

3.3 Incentive model

Consensus is the key to stability in distributed systems, yet it is threatened by minimal node involvement. The PoP
addresses this by incentivizing nodes with block reward R, which is derived from collective transaction fees. It is
critical to adjust R to prevent the rewards from being too meager, which could demotivate nodes, or too generous,
which could overburden the nodes and undermine system sustainability.

We denote the participation willingness of ordinary node k in the consensus process as hk. Building on this, we
extend the value function of PT, as presented in (1), to quantify the willingness of node k to participate in the
consensus process

hk = V (uk) =

{

(uk − ue
k)

αk , if uk > ue
k,

−γk (u
e
k − uk)

βk , if uk 6 ue
k.

(12)

It maintains the fundamental structure of evaluating outcomes relative to a reference point, with ue
k representing

the expected utility of node k for participating in the consensus process. This is similar to the reference point ue

in (1) but tailored to the specific scenario of consensus participation. The term uk = pkR− µk is the actual utility
in the consensus process, where the parameter pk is the probability of node k receiving the block reward, and µk is
the commission fee. The commission paid by the nodes is µk = εζkR, where ε is the commission rate and ζk is the
transaction volume.

To optimize the system, we define the set of ordinary nodes as K and seek to maximize the total willingness
among all ordinary nodes,

∑

k∈K hk, leading to the following optimization problem.

Problem 3 (Optimal block reward).

R∗ = argmax
R

∑

k∈K

hk.

Theorem 1 delineates the optimal solution to Problem 3, establishing the optimal reward for the system.

Theorem 1. Given that ordinary nodes possess positive utility, there exists a unique optimal block reward,
denoted as R∗. This optimal reward is derived from the following equation:

R∗ = ue
k/ (pk − εζk) . (13)

Proof. Given that ordinary nodes achieve a positive utility, we have uk = pkR − µk = pkR − εζkR > 0. Given
that R > 0, it follows that ε < pk/ζk. We define Khigh as the subset of ordinary nodes for which uk > ue

k, with the
remaining ordinary nodes comprising the set Klow. Then, the sum of willingness is

∑

k∈K

hk =
∑

k∈Khigh

hk +
∑

k∈Klow

hk. (14)
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Given the hk defined in (12), for k ∈ Khigh, we have hk = (uk − ue
k)

αk , where uk = pkR−µk and µk = εζkR. First,
we compute the first derivative of uk with respect to R for k ∈ Khigh

∂uk

∂R
=

∂ (pkR− εζkR)

∂R
= pk − εζk.

Next, we define H as H =
∑

k∈Khigh
hk, and then compute the first derivative of H with respect to R

∂H

∂R
=

∑

k∈Khigh

αk (uk − ue
k)

αk−1 ∂uk

∂R
=

∑

k∈Khigh

αk (uk − ue
k)

αk−1 (pk − εζk) .

To find the second derivative of H with respect to R, we differentiate ∂H
∂R

. Thus, we obtain ∂2H
∂R2 as

∂2H

∂R2
=

∑

k∈Khigh

αk (αk − 1) (uk − ue
k)

αk−2 (pk − εζk)
2
. (15)

Eq. (15) characterizes the degree of curvature of hk to R. Since 0 < αk < 1 and uk > ue
k, the term on the right-hand

side of (15) is less than 0. Given that the feasible region for the block reward R is convex, a unique optimal solution
R exists for Problem 3. The first derivative of hk indicates its slope of change. Setting the first-order partial
derivative of hk with respect to 0

∂H

∂R
=

∑

k∈Khigh

αk (uk − ue
k)

αk−1 (pk − εζk) = 0. (16)

Given that ε < pk/ζk, pk > 0, and αk > 0, we have

αk (uk − ue
k)

αk−1 (pk − εζk) > 0, ∀k ∈ Khigh. (17)

Thus, Eq. (16) holds true if and only if pkR− εζkR− ue
k = 0, for k ∈ Khigh. Hence, R

∗ = ue
k/ (pk − εζk) is satisfied

for k ∈ Khigh. For the second term on the right-hand side of (14), since uk 6 ue
k and hk increases with increasing R,

it is derived that R∗ 6 ue
k/ (pk − εζk) , ∀k ∈ Klow. Consequently, R

∗ = ue
k/ (pk − εζk) is also satisfied for k ∈ Klow.

The proof is complete.

Remark 1. Different ordinary nodes will have different values for ue
k/ (pk − εζk). To maximize the participation

willingness across the system, R∗ is set as the median of these values.

Remark 2. Adhering to the principle of individual rationality, nodes must derive a positive utility from their
engagement in the consensus mechanism. This requirement establishes the condition that ε must satisfy ε <
mink∈K pk/ζk, ensuring a fair and sustainable incentive structure.

4 Apply the PoP to energy allocation

In this section, we employ the PoP consensus mechanism for energy allocation, detailing two primary steps as
outlined in Subsections 4.1 and 4.2. The comprehensive methodology of PoP within energy allocation is further
explained in Subsection 4.3.

