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Abstract Semiglobal practical output feedback stabilization is achieved for a class of uncertain minimum-phase nonlinear systems

involving an unknown control gain, matched uncertainty, and unknown internal dynamics. Notably, neither boundedness conditions are

imposed on the nonlinear model functions, nor are the input-to-state stability and bounded-input-to-bounded-state conditions imposed

on the system’s internal dynamics. Therefore, the proposed output feedback approach serves as a somewhat universal (model-free)

controller because it exclusively requires the system output and structural information (e.g., the relative degree r). In addition, our

results demonstrate that a (Byrnes-Isidori) minimum-phase normal form with r 6 2 is semiglobally practically stabilizable using output

feedback control.
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1 Introduction

Recent studies have increasingly focused on underactuated systems, such as the underactuated flexible joint robot [1],
the four-degree-of-freedom crane system [2], the translational oscillator with rotational actuator (TORA) system
[3], the aerial refueling system [4], and the underactuated autonomous underwater vehicle [5]. Many of these
underactuated systems can be formulated using the following (Byrnes-Isidori) normal form [6]











η̇ = f0(η, ξ, ξ̇, . . . , ξ
(r−1)),

ξ(r) = f(η, ξ, ξ̇, . . . , ξ(r−1)) + g(η, ξ, ξ̇, . . . , ξ(r−1))u,

y = ξ,

(1)

where η ∈ R
l, ξ ∈ R, ξ(i) is the i-th derivative of ξ, u ∈ R is the input, and y ∈ R is the output. As pointed

out in [6] and Chapter 4.5 in [7], the global or semiglobal stabilization of the interconnected system described in
(1) using (dynamic) partial state feedback u(ξ, ξ̇, . . . , ξ(r−1)) or further (dynamic) output feedback u(y) remains a
challenge, even under the minimum-phase assumption.

Before reviewing the output feedback approaches for system (1), it is important to introduce a specific cascade
system:











η̇ = f0(η, ξ, ξ̇, . . . , ξ
(r−1)),

ξ(r) = f(ξ, ξ̇, . . . , ξ(r−1)) + g(ξ, ξ̇, . . . , ξ(r−1))u,

y = ξ.

(2)

For the above system (2), high-gain observer approaches [8–15] are typically employed to achieve output feedback
stabilization. As elaborated in [9,10,13], this cascade system (2) is semiglobally stabilizable using output feedback
if it is globally or semiglobally stabilizable by a (dynamic) partial state feedback u(ξ, ξ̇, . . . , ξ(r−1)). This raises a
crucial question about the existence of such partial state feedback. Note that the ξ-subsystem is a fully linearizable
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and naturally equipped with a globally stabilizing state feedback uh(ξ, ξ̇, . . . , ξ
(r−1)). However, even under the

minimum-phase assumption, global or semiglobal stabilization for system (2) may not be achieved merely using uh.
This is because of the peaking phenomenon [16] in the responses of states ξ, ξ̇, . . . , ξ(r−1), as reported in [6] and
Chapter 4.5 in [7]. Therefore, supplementary assumptions, including the input-to-state stability (ISS) condition
(see [15, 17, 18]), the bounded-input-to-bounded-state (BIBS) condition (see [19]), the global growth conditions
on f0 (see [20]), and the special structural restrictions on the η-subsystem (see [21–24]) are usually imposed.
When imposing exclusively structural restrictions on the η-subsystem, low-gain feedback [22, 23] and small signal
feedback [21] can be effectively used. For example, in [23], semiglobal stabilization for the minimum-phase system
(2) was achieved using linear high-and-low gain feedback (a class of partial state feedback), where the ξ-subsystem
was in the linear form and the η-subsystem presented η̇ = f0(η, ϕ(ξ

(r0−1))ξ(r0)) with r0 ∈ {1, 2, . . . , r}.
When it concerns system (1), extended high-gain observer methods [11, 19, 25–27] were employed to achieve

output feedback stabilization. In [11, 19, 27], semiglobally practical output feedback stabilization was achieved for
system (1), where the η-subsystem was BIBS system with respect to states ξ, ξ̇, . . . , ξ(r−1), was achieved. However,
the ISS and BIBS assumption is more stringent than the minimum-phase assumption (as discussed in the example
(36)), making it less elegant both theoretically and practically.

In the following, we focus on the minimum-phase system











η̇ = f0(η, ψ(ξ
(r0−1), ξ(r0))ξ(r0)),

ξ(r) = f(η, ξ, ξ̇, . . . , ξ(r−1)) + g(η, ξ, ξ̇, . . . , ξ(r−1))u,

y = ξ,

(3)

where u ∈ R is the input, y ∈ R is the output, η ∈ R
l, ξ ∈ R, ξ(i) is the i-th derivative of ξ, ξ(r0−1) and ξ(r0) are two

consecutive derivatives of ξ with r0 ∈ {1, 2, . . . , r}, and f0 and ψ are unknown sufficiently smooth functions with
f0(0) = 0, f and g are unknown C1 functions, with f(0) = 0 and g(·) > 0 for all its arguments. Besides, system (3)
satisfies the following minimum-phase assumption [18, 28, 29].

Assumption 1. The equilibrium η = 0 of the zero dynamics η̇ = f0(η, 0) is globally asymptotically stable (GAS).

Readers may be interested in the special structure of the η-subsystem in (3). On the one hand, for system (3)
with the relative degree r 6 2, this structural restriction is nearly nonexistent, since ψ is a general function. As
reported in [30], this type of normal form can be applied to some underactuated systems with appropriate outputs,
such as the inertia wheel pendulum system, TORA system, and planar vertical takeoff and landing aircraft system.
On the other hand, the structural restriction seems not so stringent since any two consecutive derivatives of ξ are
allowed in the cross term ψ(ξ(r0−1), ξ(r0))ξ(r0).

Based on the concept of semiglobally practical stabilization reported in [31], we state our control objective.

Problem 1 (Semiglobally practical stabilization). Let Assumption 1 be met. Find an observer-based output
feedback u = u(y, ζ) with ζ̇ = Ψ(y, ζ), independent of f0, ψ, f , and g, for system (3) such that the trajectory
(η(t), ξ(t), . . . , ξ(r−1)(t), ζ(t)) of the closed-loop system, starting from an arbitrarily large compact set, enters an
arbitrarily small compact set in the finite time and then remains in it thereafter.

Motivated by the (extended) high-gain observer approaches [10, 11, 19], the semiglobal stabilization approaches
[31–34], and the properties of the parametric Lyapunov equation [35,36], we intend to offer a concise and universal
output feedback approach for system (3) under less amount of model information. The contributions of our study
are outlined below.
• Semiglobally practical stabilization for system (3) is achieved by output feedback in the absence of the exact

form of model functions f0, ψ, f , and g. In this way, the developed controller effectively operates under any
practical initial conditions and is somewhat considered a universal (model-free) controller (as detailed in Remark
5). Our results show that a minimum-phase normal form with the relative degree r 6 2 is semiglobally practically
stabilizable by output feedback.
• System (3) involves the unknown control gain, the matched uncertainties, and the unknown internal dynamics

due to the unknown f0, ψ, f , and g. These features differentiate our method from those in [9, 10, 37]. In addition,
any bounded conditions, such as the globally Lipschitz condition [38,39], the linear growth condition (see [36]) and
polynomial growth condition (see [40, 41]), are not imposed on the nonlinear functions f0, ψ, f , and g.
• Except for the basic assumptions such as the equilibrium assumption, only the minimum-phase assumption

(Assumption 1) is imposed on system (3). The minimum-phase assumption is less stringent than the BIBS as-
sumption (used in [19] and Chapter 6 in [11]) or the ISS assumption (used in [15, 17, 18]). Moreover, our model
assumption is different from that in [30], and the employed nonlinear ξ-subsystem of system (3) is more general
than the linear one in [34].
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• System (3) exhibits an interconnected form and can be nonuniformly (completely) observable (see the exact
definition in [33] or [42]), indicating a difference from the related studies [9, 10, 32–34,42, 43].

Notation. A function f(x) : D → R
m is said to be Cr (denoted by f(x) ∈ Cr) on a domain D ⊂ R

n if it is r
orders continuously differentiable for some integer r > 1. Ω\Θ represents the complement of the set Θ in Ω . We
use diag(c1, c2, . . . , cn) to denote a diagonal matrix whose i-th diagonal element is the scalar ci.

2 Preliminaries

2.1 Design tools

Let us recall the properties of the parametric Lyapunov equation (PLE). Denote (A, b, c) ∈ (Rn×n,Rn×1,
R

1×n) as

A =

[

0(n−1)×1 In−1

0 01×(n−1)

]

, b =

[

0(n−1)×1

1

]

, c =
[

1 01×(n−1)

]

. (4)

Lemma 1 ([35, 36]). Let (A, c) be given by (4). Then the following PLE:

AQ+QAT −QcTcQ = −γQ (5)

has a unique positive definite solution Q = Q(γ) if and only if γ > 0. Assumed that this is satisfied.
(1) The solution Q(γ) =W−1(γ) is solved from the Lyapunov equationW (γ)(A+ γ

2 In)+(A+ γ
2 In)

TW (γ) = cTc.
Moreover, Q(γ) can be given by

Q(γ) = γ2n−1L−1
n (γ)QnL

−1
n (γ), (6)

where Qn = Q(1) and Ln(γ) = diag(γn−1, γn−2, . . . , 1).
(2) A−Q(γ)cTc (respectively, A−Qnc

Tc) is Hurwitz and its eigenvalues are −γ (respectively, −1).

We proceed with two classes of saturation functions. Given a positive scalarM , a C0 saturation function σM : R →
[−M,M ] is defined as

σM (x) = sign(x)min{|x| ,M}.

Another C1 saturation function ρ(M,γ) : R → [−M − 1/(2γ),M + 1/(2γ)] is defined as

ρ(M,γ)(x) =















































M +
1

2γ
, x >M + 1/γ,

x−
1

2
γ(x−M)2, M < x < M + 1/γ,

x, −M 6 x 6M,

x+
1

2
γ(x+M)2, −M − 1/γ < x < −M,

−M −
1

2γ
, x 6 −M − 1/γ,

where M and γ are two positive scalars. Such a ρ(M,γ)(x) satisfies

∣

∣ρ(M,γ)(x)− σM (x)
∣

∣ 6
1

2γ
, ∀x ∈ R. (7)

These two saturation functions are depicted in Figure 1.

2.2 Analysis tools

In what follows, we omit the uniformity with respect to time t for the time-varying system and let t0 = 0 without
loss of generality. Thus, the initial condition is denoted as x0 = x(0) = x(t0).

Lemma 2. Consider the singularly perturbed system

ẋ = F0(x) +∆1(x, e, t), x0 = x(0), (8)

ė = γΦ(x, e, t) +∆2(x, e, t), e0 = e(0) = e0(γ), (9)

where x ∈ R
m, e ∈ R

n, γ ∈ [1,∞) is an adjustable parameter, the initial condition e0 = e0(γ) satisfies ‖e0(γ)‖ 6
ecγ

p, ec > 0 is an arbitrarily large scalar independent of γ, p > 0 is an arbitrary (finite) constant independent of
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Figure 1 (Color online) Saturation functions.

Figure 2 (Color online) Local convergence of the system trajectory.

γ, the initial condition x0 is independent of γ, F0(x) and Φ(x, e, t) are piecewise continuous functions independent
of γ, with F0(0) = 0 and Φ(0, 0, t) = 0, ∀t > 0, ∆1(x, e, t) and ∆2(x, e, t) are piecewise continuous functions, with
∆1(0, 0, t) = 0, ∆2(0, 0, t) = 0, ∀t > 0. Suppose that

(1) The equilibrium x = 0 of the nominal x-subsystem ẋ = F0(x) is locally asymptotically stable (LAS), with
region of attraction (ROA) denoted by R ⊂ R

m;
(2) Given any subset Γx ⊂ R, the reduced e-subsystem ė = Φ(x, e, t) has a C1 Lyapunov function U(e) : Rn →

R>0 satisfying

c1 ‖e‖
2
6 U(e) 6 c2 ‖e‖

2
, ∀e ∈ R

n, (10)

∂U(e)

∂e
Φ(x, e, t) 6 −c3 ‖e‖

2 , ∀ (x, e, t) ∈ Γx × R
n × [0,∞), (11)

∥

∥

∥

∥

∂U(e)

∂e

∥

∥

∥

∥

6 c4 ‖e‖ , ∀e ∈ R
n, (12)

where c1, c2, c3, c4 are positive constants independent of γ;
(3) Given any subset Γx ⊂ R, there exist positive constants δ0, δ1, δ2, δ3 independent of γ such that

‖∆1(x, e, t)‖ 6 δ0, ∀ (x, e, t) ∈ Γx × R
n × [0,∞), (13)

‖∆2(x, e, t)‖ 6 δ1 ‖e‖+ δ2, ∀ (x, e, t) ∈ Γx × R
n × [0,∞), (14)

‖∆1(x, e, t)‖ 6 δ3 ‖e‖ , ∀ (x, e, t) ∈ Γx × Γe × [0,∞), (15)

where Γe , {e ∈ R
n : ‖e‖

2
6 ϑ2/γ2} and ϑ is some positive constant independent of γ.

Then, given any compact subset Ωx ⊆ Γx and an arbitrarily small compact set Λǫ ⊂ R
m+n, both centered at the

origin, there exists a γa ∈ [1,∞) such that, for any γ ∈ [γa,∞), the trajectory (x(t), e(t)) of system (8) and (9),
with its initial condition (x0, e0) ∈ Ωx × R

n, enters the set Λǫ in the finite time and then remains in it thereafter.

Proof. See Appendix A.

Remark 1. The proof in Appendix A introduces a composite Lyapunov function W (x, e) on the set (Γχ×Γe)\Λǫ,
which is challenging to establish due to the interconnection of two subsystems. This Lyapunov function directly
implies that the trajectory (x(t), e(t)) starting from (Γχ × Γe)\Λǫ asymptotically enters the arbitrarily small set
Λǫ (as depicted in Figure 2). In addition, such a Lyapunov function W (x, e) will facilitate the stability analysis of
interconnected systems consisting of multiple subsystems in the form of (8) and (9).
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Lemma 3. Consider the well-defined singularly perturbed system (8) and (9). Suppose that

(1) The conditions in Lemma 2 are satisfied;

(2) The equilibrium x = 0 of the nominal x-subsystem ẋ = F0(x) is locally exponentially stable (LES);

(3) There exist positive constants δ4 and δ5 independent of γ such that

‖∆2(x, e, t)‖ 6 δ4 ‖e‖+ δ5 ‖x‖ , ∀ (x, e, t) ∈ Λǫ × [0,∞), (16)

where Λǫ ⊂ R
m+n is an arbitrarily small compact set.

Then, given any compact subset Ωx ⊆ Γx, centered at the origin, there exists a γb ∈ [γa,∞) such that, for any
γ ∈ [γb,∞), the equilibrium (x, e) = (0, 0) of system (8) and (9) is LAS with ROA containing Ωx ×R

n, where γa is
the one in Lemma 2.

Proof. This proof follows a similar procedure as the proof of Theorem 5 in [10].

We mention that the LES condition in Item 2 can be relaxed to other ones (see Assumption 4 in [10]).

3 Main results

Rewrite system (3) in the subsequent state-space form











η̇ = f0(η, ψ(xr0 , xr0+1)xr0+1),

ẋ = Acx+ bc (f(η, x) + g(η, x)u) ,

y = ccx,

(17)

where x = [ x1 x2 · · · xr ]
T is the state with xi = ξ(i−1) and the triple (Ac, bc, cc) ∈ (Rr×r,Rr×1,R1×r) shares the

similar form as (A, b, c) in (4).

3.1 Ideal target system

An ideal state feedback is constructed as

u =
1

g(η, x)
(v(x) − f(η, x)) , φ(η, x), (18)

v(x) = −

r0
∑

i=1

1

ks
aixr−r0+i −

r−r0
∑

i=1

ksbiwi(x), (19)

wi(x) = xr0−i+2 +

r0
∑

j=1

1

ks
ajxi+j−1, i = 1, 2, . . . , r − r0,

where ks ∈ [1,∞) is the scalar parameter determined by the following Lemma 4, ai, i = 1, 2, . . . , r0 and bi,
i = 1, 2, . . . , r − r0 are parameters chosen such that companion polynomials sr0 + ar0s

r0−1 + · · · + a1 and sr−r0 +
br−r0s

r−r0−1 + · · · + b1 are Hurwitz. We point out that the partial state feedback v(x) is in the linear form and
designed based on the linear high-and-low-gain approach [22, 24]. However, as the nonlinear input transformation
in (18) is employed, the entire state feedback φ(η, x) is no longer linear.

Thus, the closed-loop system consisting of (17) and (18) presents

[

η̇

ẋ

]

=

[

f0(η, ψ(xr0 , xr0+1)xr0+1)

Acx+ bcv(x)

]

, F0(η, x). (20)

We also view system (20) as the ideal target system to be recovered by our developed observer. Following a similar
proof for Theorem 2 of [24], we have the following results.