Our energy allocation network comprises both application and consensus layers, as illustrated in Figure 1. Our
system focuses on the flow of energy from producers to consumers, with electricity as the exchange medium.
The system includes three types of entities: producers, prosumers, and consumers. Producers have large-scale
power generation equipment, while consumers rely entirely on purchasing electricity. Prosumers own small-scale
power generation devices and act as either producers or consumers in the energy allocation system based on their
generation minus consumption during a specific period. If their generation exceeds consumption, they are producers;
otherwise, they are consumers. Thus, only producers and consumers are present in the system at any given time.
The utility grid is crucial for electricity transmission from producers to consumers. Producers are enabled to actively
participate as delegates and are eligible for block rewards, enhancing their market engagement. Energy allocation is
quantified in discrete time slots, each from one midnight to the next. For simplicity, we will refer to time t only when
necessary. In the application layer, the key task is addressing the satisfaction optimization problem, contingent upon
the decision variable of allocation volume. In the consensus layer, validators are tasked with uploading allocation
data to the blockchain, ensuring data security and system transparency. The novelty of our proposed PoP is its
dual functionality: it determines allocation volumes and guides validator elections. This dual role strengthens the
synergy between allocation and validator selection, enhancing the blockchain system’s performance and reliability.
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Figure 1 (Color online) System architecture.

4.1 Delegation formation in energy allocation

Firstly, each producer is assigned a prospect value that reflects risk-based decision-making in energy allocation. The
producers are represented by index i, and the consumers by j. Price is recognized as the main driver of consumer
behavior [27], and thus, the prospect value is derived from expected electricity prices. From the perspective of
consumer j, the prospect value Pi,j associated with producer i under PT is defined by the value function V (·) in
(1), specifically

Pi,j = V (psupi ) =

{

(

psupi − pdemj

)αj
, if psupi > pdemj ,

−γj
(

pdemj − psupi

)βj
, if psupi 6 pdemj ,

(18)

where psupi denotes the expected electricity supply price (ESP) of producer i, and pdemj is the expected electricity
demand price (EDP) of consumer j. Eq. (18) generalizes the formulation of (1) by contextualizing its reference
point ue as the pdemj in energy allocation. Consumer preference for lower prices leads to an inversion of pdemj and
psupi in (18) compared to (2). The value Pi,j indicates the degree of consumer j’s acceptance of producer i based
on price. Subsequently, the delegation formation process follows as described in Subsection 3.1.

4.2 Validator election in energy allocation

In our proposed PoP consensus mechanism, the satisfaction optimization function and the blockchain consensus
mechanism are tightly integrated to achieve a balance between consumer satisfaction and consensus security. In
an energy allocation system, the satisfaction optimization function aims to maximize consumer satisfaction by
optimizing the volume of energy allocated to each consumer. The consensus layer, comprising a delegation of
trusted producer nodes, evaluates proposed solutions based on their ability to achieve this optimization goal. The
node that proposes the solution with the highest consumer satisfaction value is selected as the validator, responsible
for recording the transaction data. This integration ensures that the consensus process is driven by consumer-centric
optimization while maintaining the security and reliability of the blockchain.

Individuals frequently assess their actual utility by comparing it with expected utility, a process that is closely
linked to both their historical utility and the utility of their peers [28]. This comparative assessment of utility
significantly influences an individual’s life satisfaction. Drawing from this insight, we introduce a “satisfaction”
metric that accounts for individual personality traits and social dynamics. In this study, application-layer producers
establish their ESPs and, as consensus-layer delegates, propose solutions to optimize satisfaction. The first delegate
to propose an optimal solution is rewarded with a block reward. This solution also dictates the volume of allocated
energy.

Firstly, an optimization problem aimed at maximizing consumer satisfaction in energy allocation is constructed.
The utility function of consumer j is given by

Uj(x) = qj ln

(

max

(

I
∑

i=1

δjxi,j − Emin
j , 0

)

+ 1

)

−

I
∑

i=1

δjri,jxi,j
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−max

(

Emin
j −

I
∑

i=1

δjxi,j , 0

)

roff −
I
∑

i=1

|dgeoi − dgeoj |xi,j . (19)

The term x = (xi,j)I×J represents the optimization variable in (19). The primary component in (19) measures
consumer benefits derived from electricity purchases [29]. The following two terms calculate consumer j’s electricity
costs sourced from energy producers and the utility grid. The final component is the grid’s transmission fee, repre-
senting the cost of using the grid’s infrastructure for electricity allocation. The willingness to purchase electricity
for j is indicated by qj = τ/ωj, with τ a constant and ωj signifying the surplus electricity accessible to consumer j.
The variable xi,j represents the electricity allocated from producer i, corresponding to the received electricity yi,j
of consumer j. The equation yi,j = δjxi,j defines this relationship, with δj indicating the transfer efficiency. The
parameter Emin

j denotes the minimum volume of electricity that consumer j wishes to receive. The logarithmic
function ln (·+ 1) captures the diminishing marginal utility phenomenon, where incremental gains in δjxi,j yield
progressively less satisfaction, aligning with Gossen’s first law of economics [30]. The +1 term avoids undefined
logarithmic operations at 0 allocation levels and reflects the baseline utility for consumers. The electricity price
ri,j negotiated between i and j is determined by ri,j =

(

psupi + pdemj

)

/2 + ̟
∑J

j=1 E
min
j , where ̟ is a constant.