Lemma 4. Let Assumption 1 be met. There exists a constant ks∗ ∈ [1,∞) such that, for any ks ∈ [ks∗,∞), the
equilibrium (η, x) = (0, 0) of the ideal target system (20) is LAS, and its ROA, denoted by R ⊂ R

l+r, contains any
compact subset Ωχ ⊂ R

l+r.
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Let ks ∈ [ks∗,∞) be satisfied. It then follows from the converse Lyapunov theorem (Theorem 4.17 in [44]) that
there exists a C∞ positive definite function V (η, x) : R → R>0 such that

∂V (η, x)

∂(η, x)
F0(η, x) 6 0, ∀ (η, x) ∈ R, (21)

lim
(η,x)→∂R

V (η, x) = ∞, ∀ (η, x) ∈ R, (22)

where ∂R denotes the boundary of R. In view of the positive definiteness of V (η, x) and (22), we can define a set

Γχ , {(η, x) ∈ R
l+r : V (η, x) 6 υ0},

such that Ωχ ⊆ Γχ ⊂ R, where υ0 is some positive constant. It follows from (21) and (22) that the set Γχ is a
positively invariant compact set for the ideal target system (20), that is,

(η0, x0) ∈ Γχ ⇒ (η(t), x(t)) ∈ Γχ, ∀t > 0. (23)

3.2 Output feedback

We then introduce some preliminaries for the extended observer design. Taking a control gain g0 ∈ (0,∞] (selecting
later) as the approximation to g(η, x), the approximation error is denoted by

g̃(η, x) , g(η, x) − g0.

Instead of employing η in the state feedback φ(η, x) (see (18)), we tend to find an extended state ̟ to offset the
influence of the unusable state η. In other words, it is expected to construct a new state feedback relying on the
states x and ̟:

ϕ(x,̟) ,
v(x) −̟

g0
= φ(η, x), (24)

where v(x) is given by (19). Thus the extended state ̟ can be expressed as

̟ = −g0φ(η, x) + v(x) = f(η, x) + g̃(η, x)φ(η, x)

= f(η, x) + g̃(η, x)ϕ(x,̟). (25)

We define n , r + 1 and bd , [ 0 · · · 0 1 0 ]T ∈ R
n. Then along with (A, b, c) is given by (4), we have

A =

[

Ac bc

01×r 0

]

, b =

[

0

bc

]

, c =
[

cc 0
]

, bd =

[

bc

0

]

. (26)

The PLE-based extended observer and the output feedback are designed as

[

˙̂x

˙̟̂

]

= A

[

x̂

ˆ̟

]

+Q(γ)cT

(

y − c

[

x̂

ˆ̟

])

+ bdg0u, (27)

u = σM (ϕ(x̂, ˆ̟ )) , ϕs(x̂, ˆ̟ ), (28)

where x̂ and ˆ̟ are the estimations of x and ̟, respectively, g0 ∈ (0,∞] is selected later, Q(γ) ∈ R
n×n is the

solution to the PLE (5) with γ ∈ [1,∞) to be determined, ϕ(x̂, ˆ̟ ) shares the same form as ϕ(x,̟) in (24) and
its parameter ks is well selected, and the scalar parameter M in the saturation function σM (ϕ(x̂, ˆ̟ )) (defined in
Subsection 2.1) is chosen such that

M > max
(η,x)∈Γχ

|ϕ(x,̟)| ,M0. (29)

Such M and M0 are independent of γ and always exist due to (24) and (25).

Remark 2. The saturation operation in (28), motivated by the similar operation in [10,11,19], is used to prevent
the incorporation of undesired information (particularly peaking information). As elaborated in (23), the trajectory
(η(t), x(t)) of the ideal target system (20), starting from the arbitrarily large compact set Γχ, always remains in
the set Γχ. This indicates that Γχ is the set of interest, containing all the necessary information for semiglobal
stabilization. Thus we can choose a scalar M as described in (29) and saturate ϕ(x̂, ˆ̟ ) to [−M,M ].
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Remark 3. As the observability or detectability of system (17) having the internal dynamics usually fails to hold,
designing an observer for the η-subsystem is difficult (if not possible). Then without the estimation η̂ for the state η,
not only the control gain g(η̂, x̂) and the matched uncertainty f(η̂, x̂) are unknown, but also the estimation φ(η̂, x̂)
for the preliminary state feedback φ(η, x) remains unknown. Fortunately, by recognizing the extended state ̟ and
using the extended observer, we can obtain ϕ(x̂, ˆ̟ ) to substitute the unattainable φ(η̂, x̂). From this perspective,
our approach naturally incorporates the idea of the unknown input observer in a sense.

Motivated by [19], define an auxiliary state as

ω = f(η, x) + g̃(η, x)ρ(M,γ) (ϕ (x, ˆ̟ )) , f(η, x) + g̃(η, x)ϕρ (x, ˆ̟ ) , (30)

where ρ(M,γ) is the C1 saturation function defined in Subsection 2.1. Then, the scaled estimation-error (discussed
latter) is defined as

e , Ln(γ)

[

x− x̂

ω − ˆ̟

]

, (31)

where Ln(γ) = diag(γn−1, γn−2, . . . , 1). In view of the plant system (17) and observer (27), the e-subsystem can be
evaluated as

ė = Ln

(

A

[

x

ω

]

+ bd (f(η, x) + g(η, x)u − ω) + bω̇

)

− Ln

(

A

[

x̂

ˆ̟

]

+Q(γ)cT

(

y − c

[

x̂

ˆ̟

])

+ bdg0u

)

= Ln

(

A−Q(γ)cTc
)

[

x− x̂

ω − ˆ̟

]

+ bω̇ + γbd (g(η, x)u− g̃(η, x)ϕρ (x, ˆ̟ )− g0u) ,

where Ln = Ln(γ), (26), (30), Lnbd = γbd, and Lnb = b are used. Along with LnA = γALn, (6), and L−1
n cT =

cT/γn−1, we have

Ln

(

A−Q(γ)cTc
)

[

x− x̂

ω − ˆ̟

]

= γALn

[

x− x̂

ω − ˆ̟

]

− Ln

(

γ2n−1L−1
n QnL

−1
n

)

cTc

[

x− x̂

ω − ˆ̟

]

= γAe− γQnc
Tce.

Similarily, we have ˙̟̂ = γbTQnc
Tce = γqn1ce and subsequently,

ω̇ = ḟ(η, x) + ˙̃g(η, x)ϕρ (x, ˆ̟ ) + g̃(η, x)ρ′
∂ϕ (x, ˆ̟ )

∂x
ẋ−

g̃(η, x)

g0
ρ′γqn1ce,

where Qn = Q(1), qij is the i-th row and j-th column element of Qn, and ρ
′ , dϕρ (x, ˆ̟ ) /dϕ (x, ˆ̟ ).

Subsequently, in view of ϕ(x,̟) = φ(η, x) given by (24), the closed-loop system consisting of the plant system
(17) and the output feedback (27) and (28) can be formulated as

χ̇ = F0(χ) +∆1(χ, x̂, ˆ̟ ), (32)

ė = γ (Ae −Bk(t)ce) +∆2(χ, x̂, ˆ̟ ), (33)

where χ , col(η, x), F0(χ) is the one in (20), and

A = A−Qnc
Tc, B = qn1b, k(t) =

g̃(χ)

g0
ρ′,

∆1(χ, x̂, ˆ̟ ) = bag(χ) (ϕ
s(x̂, ˆ̟ )− ϕ(x,̟)) ,

∆2(χ, x̂, ˆ̟ ) = γbd (g(χ)ϕ
s(x̂, ˆ̟ )− g̃(χ)ϕρ (x, ˆ̟ )− g0ϕ

s(x̂, ˆ̟ ))

+ b

(

ḟ(χ) + ˙̃g(χ)ϕρ (x, ˆ̟ ) + g̃(χ)ρ′
∂ϕ (x, ˆ̟ )

∂x
ẋ

)

,

ba = [ 0 · · · 0 1 ]T ∈ R
l+r.

Readers may be interested in the actual estimation error ̟− ˆ̟ , rather than ω− ˆ̟ in (31). To clarify this issue,
let us introduce Lemma 5.
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Lemma 5. If the condition
∣

∣

∣

∣

g̃(η, x)

g0

∣

∣

∣

∣

< 1, ∀(η, x) ∈ Γχ (34)

is satisfied, then there holds

e = 0 ⇒ ˆ̟ = ω = ̟, ∀(η, x) ∈ Γχ.