To promote local electricity consumption, we set the expected prices, psupi and pdemj , within the bounds [ron, roff].

Here, ron represents the on-grid tariff at which producers sell electricity to the grid, while roff denotes the off-grid
tariff at which consumers purchase electricity from the grid. Thus, the price of purchasing electricity from the
grid is roff. The third term represents the additional electricity consumer j must obtain from the grid when the
producer’s supply is insufficient. The term

∣

∣dgeoi − dgeoj

∣

∣xi,j denotes the transmission fee levied on consumers by the

utility grid. This cost is related to the transmission distance
∣

∣dgeoi − dgeoj

∣

∣ and the volume of electricity transmitted
xi,j . The values of dgeoi and dgeoj are correlated with the geographical locations of producer i and consumer j. The

expected utility of consumer j at time slot t is U e
j = U t

j
′ + 1

t−1

∑t−1
l=1 (Uj)

l , which is related to the utility of other

consumers and their historical t−1 time slots utility. In accordance with (9), the satisfaction function for consumer
j is mathematically expressed as Sj(x) = V (Uj(x)). Subsequently, the total satisfaction of all consumers is

Stotal(x) =

J
∑

j=1

Sj(x). (20)

In conjunction with (11), the consumer-centric satisfaction optimization challenge in the energy allocation systems
can be rigorously expressed as the following constrained maximization problem.

Problem 4 (Maximize satisfaction in energy allocation).

max
x

Stotal(x) (21)

zmin
i 6 xi,j 6 zmax

i , ∀i ∈ I, (22)

zmin
j 6 δjxi,j 6 zmax

j , ∀j ∈ J , (23)

J
∑

j=1

xi,j 6 Emax
i , ∀i ∈ I. (24)

The parameters zmin
i and zmax

i are the minimum and maximum energy transmissible of producer i, respectively,
and zmin

j and zmax
j are the minimum and maximum energy transmissible of consumer j, respectively. Constraints

(22) and (23) ensure that the transferred electricity remains within the operational transmissible capacity of the
producers and consumers. Emax

i is the maximum electricity supply of producer i. Constraint (24) stipulates that
the allocated quantity does not exceed the maximum supply capability. Theorem 2 implies the complexity of finding
the optimal solution, which requires various optimization algorithms.

Theorem 2. The satisfaction maximization Problem 4 is characterized by both supermodularity and submodu-
larity.
Proof. A function F (x, y) is considered supermodular if, for all x1 > x2 and y1 > y2, the following inequality
holds

F (x1, y1) + F (x2, y2) > F (x1, y2) + F (x2, y1) . (25)

We introduce an auxiliary function g (λ) defined as

g (λ) = F (λx1 + (1− λ)x2, λy1 + (1− λ) y2) ,
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where λ ∈ [0, 1]. This function effectively interpolates between the points (x1, y1) and (x2, y2). Applying the mean
value theorem to g (λ), which is continuous on [0, 1] and differentiable on (0, 1), ensures the existence of some
λ∗ ∈ (0, 1) such that g′ (λ∗) = g (1) − g (0). Here, g (1) = (x1, y1) and g (0) = (x2, y2). For the supermodularity
condition g (1) > g (0) to hold, it is necessary that g′ (λ∗) > 0. By computing the derivative of g (λ) with respect
to λ, we obtain

g′ (λ) =
∂F

∂x
(λx1 + (1− λ) x2, λy1 + (1− λ) y2) (x1 − x2) +

∂F

∂y
(λx1 + (1− λ)x2, λy1

+(1− λ) y2) (y1 − y2) .

Evaluating this at λ∗, we see that the condition g′ (λ∗) > 0 is dominated by the sign of the cross partial derivative
F (x, y) /∂x∂y. Specifically, for g′ (λ∗) > 0 to hold for all x1 > y1 and x2 > y2, it is required that F (x, y) /∂x∂y > 0.
Thus, if F (x, y) is differentiable, Eq. (25) is equivalent to the non-negativity of its cross partial derivative [31]:

F (x, y)

∂x∂y
> 0.

Conversely, F (x, y) is deemed submodular if the cross partial derivative is non-positive. To demonstrate that the
function Problem 4 exhibits both supermodular and submodular properties, it suffices to establish that V (u) is
neither convex nor concave to U t

j . We are to prove that the function

V (u) =

{

(u− ue)
α
, if u > ue,

−γ (ue − u)β , if u 6 ue

is neither convex nor concave to u. Taking the second derivative of the function V (u) with respect to u yields

∂2V (u)/∂u2 =

{

α (α− 1) (u− ue)a−2 , if u > ue,

−γβ (β − 1) (ue − u)
β−2

, if u 6 ue.

Given that 0 < α, β < 1 and γ > 0, we have
{

∂2V (u)/∂u2 < 0, if u > ue,

∂2V (u)/∂u2 > 0, if u 6 ue.

This signifies that the point (ue, V (ue)) identifies an inflection point for the function V (u). Beyond this point, for
u > ue, V (u) exhibits upward convexity, whereas for u 6 ue, it demonstrates downward concavity. Consequently,
function V (u) is both non-convex and non-concave concerning u, which makes Problem 4 inherently supermodular
and submodular. This settles the proof.