Proof. The fact e = 0 ⇒ ˆ̟ = ω follows by (31). It remains to show e = 0 ⇒ ω = ̟, ∀(η, x) ∈ Γχ. Along with
(25) and (30), we have

̟ − ω = g̃(η, x) (ϕ(x,̟) − ϕρ (x, ω)) ,

as long as e = 0. Then by using the definition of the saturation function ρ(M,γ) and its parameter M chosen in
(29), we have ϕ(x,̟) = ϕρ(x,̟), ∀(η, x) ∈ Γχ and subsequently,

̟ − ω = g̃(η, x) (ϕρ(x,̟) − ϕρ (x, ω)) , ∀(η, x) ∈ Γχ,

as long as e = 0. It then follows from the globally Lispchitz property of ρ(M,γ) and (24) that

|̟ − ω| 6 |g̃(η, x)| |ϕ(x,̟)− ϕ (x, ω)| =

∣

∣

∣

∣

g̃(η, x)

g0

∣

∣

∣

∣

|̟ − ω| , ∀(η, x) ∈ Γχ,

as long as e = 0. Thus the lemma is valid by noting condition (34).

Remark 4. When condition (34) is removed, ˆ̟ = ̟ = ω is not always satisfied even when (η, x) ∈ Γχ and e = 0.
Therefore, condition (34) is essential for guaranteeing that e = 0 ⇒ ϕs(x̂, ˆ̟ ) = ϕ(x,̟), ∀(η, x) ∈ Γχ. This further
ensures the successful recovery of the ideal target system (20) when e → 0, namely, e → 0 ⇒ ∆1(η, x, x̂, ˆ̟ ) → 0.
The above property is crucial because the χ-subsystem (32), despite having an asymptotically stable χ̇ = F0(χ),
may exhibit finite-time-escaping if ∆1(η, x, x̂, ˆ̟ ) is merely bounded but failing to converge to zero.

We proceed to investigate the properties of the closed-loop system (32) and (33). Firstly, under the condition (34),
the equilibrium of the closed-loop system (32) and (33) lies on the point (χ, e) = (0, 0). Secondly, the properties
of the reduced e-subsystem and the cross-terms ∆1(χ, x̂, ˆ̟ ), ∆2(χ, x̂, ˆ̟ ) are concluded in Lemmas 6, whose proofs
are conducted in Appendixes B and C, respectively.

Lemma 6. Let the condition (34) be met and consider the system

ė = Ae−Bk(t)ce, (35)

where (A, B, c) and k(t) are same as those in (33). Then when (η, x) ∈ Γχ, there exists a Lyapunov function
U(e) = eTQe such that the time derivative of U(e) along the trajectory of system (35) satisfies

U̇(e)|(35) 6 −µU(e), ∀e ∈ R
n,

where Q ∈ R
n×n is a positive definite matrix and µ > 0 is a constant, both independent of γ.

Lemma 7. Let the condition (34) be met. There exist a sufficiently large constant γ1 ∈ [1,∞) and some positive
constants δ0, δ1, δ2, δ3, δ4, δ5 independent of γ such that, for any γ ∈ [γ1,∞),

‖∆1(χ, x̂, ˆ̟ )‖ 6 δ0, ∀ (χ, e) ∈ Γχ × R
n,

‖∆2(χ, x̂, ˆ̟ )‖ 6 δ1 ‖e‖+ δ2, ∀ (χ, e) ∈ Γχ × R
n,

‖∆1(χ, x̂, ˆ̟ )‖ 6 δ3 ‖e‖ , ∀ (χ, e) ∈ Γχ × Γe,

‖∆2(χ, x̂, ˆ̟ )‖ 6 δ4 ‖e‖+ δ5 ‖χ‖ , ∀ (χ, e) ∈ Γχ × Γe,

where Γe , {e ∈ R
n : ‖e‖

2
6 ϑ2/γ2} and ϑ is some positive constant independent of γ.

Until now, our main result can be summarized as follows.

Theorem 1 (Semiglobally practical stabilization). Let Assumption 1 and condition (34) be met. There exists a
γa ∈ [γ1,∞) such that, for any γ ∈ [γa,∞), system (3) is semiglobally practically stabilized by the output feedback
(27) and (28), that is, given an arbitrary compact set Ωχ ⊂ R

l+r and an arbitrarily small set Λǫ ⊂ R
l+r+n, both

centered at the origin, the trajectory (χ(t), e(t)) of the closed-loop system (32) and (33), with the initial condition
(χ0, e0) ∈ Ωχ × R

n, enters the set Λǫ in the finite time and then remains in it thereafter.
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Proof. This proof follows directly by using Lemma 2. The initial condition χ0 is independent of γ, and e0
satisfies ‖e0‖ 6 γn−1 ‖(x0 − x̂0, ω0 − ˆ̟ 0)‖, with the initial conditions x0 − x̂0 and ω0− ˆ̟ 0 independent of γ. Then,
the remaining conditions of Lemma 2 are verified individually. Firstly, it follows from Lemma 4 that the nominal
x-subsystem ẋ = F0(x) is LAS with ROA R containing any compact sets. Without loss of generality, we employ Γχ

to represent these compact sets. Secondly, it follows from Lemma 6 that the reduced e-subsystem has a Laypunov
function U(e) = eTQe satisfying (10)–(12) when χ ∈ Γχ. Thirdly, the first three conditions in Lemma 7 directly
imply the conditions (13)–(15). Finally, applying Lemma 2 for the closed-loop system (32) and (33) obtains that for
an arbitrary compact subset Ωχ ⊆ Γχ ⊂ R, the trajectory (χ(t), e(t)), with the initial condition (χ0, e0) ∈ Ωχ×R

n,
enters the set Λǫ in the finite time and then remains in it thereafter. Furthermore, in view of the arbitrary large
set R and the definition of Γχ, the set Ωχ can be set as any compact set of Rl+r.

Readers may be interested in the applicability of the condition (34). It is worth mentioning that condition (34)
can be satisfied by choosing an appropriate g0. For instance, if we choose g0>max(η,x)∈Γχ

g(η, x), it then follows
from g(η, x) > 0 and g0 > 0 that 0 < g(η, x)/g0 < 1 holds for any (η, x) ∈ Γχ, which is exactly the condition (34).
Then we obtain a corollary from Theorem 1 for practical applications.

Corollary 1. Let Assumption 1 and g0 > max(η,x)∈Γχ
g(η, x). There exists a γa ∈ [γ1,∞) such that, for any

γ ∈ [γa,∞), system (3) is semiglobally practically stabilized by the output feedback (27) and (28). Thus, Problem
1 is solved.

Remark 5. The controller (27) and (28) is somewhat a universal (model-free) controller. To clarify this point,
note the following:

• f0, ψ, f , and g are unknown general functions without any bounded conditions;

• The minimum-phase property (see Assumption 1) is an inherent characteristic of physical systems with a
prescribed output y and is independent of the model process;

• The controller (27) and (28) only employs the output y = x1 and structural information (e.g., the relative
degree r);

• The controller (27) and (28) works for any practical initial conditions;

• The parameters γ and g0 can be chosen by trial.

Therefore, if physical systems share the same structure as system (3), the developed controller (27) and (28)
operates in a universal (model-free) manner similar to a PID controller or an active disturbance rejection controller
(see [45, 46]). More exactly, since the PLE-based extended observer (27) also serves as a high-gain differentiator
like those in [47,48], the developed output feedback (27) and (28) can be recognized as a generalized PD controller
subject to saturation, where the derivative of the output y is obtained using the differentiator (27). Evidently, our
controller is distinctive from the integral controller proposed in the early work [18] for nonlinear systems with ISS
internal dynamics.

Remark 6. The implementation of the developed observer (27) is straightforward, as its gain matrix Q(γ)cT is
directly calculated by the explicit solution (6) of the PLE (5). In addition, the property (outlined in Item 2) of the
PLE (5) plays a crucial role in establishing the strictly positive realness of the system (A, B, k0c, 1) in the proof of
Lemma 6 (see Appendix B). These properties of the PLE facilitate both the observer design and stability analysis.
For further details on PLE properties, readers can refer to [35, 36]. Readers may be interested in the quantitative
selection of the parameters γ, g0, andM . It is difficult (if not impossible) to provide a quantitative selection method
when considering the general system (3) with f0, ψ, f , and g unknown. These parameters are typically determined
by trial. Alternatively, for a specific system with certain model information, a systematic approach, such as the
traversing method used by [37], can be employed to explore a quantitative selection procedure for these parameters.

When system (3) has a relative degree r 6 2, the involving structural restriction is nearly nonexistent, since ψ is
a general function. We then present the following appealing result.

Corollary 2. The well-defined minimum-phase normal form (3) with the relative degree r 6 2 is semiglobally
practically stabilizable by the output feedback (27) and (28) with the sufficiently large γ and g0.

The results presented in Corollary 2 are particularly interesting as the “observability” is not required in the
discussion. This implies that system (3) may allow for unobservable internal dynamics. This observation further
motivates us to investigate dynamic output feedback directly, rather than focusing on the observer, which may be
unnecessary in certain contexts. Finally, we investigate the conditions required to achieve semiglobal stabilization
for system (3).