For the non-convex non-concave Problem 4, we derive the KKT conditions as necessary conditions for local
optimality of a candidate solution x = (xi,j)I×J . These conditions help identify potential local optima, though
further verification is required to confirm optimality. The KKT conditions consist of

∂L

∂x

∣

∣

∣

∣

x=x∗

= 0, (26a)

rT
∂2L

∂x2

∣

∣

∣

∣

x=x∗

r > 0, ∀r 6= 0, (26b)

Gl
i

(

x
∗,ΞGi

)

6 0, ∀i ∈ I, l = 1, 2, 3, (26c)

Gl
j

(

x
∗,ΞGj

)

6 0, ∀j ∈ J , l = 4, 5, (26d)

ϕl,∗
i Gi

(

x
∗,ΞGi

)

= 0, ∀i ∈ I, l = 1, 2, 3, (26e)

χl,∗
j Gj

(

x
∗,ΞGj

)

= 0, ∀j ∈ J , l = 4, 5, (26f)

ϕl,∗
i > 0, ∀i ∈ I, l = 1, 2, 3, (26g)

χl,∗
j > 0, ∀j ∈ J , l = 4, 5, (26h)

L represents the Lagrange function of Problem 4. ϕl,∗
i and χl,∗

j are lagrange multipliers. r is an auxiliary vector,

G1
i (x) = xi,j − zmin

i , G2
i (x) = zmax

i − xi,j , G
3
i (x) =

∑J
j=1 xi,j − Emax

i , G4
j (x) = δjxi,j − zmin

i , and G5
j(x) =



Xie Y Q, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122202:11

zmax
i − δjxi,j . Due to the complexity of sub-formulas (26a) and (26b), we focus on conducting a deep analysis of
them.

Given the function Stotal(x) defined as Stotal(x) =
∑J

j=1 Sj(x). The Lagrangian equation L for Problem 4 is
given as

L =

J
∑

j=1

Sj(x) +
∑

i∈I

(ϕ1,∗
i (xi,j − zmin

i ) + ϕ2,∗
i (zmax

i − xi,j))

+
∑

i∈I

ϕ3,∗
i



Emax
i −

J
∑

j=1

xi,j



+
∑

j∈J

(χ4,∗
j (δjxi,j − zmin

j ) + χ5,∗
j (zmax

j − δjxi,j)),

where
Sj(x) = V (Uj(x)),

and Uj(x) is defined in (19).
The first-order derivative of the L with respect to x is given by

∂L/∂x = g1(x)L1(x) +
I
∑

i=1

ϕ1
i −

I
∑

i=1

ϕ2
i +

I
∑

i=1

ϕ3
i +

J
∑

j=1

χ1
jδj −

J
∑

j=1

χ2
jδj , (27)

where

g1(x) =

{

−α
(

Uj(x)− U e
j

)α−1
, j ∈ Jhigh,

−γβ
(

U e
j − Uj(x)

)β−1
, j ∈ Jlow,

Jhigh and Jlow are the consumer sets with utility above and below expectation, respectively, and

L1(x) =
βjδj

∑J
j=1 δjxi,j − Emin

j + 1
− ri,j + δjr

off −
∣

∣dgeoi − dgeoj

∣

∣ .

Here, roff denotes the unit price of electricity purchased from the power grid, as defined in (19). Eq. (26a) implies
that at x = x

∗, the determinant of the matrix composed of elements specified by (27) is 0. The second partial
derivative of L with respect to x is given by

∂2L/∂x2 = g2(x)L1(x)
2 + g1(x)







βjδ
2
j

(

∑J
j=1 δjxi,j − Emin

j + 1
)2






, (28)

where

g2(x) =

{

−α (α− 1)
(

uj(x)− U e
j

)α−2
, j ∈ Jhigh,

−γβ (β − 1)
(

U e
j − Uj(x)

)β−2
, j ∈ Jlow.

Eq. (26b) indicates that at x = x
∗, the matrix with elements given by (28) is positive definite. In summary, a

feasible solution x
∗ must satisfy the KKT conditions in (26) to be a candidate for local optimality in Problem

4. However, due to the non-convexity of Problem 4, these conditions alone do not guarantee local optimality. To
confirm x

∗ as a local optimum, additional analysis (e.g., verifying the positive definiteness of the Hessian on the
tangent space or comparing the objective function values) is required to exclude saddle points and higher-order
critical points.

Then, delegates within the delegation are tasked with proposing solutions to Problem 4. The delegate who first
submits the optimal solution earns the role of validator, consequently receiving block rewards from the consensus
layer. However, since these delegates also engage in energy allocation as producers, the proposed solution inherently
impacts their utility within the application layer. Selfish delegates are not solely focused on finding the optimal
solution to Problem 4; they are motivated to propose a solution that maximizes the combined utility from electricity
allocation and block reward. Therefore, we analyze the selfish delegates’ overall utility.

Let delegate d (d ∈ D) propose solution xd. We consider the dual role of delegate d as producer i. Producer

i gains utility from the electricity allocation defined by Ui(x) =
∑J

j=1 ri,jxi,j + (Emax
i −

∑J
j=1 xi,j)r

on. The first
term represents earnings from consumers, while the second reflects the revenue from interactions with the utility
grid. Here, the term Emax

i denotes the maximum electricity supply of producer i. The overall utility for delegate
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Algorithm 1 Process of the PoP in energy allocation.