Theorem 2 (Semiglobal stabilization). In addition to Assumption 1 and condition (34), assume that the equi-
librium η = 0 of the zero dynamics η̇ = f0(η, 0) of system (3) is LES. Then there exists a γb ∈ [γa,∞) such that,
for any γ ∈ [γb,∞), system (3) is semiglobally stabilized by the output feedback (27) and (28), that is, given an
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arbitrary compact set Ωχ ⊂ R
l+r centered at the origin, the equilibrium (χ, e) = (0, 0) of the closed-loop system

(32) and (33) is LAS with ROA containing Ωχ × R
n.

Proof. The conditions of Lemma 3 are verified individually. Firstly, as detailed in the proof of Theorem 1, Item
1 in Lemma 3 has been verified. Secondly, with a linear stabilizing feedback v(x) in (18), the x-subsystem of the
ideal target system (20) is in the linear form and thus LES. Notice that η̇ = f0(η, 0, 0) is also LES. It then follows
from Lemma 13.1 in [44] that the nominal system χ̇ = F0(χ) is LES. Thirdly, we can employ the fourth condition
of Lemma 7 to prove that the condition (16) of Lemma 3 holds. Finally, this proof is finished by employing Lemma
3.

We note that Corollaries 1 and 2 are enhanced to be semiglobal stabilization result if the zero dynamics η̇ =
f0(η, 0, 0) is further assumed to be LES. In addition, the LES condition can be relaxed to other ones (e.g., see
Assumption 4 in [10]).

4 An illustrative example

Consider the following system:











η̇ = −0.5(1 + x2x3)η
3,

ẋ = Acx+ bc
(

x2x3η
3 +

(

1 + η2x21
)

u
)

,

y = ccx,

Ac =









0 1 0

0 0 1

0 0 0









, bc =









0

0

1









, cc =
[

1 0 0
]

. (36)

We note that the η-subsystem is not BIBS stable with respect to x2x3, even with η̇ = −0.5η3 being GAS. If we
choose x2(t)x3(t) = −k2te−kt for some k > 0, the solution to (36) presents η2(t) = η20/(1+ η20(t+(1+ kt)e−kt− 1)),
and if the initial condition |η0| > 1, there exists a sufficiently large k (not infinite) such that η(t) escapes to ∞ in the
finite time. Clearly, the BIBS stability with respect to x is not true for the η -subsystem of (36). Therefore, such a
system (36) is quite different from the listed examples in [19]. In addition, the nonlinear function x2x3η

3 violates
the global Lipschitz condition (see [38,39]), the linear growth condition (see [36]), the polynomial growth condition
(see [40, 41]), the homogenous growth condition (see [49]), and other nonlinear growth conditions (see [50]).

We now state our approach. According to (27) and (28), the output feedback is designed as

[

˙̂x

˙̟̂

]

= A

[

x̂

ˆ̟

]

+Q(γ)cT

(

y − c

[

x̂

ˆ̟

])

+ bdg0u,

u = σM

(

v(x̂)− ˆ̟

g0

)

, v(x̂) = −
a0b0
ks

x̂1 −

(

a1b0 +
a0
ks

)

x̂2 −

(

a1
ks

+ ksb0

)

x̂3,

where (A, bd, c) is given by (26) with n = 4. The parameters ks = 2.5, a0 = 1, a1 = 2, b0 = 1 are chosen
according to Lemma 4. Q(γ) is obtained by Lemma 1. Set the initial conditions of the plant system and observer
as (η(0), x1(0), x2(0), x3(0)) = (2,−2, 2, 2) and (x̂1(0), x̂2(0), x̂3(0), ˆ̟ (0)) = (−2, 0, 0, 0), respectively. Choose g0 =
100, M = 31 (the parameter in the saturation function σM ), and γ = 170. Subsequently, the simulation results are
given in Figure 3, which validates the results of Corollary 1. We note that ̟ in figure is the extended state defined
in (25).

5 Conclusion

Semiglobally practical output feedback stabilization was achieved for a class of uncertain minimum-phase nonlinear
systems involving an unknown control gain, matched uncertainty, and unknown internal dynamics. Notably, neither
boundedness conditions are imposed on the nonlinear model functions, nor ISS and BIBS conditions were imposed
on the system’s internal dynamics. Once the system output and structural information (e.g., the relative degree r)
are known, the developed output feedback effectively operates under any practical initial conditions. Therefore, it
operates as a somewhat universal (model-free) controller. Our results showed that a minimum-phase normal form
with the relative degree r 6 2 is semiglobally practically stabilizable by output feedback.

The developed approach incorporates the extended high-gain observer approach and the high-and-low gain feed-
back approach. A class of high-and-low gain state feedback was employed to establish an ideal target system that
is locally asymptotically stable, with an ROA encompassing any compact set. Subsequently, a PLE-based extended
observer was designed to recover the asymptotical performance and ROA of this ideal target system. The observer
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Figure 3 (Color online) Simulation results.

gain matrix was obtained from the solution to PLE, rather than using a pole assignment approach. Finally, an illus-
trative example featuring non-BIBS-stable internal dynamics was chosen to verify the superiority of the developed
approach.

Acknowledgements This work was supported in part by National Natural Science Foundation of China for Distinguished Young Scholars

(Grant No. 62125303), National Natural Science Foundation of China of “Qisun Ye” Science Foundation (Grant No. U2441243), and Science

Center Program of National Natural Science Foundation of China (Grant No. 62188101).

References

1 Rsetam K, Cao Z, Man Z. Design of robust terminal sliding mode control for underactuated flexible joint robot. IEEE Trans Syst Man
Cybern Syst, 2021, 52: 4272–4285

2 Ovalle L, Rios H, Llama M, et al. Continuous sliding-mode output-feedback control for stabilization of a class of underactuated systems.
IEEE Trans Automat Contr, 2022, 67: 986–992

3 Li M, Shi Y, Ye H. Saturated stabilization for an uncertain cascaded system subject to an oscillator. Automatica, 2020, 115: 108878
4 Ren J R, Quan Q, Ma H B, et al. Additive-state-decomposition-based station-keeping control for autonomous aerial refueling. Sci China

Inf Sci, 2021, 64: 219202
5 Heshmati-Alamdari S, Nikou A, Dimarogonas D V. Robust trajectory tracking control for underactuated autonomous underwater vehicles

in uncertain environments. IEEE Trans Automat Sci Eng, 2021, 18: 1288–1301
6 Byrnes C I, Isidori A. Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans Automat Contr, 1991, 36: 1122–1137
7 Sepulchre R, Jankovic M, Kokotovic P V. Constructive Nonlinear Control. Berlin: Springer-Verlag, 1997
8 Khalil H K, Esfandiari F. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Automat Contr,

1993, 38: 1412–1415
9 Teel A, Praly L. Global stabilizability and observability imply semi-global stabilizability by output feedback. Syst Control Lett, 1994, 22:

313–325
10 Atassi A N, Khalil H K. A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans Automat Contr, 1999, 44:

1672–1687
11 Khalil H K. High-gain observers in nonlinear feedback control. In: Proceedings of International Conference on Control, Automation and

Systems, 2017
12 Esfandiari K, Shakarami M. Bank of high-gain observers in output feedback control: robustness analysis against measurement noise. IEEE

Trans Syst Man Cybern Syst, 2021, 51: 2476–2487
13 Yang B, Lin W. On semi-global stabilizability of MIMO nonlinear systems by output feedback. Automatica, 2006, 42: 1049–1054
14 Lin W, Qian C. Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback. Automatica,

2001, 37: 1093–1101
15 Wang Y, Liu Y G. Adaptive output-feedback tracking for nonlinear systems with unknown control direction and generic inverse dynamics.

Sci China Inf Sci, 2022, 65: 182204
16 Sussmann H J, Kokotovic P V. The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans Automat Contr,

1991, 36: 424–440
17 Xie R M, Xu S Y. Output feedback stabilization of stochastic high-order planar nonlinear systems with stochastic inverse dynamics and

output-constraint. Sci China Inf Sci, 2024, 67: 132205
18 Khalil H K. Universal integral controllers for minimum-phase nonlinear systems. IEEE Trans Automat Contr, 2000, 45: 490–494
19 Freidovich L B, Khalil H K. Performance recovery of feedback-linearization-based designs. IEEE Trans Automat Contr, 2008, 53: 2324–2334
20 Xu X. Constrained control of input-output linearizable systems using control sharing barrier functions. Automatica, 2018, 87: 195–201
21 Teel A R. Semi-global stabilization of minimum phase nonlinear systems in special normal forms. Syst Control Lett, 1992, 19: 187–192
22 Lin Z, Saberi A. Semi-global stabilization of minimum phase nonlinear systems in special normal form via linear high-and-low-gain state

feedback. Intl J Robust Nonlinear, 1994, 4: 353–362
23 Lin Z. A further result on semi-global stabilization of minimum-phase input-output linearizable nonlinear systems by linear partial state

feedback. IEEE Trans Automat Contr, 2019, 64: 3492–3497
24 Li S, Zhou B, Duan G. Semi-global stabilization of a class of cascade systems by a separate design approach. Intl J Robust Nonlinear,

2025, 35: 3678–3690
25 Nazrulla S, Khalil H K. Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans

Automat Contr, 2010, 56: 802–813
26 Boker A M, Khalil H K. Semi-global output feedback stabilization of non-minimum phase nonlinear systems. IEEE Trans Automat Contr,

2016, 62: 4005–4010

https://doi.org/10.1109/TSMC.2021.3096835
https://doi.org/10.1109/TAC.2021.3075179
https://doi.org/10.1016/j.automatica.2020.108878
https://doi.org/10.1007/s11432-019-2814-x
https://doi.org/10.1109/TASE.2020.3001183
https://doi.org/10.1109/9.90226
https://doi.org/10.1109/9.237658
https://doi.org/10.1016/0167-6911(94)90029-9
https://doi.org/10.1109/9.788534
https://doi.org/10.1109/TSMC.2019.2914898
https://doi.org/10.1016/j.automatica.2006.02.021
https://doi.org/10.1016/S0005-1098(01)00056-5
https://doi.org/10.1007/s11432-020-3207-3
https://doi.org/10.1109/9.75101
https://doi.org/10.1007/s11432-023-3875-5
https://doi.org/10.1109/9.847730
https://doi.org/10.1109/TAC.2008.2006821
https://doi.org/10.1016/j.automatica.2017.10.005
https://doi.org/10.1016/0167-6911(92)90112-6
https://doi.org/10.1002/rnc.4590040303
https://doi.org/10.1109/TAC.2018.2879959
https://doi.org/10.1002/rnc.7873
https://doi.org/10.1109/TAC.2010.2069612
https://doi.org/10.1109/TAC.2016.2615080


Li S-L, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122201:12

27 Farza M, Ménard T, Ltaief A, et al. Extended high gain observer design for a class of MIMO non-uniformly observable systems. Automatica,
2017, 86: 138–146

28 Freidovich L B, Khalil H K. Logic-based switching for robust control of minimum-phase nonlinear systems. Syst Control Lett, 2005, 54:
713–727

29 Tomei P, Marino R. Adaptive regulation for minimum phase systems with unknown relative degree and uncertain exosystems. Automatica,
2023, 147: 110678

30 Jiang J, Astolfi A. Stabilization of a class of underactuated nonlinear systems via underactuated back-stepping. IEEE Trans Automat
Contr, 2021, 66: 5429–5435

31 Teel A, Praly L. Tools for semiglobal stabilization by partial state and output feedback. SIAM J Control Optim, 1995, 33: 1443–1488
32 Lin Z L, Saberi A. Robust semiglobal stabilization of minimum-phase input-output linearizable systems via partial state and output

feedback. IEEE Trans Automat Contr, 1995, 40: 1029–1041
33 Isidori A, Teel A R, Praly L. A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output

feedback. Syst Control Lett, 2000, 39: 165–171
34 Lin Z. Co-design of linear low-and-high gain feedback and high gain observer for suppression of effects of peaking on semi-global stabilization.

Automatica, 2022, 137: 110124
35 Zhou B, Duan G, Lin Z. A parametric Lyapunov equation approach to the design of low gain feedback. IEEE Trans Automat Contr, 2008,

53: 1548–1554
36 Zhou B, Shi Y. Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback. IEEE Trans Automat Contr,

2021, 66: 6123–6130
37 Yang J, Li T, Liu C, et al. Nonlinearity estimator-based control of a class of uncertain nonlinear systems. IEEE Trans Automat Contr,

2019, 65: 2230–2236
38 Zemouche A, Boutayeb M. On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica, 2013, 49: 585–591
39 Shen Y J, Huang Y H. Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans

Automat Contr, 2009, 54: 2621–2625
40 Yin X L, Sun Z Y, Wen C. Global output feedback regulation of time-varying nonlinear systems via the dual-gain method. Sci China Inf

Sci, 2024, 67: 159204
41 Chen H, Jia X, Xiang C. Global output feedback control for uncertain nonlinear systems with input quantisation and sensor gain pertur-

bation. Int J Control, 2024. doi: 10.1080/00207179.2024.2403474
42 Gauthier J P, Hammouri H, Othman S. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Automat Contr,

1992, 37: 875–880
43 Shim H, Teel A R. Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data

output feedback. Automatica, 2003, 39: 441–454
44 Khalil H K. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002
45 Chen S, Chen Z X, Huang Y, et al. New design of active disturbance rejection control for nonlinear uncertain systems with unknown

control input gain. Sci China Inf Sci, 2022, 65: 142201
46 Han J. From PID to active disturbance rejection control. IEEE Trans Ind Electron, 2009, 56: 900–906
47 Wu Z H, Zhou H C, Guo B Z, et al. On the convergence of tracking differentiator with multiple stochastic disturbances. Sci China Inf Sci,

2024, 67: 122203
48 Guo B Z, Zhao Z L. On convergence of tracking differentiator. Int J Control, 2011, 84: 693–701
49 Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability. Math Control Signals Syst, 2005, 17: 101–127
50 Li S, Zhou B, Shi Y, et al. Prescribed-time semi-global control for a class of nonlinear uncertain systems by linear time-varying feedback.

IEEE Trans Cybern, 2025, 55: 1172–1182

Appendix A Proof of Lemma 2

This proof is motivated by the well-known work [10]. Except for some modifications in conditions, the main distinction lies in the

asymptotical performance of the trajectory (x(t), e(t)) to the small set Λǫ.

We omit the time domain [0,∞) without loss of generality and begin with some properties. It follows from Item 1 in Lemma 2 and

the converse Lyapunov theorem (see Theorem 4.17 in [44]) that there exists a C∞ positive definite function V (x) : R → R>0 and a C0

positive definite function V0(x) : R → R>0 such that

∂V (x)

∂x
F0(x) 6 −V0(x), ∀x ∈ R, (A1)

lim
x→∂R

V (x) = ∞, ∀x ∈ R, (A2)

where ∂R is the boundary of R. Since x0 and F0(x) are independent of γ, the ROA R is also independent of γ. For any subset Γx ⊂ R,

we define it without loss of generality as

Γx , {x ∈ R
m : V (x) 6 υ},

where υ is some positive constant independent of γ, selected to guarantee Γx ⊂ R. Clearly, Γx is a compact set owing to (A2).

Step 1. We will show a fact that the set Γx×Γe can be a positively invariant set for system (8) and (9). Let ∂Γx , {x ∈ R
n : V (x) = υ}

be the boundary of Γx. It follows from (A1) and (15) that the time derivative of V (x) along the trajectory of the x-subsystem (8)

satisfies

V̇ (x)|(8) =
∂V (x)

∂x
F0(x) +

∂V (x)

∂x
∆1(x, e, t)

6 −V0(x) + µ1δ3 ‖e‖

6 −µ0 + µ1δ3 ‖e‖

6 −µ0 + µ1δ3ϑ/γ, ∀ (x, e) ∈ ∂Γx × Γe, (A3)

where µ0 , minx∈∂Γx
V0(x) and µ1 , maxx∈Γx

‖∂V (x)/∂x‖ are some positive constants independent of γ.

Let ∂Γe , {e ∈ R
n : ‖e‖2 = ϑ2/γ2} be the boundary of Γe. It follows from (11), (12) and (14) that the time derivative of U(e) along

the trajectory of the e-subsystem (9) presents

U̇(e)|(9) =
∂U(e)

∂e
γΦ(e, t) +

∂U(e)

∂e
∆2(x, e, t)
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6 −c3γ ‖e‖2 + c4δ1 ‖e‖
2 + c4δ2 ‖e‖

= −c3ϑ
2/γ + c4δ1ϑ

2/γ2 + c4δ2ϑ/γ

= −c3ϑ
2/ (2γ) + c4δ1ϑ

2/γ2, ∀ (x, e) ∈ Γx × ∂Γe, (A4)

where ϑ is chosen as ϑ = 2c4δ2/c3.

It can be concluded from (A3) and (A4) that there exists a γ1 ∈ [1,∞) such that, for any γ ∈ [γ1,∞),

V̇ (x)|(8) 6 0, ∀ (x, e) ∈ ∂Γx × Γe,

U̇(e)|(9) 6 0, ∀ (x, e) ∈ Γx × ∂Γe,

which implies that, under γ ∈ [γ1,∞), the set Γx × Γe is a positively invariant set for system (8) and (9), that is,

(x0, e0) ∈ Γx × Γe ⇒ (x(t), e(t)) ∈ Γx × Γe, ∀t > 0.