Input: Set of expected utility Ue, Problem 4.

Output: Validator d∗.

Stage 1: Form delegation D in energy allocation.

1: Calculate prospect value Pi by (3);

2: Calculate Fai, Dec, and Rel by (4)–(6);

3: Obtain P0 by (8);

4: if Pi > P0 then D ← D ∪ i;

5: end if

Stage 2: Elect validator d∗ in energy allocation.

6: Delegate d proposes solutions xd;

7: Verifier b receives solutions set Xb;

8: if solution xd satisfies the conditions for the optimal solution of Problem 4 then Delegate d∗ is the validator;

9: else Keep xd if xd = argmax
Xb

Stotal(x);

10: end if

11: Broadcast xd to neighbor nodes;

12: Verifier b updates Xb;

13: Repeat steps 7–12 until all nodes keep xd;

14: Delegate d∗ is the validator.

d is articulated as Ud(x) = valdR + Ui (x
∗) , where the binary variable vald indicates whether delegate d serves

as the validator. When xd = x
∗, d acts as a validator with vald = 1, and thus d is eligible to receive the block

reward R. Therefore, selfish validators balance the block reward R against the utility function Ui(x) to achieve
the maximum overall benefit Ud(x). In contrast, altruistic validators simply aim to propose solutions that optimize
Problem 4. The block reward is closely connected to the dynamics of power generation within the electricity system.
When there is a surplus of new renewable energy generation, a larger block reward is engineered to incentivize the
use of renewable sources. Conversely, in scenarios with predominant thermal power generation, the block reward
is reduced. The nodes selected by the PoP exhibit both altruism and a broader perspective, which is crucial for
ensuring the smooth operation of the consensus mechanism and preventing potential issues like system forks.

4.3 Process of the PoP in energy allocation

In the realm of consensus mechanisms, the validator plays a pivotal role in overseeing the system’s state, while
the PoP consensus mechanism extends this by addressing the energy allocation optimization in a decentralized
manner. The workflow of PoP is outlined and depicted in Figure 1, with a detailed procedural breakdown provided
in Algorithm 1.

(i) Identify. Nodes within the energy system are classified as either producers or consumers, predicated on their
projected electricity generation and consumption. Producer i (i = 1, . . . , I) engages with the system by proposing
psupi and Emax

i . In turn, consumer j (j = 1, . . . , J) communicates energy demands to the system by specifying pdemj

and Emin
j .

(ii) Generate prospect value. The prospect value for each producer is gained, drawing on data provided by
producers and consumers. This value encapsulates the collective subjective judgments of consumers, reflecting the
producer’s acceptance within the energy system (Algorithm 1 step 1).

(iii) Form delegation. A threshold for the prospect value is established to form a delegation. Producers
whose prospect values surpass this threshold become delegates and have the authority to propose solutions to the
satisfaction maximization problem (Algorithm 1 steps 2–5).

(iv) Propose block. The energy system’s overarching goal is to optimize consumer satisfaction, which is
formulated at the application layer. It considers societal objectives and consumer subjective choices. Each delegate
proposes a block that includes their solutions (Algorithm 1 step 6).

(v) Verify block. Verifiers receive and validate the block, which includes verifying the correctness of the
transaction information and ensuring that the solution satisfies the KKT conditions of Problem 4. Each validator
b receives a set of solutions Xb from neighboring nodes. If an optimal solution is present in the set, the validator
propagates this solution to its neighbors via a peer-to-peer network. (Algorithm 1 steps 7–13).

(vi) Announce validator. The delegate who first proposes the optimal solution is selected as the validator. If
no delegate proposes the optimal solution, the system selects the best alternative solution from those proposed by
the delegation, and the delegate who proposed this solution is the validator. The solution of the validator directs
the energy allocation volumes between prosumers (Algorithm 1 step 14).

(vii) Upload block. The validator’s approved block is then uploaded to the main blockchain, integrating the
new data into the existing ledger.
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Figure 2 Simplified 14-generator Australian power grid.

5 Simulation

In this section, we substantiate the feasibility of the PoP and assess its performance through its application to a
simplified South-Eastern Australian energy system model. The simplified model is shown in Figure 2. Adhering to
the regional electricity pricing norms of South-Eastern Australia, the paper adopts the unit c/kW·h for electricity
pricing, signifying Australian cents per kilowatt-hour. The parameters required for experiment initialization are
provided in Tables B1 and B2 of Appendix B. The system aims to optimize consumer satisfaction, thereby bolstering
market competitiveness. The model differentiates between altruistic producers who strive to enhance the system’s
objectives and selfish producers whose primary goal is the maximization of their benefits. Our approach involves
the strategic selection of a subset of producers to serve as delegates, and we hope that this process will ensure
fairness, decentralization, and reliability of the PoP. Subsequently, we aim to appoint a delegate to serve as the
validator, and the validator proposes solutions to maximize consumer satisfaction.