Step 2. We then prove that the trajectory (x(t), e(t)) ultimately enters the positively invariant set Γx × Γe. We know from (8) and

(13) that ‖ẋ‖ is upper bounded by a constant independent of γ, as long as x ∈ Γx. This, together with Ωx ⊆ Γx, directly implies that

there exists a finite time interval [0, tb] with tb being independent of γ such that

x0 ∈ Ωx ⇒ x(t) ∈ Γx, ∀t ∈ [0, tb], (A5)

that is, the trajectory x(t) starting from the interior of Γx remains in the set Γx for all t ∈ [0, tb], regardless of the trajectory e(t).

Following a similar procedure as (A4) and using (10), we can find a γ2 ∈ [1,∞) such that, for any γ ∈ [γ2,∞),

U̇(e)|(9) 6 −c3γ ‖e‖2 + c4δ1 ‖e‖
2 + c4δ2 ‖e‖

6 −µγU(e), ∀ (x, e) ∈ Γx × R
n\Γe,

where µ > 0 is some constant independent of γ. This, together with (10), (A5), and the property of e0, further implies that, for any

γ ∈ [γ2,∞),

‖e(t)‖2 6
1

c1
U(e(t)) 6

1

c1
e−µγtU(e0) 6 e−µγt c2

c1
‖e0‖

2

6
c2

c1
e2cγ

2pe−µγt , α0γ
2pe−µγt, ∀ (x, e) ∈ Γx × R

n\Γe. (A6)

In the following analysis, we suppose that the trajectory x(t) starts from Ωx. Then combining (A5) and (A6) obtains that, for any

γ ∈ [γ2,∞) and e ∈ R
n\Γe,

‖e(t)‖2 6 α0γ
2pe−µγt, ∀t ∈ [0, tb]. (A7)

Let tc(γ) be a time such that e(t) first arrives at the boundary of Γe (namely, ∂Γe). In view of (A6), we get tc(γ) 6 t∗c (γ), where t∗c (γ)

satisfies α0γ2pe−µγt∗
c
(γ) = ϑ2/γ2 and thus leads to

t∗c (γ) ,
1

µγ
ln

(

α0γ2(p+1)

ϑ2

)

.

Noting that limγ→∞ t∗c (γ) = 0 and α0, µ, ϑ are independent of γ, there exists a γ3 ∈ [γ2,∞) such that tc = tc(γ) 6 t∗c (γ) 6 tb for any

γ ∈ [γ3,∞). Thus, there is no contradiction to the necessary condition t ∈ [0, tb] of (A7). Given (A5) and tc 6 tb, the trajectory x(t)

still remains in the set Γx until the time tc, while e(t) enters the set Γe in the finite time tc, that is, (x0, e0) ∈ Ωx×R
n ⇒ (x(tc), e(tc)) ∈

Γx × Γe. Thereafter, the trajectory (x(t), e(t)) remains in the positively invariant set Γx × Γe (see the proof in Step 1) in this case.

Overall, the above ultimately bounded result can be summarized as, for any γ ∈ [max{γ1, γ3},∞),

(x0, e0) ∈ Ωx × R
n ⇒ (x(t), e(t)) ∈ Γx × Γe, ∀t > tc. (A8)

Step 3. We then show the local performance of the trajectory (x(t), e(t)) after it remains in Γx × Γe. Define a positive definite

function W (x, e) : Γx × R
n → R>0 as

W (x, e) , V (x) + U(e).

Without loss of generality, we can define the arbitrarily small compact set Λǫ as

Λǫ = {(x, e) ∈ Γx × Γe : W (x, e) 6 ǫ} .

Besides, define the following sets:

Λ̆ǫ , {(x, e) ∈ Γx × Γe : W (x, e) > ǫ} ,

Λ1 , {(x, e) ∈ Γx × Γe : U(e) > ǫ} ,

Λ2 , {(x, e) ∈ Γx × Γe : U(e) 6 ǫ} ∩ Λ̆ǫ.
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With the ultimately bounded result in (A8), the conditions (13)–(15) are applicable in the subsequent proof. Subsequently, the time

derivative of W = W (x, e) along the trajectory of system (8) and (9) presents

Ẇ |(8) and (9) =
∂V (x)

∂x
(F0(x) +∆1(x, e, t)) +

∂U(e)

∂e
(γΦ(x, e, t) +∆2(x, e, t))

6 −V0(x) + µ1δ3 ‖e‖ − c3γ ‖e‖2 + c4δ1 ‖e‖
2 + c4δ2 ‖e‖

6 −V0(x)− c3γ ‖e‖2 + c4δ1 ‖e‖
2 + (µ1δ3 + c4δ2) ‖e‖ , ∀(x, e) ∈ Λ1 ∪ Λ2, (A9)

where (A1), µ1 = maxx∈Γx
‖∂V (x)/∂x‖, (15), (11), (12), and (14) are used.

The first case is on the set Λ1. Since there exists a γ4,1(ǫ) ∈ [1,∞) such that, for any γ ∈ [γ4,1(ǫ),∞),

−
( c3

2
γ − c4δ1

)

‖e‖2 + (µ1δ3 + c4δ2) ‖e‖ 6 0, ∀(x, e) ∈ Λ1,

Ẇ |(8) and (9) in (A9) can be continued as, for any γ ∈ [γ4,1(ǫ),∞),

Ẇ |(8) and (9) 6 −V0(x)−
c3

2
γ ‖e‖2 , ∀(x, e) ∈ Λ1. (A10)

Another case is on the set Λ2. Define a new function E(x, e) : Γx × R
n → R as

E(x, e) , −
1

2
V0(x) + c4δ1 ‖e‖

2 + (µ1δ3 + c4δ2) ‖e‖ .

We use a notation {e = 0} = {(x, e) ∈ Γx × Γe : e = 0} for simplicity. By noting W (x, 0) = V (x) > ǫ on the set Λ2, it yields a constant

ν(ǫ) > 0 independent of γ such that

(x, e) ∈ {e = 0} ∩ Λ2 ⇒ E(x, e) = −V0(x)/2 6 −ν(ǫ),

which, together with the continuity of E(x, e), implies that there exists an open set Λc containing {e = 0} such that

(x, e) ∈ Λc ∩ Λ2 ⇒ E(x, e) 6 0. (A11)

Such a set Λc can be defined as Λc , {(x, e) ∈ Γx × Γe : U(e) < ρ(ǫ)}, where ρ(ǫ) 6 ǫ is some positive constant independent of γ.

Illustrations of these sets are depicted in Figure 2. Focused on the set Λc ∩ Λ2, substituting (A11) into (A9) yields

Ẇ |(8) and (9) 6 −
1

2
V0(x)− c3γ ‖e‖2 , ∀(x, e) ∈ Λc ∩ Λ2. (A12)

We then focus on the set Λ2\Λc. Following a similar procedure as for (A10), there exists a γ4,2(ǫ) ∈ [1,∞) such that Ẇ |(8) and (9) in

(A9) can be continued as, for any γ ∈ [γ4,2(ǫ),∞),

Ẇ |(8) and (9) 6 −V0(x)−
c3

2
γ ‖e‖2 , ∀(x, e) ∈ Λ2\Λc. (A13)

Notice that Λ̆ǫ ⊂ Λ1 ∪ Λ2 = Λ1 ∪ (Λ2\Λc) ∪ (Λc ∩ Λ2) and choose γ4(ǫ) = max{γ4,1(ǫ), γ4,2(ǫ)}. Then combining (A10), (A12), and

(A13) yields, for any γ ∈ [γ4(ǫ),∞),

Ẇ |(8) and (9) 6 −
1

2

(

V0(x) + c3γ ‖e‖2
)

6 −µcW, ∀(x, e) ∈ Λ̆ǫ,

where µc is some positive constant independent of γ . This means that W (x, e) is a Lyapunov function on the set Λ̆ǫ. It then follows

that, for any γ ∈ [γ4(ǫ),∞),

W (x(t), e(t)) 6 e−µctW (x0, e0) = e−µct (V (x0) + U(e0))

6
(

υ + c2ϑ
2
)

e−µct , α1e
−µct, ∀(x, e) ∈ Λ̆ǫ, (A14)

where we have used Λ̆ǫ ⊂ Γx×Γe and (10). Let td be the time such that the trajectory (x(t), e(t)) starting from Γx×Γe first arrives at the

boundary of Λǫ, namely, ∂Λǫ , {(x, e) ∈ Γx × Γe : W (x, e) = ǫ}. In view of (A14), we obtain td 6 t∗d, where t∗d satisfies α1e
−µct

∗

d = ǫ.