5.1 Delegation formation in energy allocation

First, we evaluate how the personality parameters of Australian consumers affect the prospect value of producers, as
depicted in Figures 3(a) and (b). For this analysis, we consider a consumer with an EDP set at 10 c/kW·h, reflecting
the average electricity prices in Australia. Figure 3(a) illustrates the variation in producer’s ESP, ranging from 5
to 15 c/kW·h, and their corresponding prospect value. Figure 3 reveals an inverse ESP-prospect value correlation:
higher ESPs correspond to lower prospect values, aligning with PT’s value function. This implies that consumers
tend to favor producers with lower ESPs. When the ESP deviates from the consumer’s EDP, the prospect value
correlates with different personality parameters. Specifically, if the ESP is below the EDP, the prospect value is
influenced by the parameter α, which indicates the consumer’s risk-taking propensity for potential gains. Conversely,
if the ESP exceeds the EDP, the parameters β and γ come into play. Here, β reflects the consumer’s risk-taking
propensity for avoiding losses, and γ is the loss aversion coefficient, signifying the consumer’s heightened sensitivity
to losses over gains. The effect of α and β on the prospect value is opposite: a higher α leads to a higher prospect
value, while a higher β results in a lower prospect value. The effect of parameter γ on the prospect value is similar
to that of β.

Next, we explore the likelihood of producers accessing the delegation by comparing their prospect values to the
threshold, as illustrated in Figure 4. We categorize producers into three types based on their ESP ranges: Type A
with ESPs between 9 and 11 c/kW·h, Type B between 11 and 13 c/kW·h, and Type C between 13 and 15 c/kW·h.
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Figure 3 (Color online) Prospect values of producers. (a) Prospect values with different α and β; (b) prospect values with different γ.

Figure 4 (Color online) Comparison of prospect values with the

threshold.

Figure 5 (Color online) Prospect values and prospect value thresh-

olds.

Our analysis indicates that Type A and Type B producers have prospect values above the threshold, suggesting
higher delegation access for those with lower ESPs. This observation suggests a correlation between the ESP and
their potential to become delegates.

Finally, we present the prospect value threshold against a backdrop of fluctuating EDP values, ranging from 7
to 15 c/kW·h, as shown in Figure 5. Within this figure, the blue box demarcates the threshold, with the median
prospect value indicated by a black horizontal line and the mean prospect value signified by a black triangular
marker. As the EDP increases, the threshold value gradually approaches and eventually surpasses both the mean
and median prospect values. Initially, at lower EDP levels, the threshold is below both the mean and median.
However, as EDP rises, the threshold value increases and intersects with the mean and median prospect values.
Beyond this intersection point, the threshold continues to rise and remains above both the mean and median,
indicating a growing disparity between the threshold and the central tendency measures of the prospect values.
This phenomenon indicates that the threshold is positively correlated with EDP. As EDP increases, the threshold
rises accordingly, which increases the difficulty for producers to delegate, thereby ensuring the reliability of the
delegation.

This trend can be attributed to the decline in overall prospect values, necessitating an elevated threshold to
uphold the reliability of the consensus process.

5.2 Validator election in energy allocation

Here, we simulate the solution proposal process for delegates with varying motivations using grey wolf optimization
(GWO) [32] and particle swarm optimization (PSO) [33]. The GWO uses wolf pack dynamics as an optimization
model, emphasizing hierarchical leadership in search strategies. PSO simulates social behaviors such as bird flocks
and finds the best solution through the cooperative movement of particles. The main difference between the two is
that GWO focuses on hierarchical hunting, while PSO focuses on collective intelligence in group behavior. Selfish
Delegate A and altruistic Delegate B utilize GWO, yielding Solutions A and B. Similarly, selfish Delegate C and
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Figure 6 (Color online) The solutions. (a) Solution A (selfish, GWO); (b) solution B (altruistic, GWO); (c) solution C (selfish, PSO);

(d) solution D (altruistic, PSO).

altruistic Delegate D employ PSO to produce Solutions C and D.
The comparative analysis of the proposed solutions is presented in Figure 6, where each solution is represented as

a matrix. The color coding—orange for higher values and blue for lower ones—facilitates the visual differentiation of
the solutions’ characteristics. The visual representation in Figure 6 reveals that the GWO algorithm yields solutions
with greater stability and uniformity in element values.

Further, Figure 7 illustrates the dynamic process of solution proposal by the two types of delegates using their
respective algorithms. The selfish delegates are denoted by triangle markers, while the altruistic delegates are
indicated by square markers. The blue curves correspond to the outcomes of the GWO algorithm, and the red curves
to those of the PSO algorithm. This comparative study provides valuable insights into the behavior of different
optimization algorithms under the influence of varying delegate motivations. It offers a deeper understanding of
their respective strengths and potential applications in solving satisfaction optimization problems.

Finally, we outline the contrasting goals of selfish and altruistic delegates within an optimization model. Selfish
delegates aim to maximize personal utility, while altruistic ones seek to improve overall consumer satisfaction. We
aim to choose a validator from four delegates. The satisfaction and utility comparison among the four proposed
solutions is shown in Figure 8. The delegate whose solution yields the highest satisfaction is elected as the validator
and receives the block reward. In this scenario, Delegate B is selected as the validator, as the proposed solution
B earns the highest satisfaction of all consumers, rather than maximizing individual utility. Since Delegate D
also exhibits altruistic characteristics, the proposed optimization solution can significantly enhance the overall
satisfaction and utility levels. The solutions obtained by Delegate B and Delegate D differ in terms of satisfaction
and utility, as B employs the GWO while D uses the PSO algorithm. In the absence of Delegate B, Delegate D could
have been selected as the validator, as the solution proposed by D achieved the second-highest level of consumer
satisfaction after B. The graph also shows that selfish delegates (A and C) are not selected as validators, highlighting
the PoP’s effectiveness in preventing their election and reducing potential security risks. This study thoroughly
explores the balance between individual incentives and collective welfare, providing insights into validator selection
and the impact of their decisions on system performance and security.

5.3 Performance of the PoP

In this subsection, we evaluate the performance of the proposed PoP consensus mechanism, examining its fairness,
decentralization, reliability, security, energy consumption, and applicability.

First, we evaluate and compare the fairness Fai, decentralization Dec, and reliability Rel of the PoP consensus
mechanism against PoSo and delegated proof-of-stake (DPoS), as illustrated in Figure 9. Notably, DPoS is opera-
tional on both the EOS and Asch platforms [34]. In PoSo, validators are directly elected by the entire node system,
precluding the delegation process. Conversely, DPoS initiates with a selection of nodes to form a delegation, from
which a validator is chosen through voting. Despite the procedural variations, both the PoSo and DPoS attain a
reliability metric of 1, whereas PoP exhibits a reliability of 0.650. PoSo also assigns optimization tasks to individual
nodes. However, having only one node solve the problem leads to a significantly low fairness value of 0.0233 and
decentralization of 0.2000. On the other hand, the EOS and Asch platforms display varying degrees of fairness
(0.1846 and 0.1061 respectively) due to differences in the total and delegated node counts. The participatory na-
ture of DPoS in voting confers a decentralization level of 0.660, marginally higher than PoP’s 0.558. While PoP
may not excel in reliability and decentralization compared to the other two consensus mechanisms, it maintains
commendable standards within the context of distributed blockchain-enabled energy allocation systems. Moreover,
PoP’s fairness stands at 0.500, tripling the fairness of other consensus mechanisms.

Subsequently, Figure 10 shows the verification time for the proposed PoP consensus mechanism. Since Problem
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Figure 7 (Color online) Iterative process of the solutions proposed

by delegates.

Figure 8 (Color online) Satisfaction and utility corresponding to

the four solutions.

Figure 9 (Color online) The Fai, Dec, and Rel of the PoSo, DPoS,

and the PoP.

Figure 10 (Color online) Verification time required for the PoP.

4 is neither convex nor concave, verifiers must evaluate function values across all gathered solutions. The initial
verification was completed in 13.5 s, with subsequent validations averaging 7.5 s each. This highlights the efficiency
of PoP in terms of verification time.

Then, we validate the security of the PoP consensus mechanism by analyzing its design principles and the
results shown in Figure 11. The design principles of PoP prioritize security, which encompasses both reliability
and decentralization. The high-reliability standard ensures that selected validators are entrusted with the critical
role of data security. Meanwhile, decentralization is fortified by the requirement for a significant node consensus to
facilitate collusion, thereby enhancing overall system security. We introduce a novel security index that captures the
equilibrium between reliability and decentralization, while imposing a mild penalty on deviations from an optimal
decentralization level. The index is defined as Sec = 1−|Rel−Dec|−0.2 |Dec− 0.2| . The security metric ranges from
0 to 1, with values approaching 1 indicating enhanced protocol security. As shown in Figure 11, the proposed PoP
consensus mechanism maintains security levels between 0.8 and 1.0 (mean = 0.93, dashed line) across network scales
from 1 to 1000 nodes, demonstrating robust security preservation under dynamic node variations. Furthermore,
we incorporate RBC and ABA to ensure comprehensive solution dissemination among all verifiers. RBC ensures
the dependable propagation of messages, while ABA specializes in achieving consensus in an asynchronous setting,
particularly concerning the endorsement or rejection of proposals. In addressing the common challenge of system
forking, validators within PoP are established as trustworthy entities that adhere to system protocols, preempting
malicious actions. If a fork does occur, the system’s security is preserved through robust voting mechanisms that
identify and eliminate non-compliant nodes.

Afterward, Figure 12 validates the low energy consumption of the PoP consensus mechanism and compares it
with other mechanisms. The energy consumption is minimized in our PoP consensus mechanism by avoiding solving
the meaningless puzzle in PoW. The delegation formation in PoP is dictated by a threshold derived from solving
Problem 1, characterized by a singular objective function, two linear constraints, and requiring minimal energy
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Figure 11 (Color online) Security index of PoP. Figure 12 (Color online) Energy profile: number of delegates and

variables.

Table 1 Analysis of consensus mechanism variants.

PoW PoSo PoP

Fairness High Low High

Decentralization High Low High

Reliability High Medium High

Computational workload High Medium Low

Computational efficiency Low High High

Combing optimization problems No Yes Yes

Reflecting risk decision of nodes No No Yes

to resolve. The PoP further streamlines energy use by leveraging user-provided solution verification within the
delegation. Utilizing the KKT complementary conditions, this verification process is more efficient than solving the
original problem, underscoring PoP’s commitment to energy conservation. Figure 12 shows the energy consumption
of the PoP consensus mechanism per transaction is less than 2 J. By analyzing the annual energy consumption data
provided by the Cambridge Centre for Alternative Finance and the annual transaction volume data available on
the official website, we estimate the energy consumption per transaction for blockchain and Ethereum to be 920
and 13.36 kW·h, respectively (the relevant data resources are listed in Appendix A). This indicates that the PoP
consensus mechanism has the potential to significantly reduce energy consumption.

Furthermore, we demonstrate the applicability of the PoP mechanism through complexity analysis and simulation
results. The PoP consensus mechanism exhibits a linear time complexity of O (n), with n denoting the number
of nodes. This highlights its scalability across various environments with a high density of nodes. Figure 12
illustrates the energy consumption of the PoP consensus mechanism as the number of optimization variables ranges
from 100 to 1000, corresponding to an increase in the number of delegates from 60 to 100. The figure clearly
shows that energy consumption increases with the rise in both the number of optimization variables and delegates.
However, even with 1000 optimization variables and 100 delegates, the energy consumption does not exceed 2 J,
underscoring the applicability of the proposed PoP consensus mechanism. Moreover, the PoP consensus mechanism
is well-suited for systems with subjective participants aiming to maximize user satisfaction, with each participant’s
state being resolved through an optimization problem. This is particularly relevant in energy systems, such as in
energy allocation and market management scenarios. In the context of energy allocation, the PoP allocates energy
between producers and consumers by maximizing satisfaction, considering that all parties involved have personal
perspectives and make decisions in the face of risk.

Additionally, we contrast the optimization objectives that integrate individual differences and social factors with
those focused solely on economic utility. The experimental results show that the economic utility stands at 3247c
and the satisfaction is 15880. Economic utility, a pivotal determinant of human satisfaction, is often translated into
satisfaction through weighting in scientific and engineering domains. Even if the economic utility were to be fully
converted to satisfaction, it would not surpass the levels achieved within our model. This result highlights the dual
efficacy of our PoP in enhancing customer satisfaction and preserving consumer utility.

Finally, Table 1 compares the PoW, the PoSo, and our proposed PoP consensus mechanisms. The PoW is
recognized for its fairness, decentralization, and reliability due to its reliance on computationally intensive hash
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puzzles. The PoSo and the PoP are both designed to optimize problems that lack decomposable structures. The
PoSo elects a single delegate to address optimization problems, while the PoP encourages collective members to
contribute to solving the problem and compete for rewards. In the PoSo, the leader is assigned to tackle the
optimization problem in 220 s, followed by a verification conducted by the followers in 1 s. The PoP requires all
members to submit solutions within an adjustable time frame based on transaction volume. Our tests show the
PoP’s average verification time is about 7.5 s, slightly longer than PoSo. Compared to PoW, the PoSo and PoP
are less computationally demanding. Ethereum’s PoW takes 15 s, while Bitcoin’s takes 10 min. The PoW has
the highest workload, followed by the PoSo, with the PoP being the least demanding. The PoP’s efficiency is
highlighted by its focus on solving optimization problems rather than puzzles. Furthermore, delegations are formed
by prospect value, which is a social attribute based on risk decisions. This approach not only promotes a fair and
strong consensus mechanism but also aligns with blockchain’s decentralization.

6 Conclusion

With improving living standards, enhancing consumer satisfaction in energy allocation, particularly in the complex
domain of risk decision-making for energy prosumers, is becoming increasingly important. The increasing decen-
tralization of interactions between energy prosumers in energy systems renders traditional centralized optimization
methods ineffective. This has driven the exploration of solutions within distributed energy systems, positioning
blockchain technology as a key solution. Consensus mechanism is a pivotal component of blockchain technology,
playing a crucial role in its architecture. In blockchain-based energy systems, the design of consensus mechanisms
often involves the separation of the consensus layer from the energy application layer. This approach can lead to
increased system complexity and a concomitant rise in energy consumption. In this paper, we introduce an innova-
tive consensus mechanism termed PoP, which prioritizes consumer satisfaction based on risk decision-making. The
design of PoP integrates energy allocation in the application layer, ensuring that the determination of the consensus
validator is concurrent with the allocation of energy resources. This integrated approach not only simplifies the
system architecture but also contributes to reduced energy consumption, enhancing the efficiency and transparency
of energy allocation. The study is structured to first elucidate the theoretical principle of PoP, followed by its
application in the scenario of a simplified South-Eastern Australian power grid. Our findings underscore the PoP’s
efficacy, demonstrating enhanced consumer satisfaction, fairness, decentralization, and reliability, while significantly
reducing the energy consumption associated with consensus reaching. This not only validates the feasibility of the
PoP but also highlights its potential to redefine energy allocation in distributed systems. The limitations of the
PoP consensus mechanism primarily lie in its restricted application domains. In future work, we aim to focus
on extending the PoP consensus mechanism to broader fields, such as supply chain management and peer-to-peer
networks.
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