This further implies

td 6 t∗d =
1

µc
ln
(α1

ǫ

)

.

Clearly, such a td is independent of γ.

Overall, we define γa , max{γ1, γ3, γ4(ǫ)} and choose γ ∈ [γa,∞). Then the trajectory (x(t), e(t)) with its initial condition

(x0, e0) ∈ Ωx×R
n enters the positively invariant set Γx×Γe in the finite time tc(γ) (see (A8)). Later, the trajectory (x(t), e(t)) starting

from Γx ×Γe enters the set Λǫ in the finite time td and then remains in it thereafter. This proof is finished with the entire convergence

time being less than ts(γ) , tc(γ) + td.
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Appendix B Proof of Lemma 6

Let the condition (η, x) ∈ Γχ be satisfied in this proof. Rewrite system (35) as

ė = Ae+ Bu, u = −k(t)y , −Ξ(y), y = ce, (B1)

where c is given in (4), u and y are viewed as the (time-varying) input and the output of the linear system (A, B), respectively. Along

with condition (34) and |ρ′| 6 1 (derived from the definition of ρ(M,γ)), we deduce |k(t)| = |ρ′g̃(η, x)/g0| < 1 for its all arguments. We

focus on the case of 0 < k(t) < 1 without loss of generality. Let k0 be a constant satisfying k(t) 6 k0 < 1. Such a k0 exists due to

0 < k(t) < 1. In this case, system (B1) is the well-known Lur’e system satisfying

Ξ(y)(Ξ(y) − k0y) 6 0. (B2)

In view of the definitions of A = A− QncTc, B = qn1b, and c given in (4), the transfer function of system (B1) is G0(s) = qn1/(sn +

q11sn−1 + · · · + qn1), where qij denotes the i-th row and j-th column element of Qn. It then follows from Item 2 of Lemma 1

that the poles of G0(s) lie on (−1, 0) of the s-plane, which further implies qn1 = 1 and G0(s) = 1/ (s+ 1)n. We then obtain

‖G0(s− α)‖
∞

= supω∈R |G0(jω − α)| = 1/ (1− α)n for some constant α satisfying 0 < α < 1.

Let α = 1−k
1/n
0 . Then we obtain from |Re (G0(jω − α))| 6 ‖G0(s− α)‖

∞
= 1/k0, ∀ω ∈ R that the transfer function 1+k0G0(s−α)

is positive real with such an α, which further implies a strictly positive real transfer function 1 + k0G0(s). By using the KYP lemma

(Lemma 6.3 in [44]) to 1 + k0G0(s) (whose minimal realization is (A, B, k0c, 1), it yields a positive definite matrix Q ∈ R
n×n, a matrix

L ∈ R
n×n, a vector N ∈ R

n, and a positive constant µ = 2α such that

ATQ+QA = −LTL− µQ, QB = k0c
T − LTN, NTN = 2.

With these equations, differentiating U(e) along the trajectory of system (B1) yields

U̇(e)|(B1) = eT(ATQ+QA)e+ 2eTQBu

= −µeTQe− eTLTLe+ 2eT
(

k0c
T − LTN

)

u

= −µeTQe− (Le)T Le+ 2(u + k0ce)u− (Nu)T Nu− 2 (Le)T Nu

= −µeTQe− (Le+Nu)T(Le+Nu) + 2(Ξ(y) − k0y)Ξ(y), ∀e ∈ R
n,

which, together with (B2), leads to U̇(e)|(B1) 6 −µeTQe, ∀e ∈ R
n. This proof is completed.

Appendix C Proof of Lemma 7

Let γ ∈ [1,∞) be satisfied by default in this proof.

The first growth condition. In view of the continuity and the saturation operation, it is clear that ∆1(χ, x̂, ˆ̟ ) is bounded independent

of γ, as long as (χ, e) ∈ Γχ × R
n.

The second growth condition. We divide ∆2(χ, x̂, ˆ̟ ) into two terms

∆2d(χ, x̂, ˆ̟ ) , γbd (g(χ)ϕs(x̂, ˆ̟ )− g̃(χ)ϕρ (x, ˆ̟ )− g0ϕ
s(x̂, ˆ̟ )) ,

∆2c(χ, x̂, ˆ̟ ) , b

(

ḟ(χ) + ˙̃g(χ)ϕρ (x, ˆ̟ ) + g̃(χ)ρ′
∂ϕ (x, ˆ̟ )

∂x
ẋ

)

.

It follows from (7) and (28) that

‖∆2d(χ, x̂, ˆ̟ )‖ = γ |g(χ)ϕs(x̂, ˆ̟ )− g̃(χ)ϕρ (x, ˆ̟ )− g0ϕ
s (x̂, ˆ̟ )|

= γ |g(χ) (ϕs(x̂, ˆ̟ )− ϕρ (x, ˆ̟ )) + g0ϕ
ρ (x, ˆ̟ ) − g0ϕ

s (x̂, ˆ̟ )|

= γ |(g0 − g(χ)) (ϕρ (x, ˆ̟ )− ϕs (x, ˆ̟ )) + (g0 − g(χ)) (ϕs(x, ˆ̟ )− ϕs(x̂, ˆ̟ ))|

6 γ (κ1 + κ2) |ϕ
ρ (x, ˆ̟ )− ϕs(x, ˆ̟ )|+ γ (κ1 + κ2) |ϕ

s(x, ˆ̟ )− ϕs(x̂, ˆ̟ )|

6 2 (κ1 + κ2) + γ (κ1 + κ2) |ϕ
s(x, ˆ̟ )− ϕs(x̂, ˆ̟ )| , ∀ (χ, e) ∈ Γχ × R

n,

where κ1 = maxχ∈Γχ
|g(χ)| and κ2 = g0. Subsequently, it follows from the special forms of ϕ(x,̟) = (v(x) −̟) /g0 (see (24)) and

v(x) (see (19)) that ϕ(x,̟) is globally Lipschitz with respect to (x,̟), which further implies

|ϕ (x, ˆ̟ )− ϕ(x̂, ˆ̟ )| 6 Lϕ ‖x− x̂‖ , ∀x ∈ R
r , x̂ ∈ R

r , ˆ̟ ∈ R, (C1)

where Lϕ is the Lipschitz constant independent of γ. Moreover, in view of (31), we have

‖x− x̂‖ =
∥

∥

∥

[

Ir 0r×1

]

L−1
r̄ (γ)e

∥

∥

∥
6 ‖e‖ /γ. (C2)

We then obtain from the globally Lipschitz property of σM , (C1) and (C2) that

|ϕs(x, ˆ̟ )− ϕs(x̂, ˆ̟ )| 6 |ϕ(x, ˆ̟ ) − ϕ(x̂, ˆ̟ )| 6 Lϕ ‖x− x̂‖
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6 Lϕ ‖e‖ /γ, ∀ (χ, e) ∈ Γχ × R
n.

Thus ‖∆2d(χ, x̂, ˆ̟ )‖ can be continued as

‖∆2d(χ, x̂, ˆ̟ )‖ 6 2 (κ1 + κ2) + Lϕ (κ1 + κ2) ‖e‖ , ∀ (χ, e) ∈ Γχ × R
n. (C3)

On the other hand, it follows from (24) and (32) that

∆2c(χ, x̂, ˆ̟ ) = b

(

ḟ(χ) + ˙̃g(χ)ϕρ (x, ˆ̟ ) +
g̃(χ)

g0
ρ′

dv(x)

dx
ẋ

)

, (C4)

ẋ =
[

0r×(n−r) Ir

]

χ̇ =
[

0r×(n−r) Ir

]

(F0(χ) +∆1(χ, x̂, ˆ̟ )) . (C5)

Then, along with |ρ′| 6 1, the boundedness of ϕρ(·) and ∆1(χ, x̂, ˆ̟ ), and the continuity with respect to χ, there exists a positive

constant κ3 independent of γ such that

‖∆2c(χ, x̂, ˆ̟ )‖ 6 κ3, ∀ (χ, e) ∈ Γχ × R
n. (C6)

Combining (C3) and (C6), we can deduce two positive constants δ1 = Lϕ (κ1 + κ2) and δ2 = 2 (κ1 + κ2) + κ3 independent of γ such

that

‖∆2(χ, x̂, ˆ̟ )‖ 6 δ1 ‖e‖+ δ2, ∀ (χ, e) ∈ Γχ × R
n.

The third growth condition. When condition (34) is satisfied, we know from Lemma 5 and (31) that

e = 0 ⇒ x̂ = x; ˆ̟ = ω = ̟, ∀χ ∈ Γχ,

which, in view of (29), implies

e = 0 ⇒ max
χ∈Γχ

|ϕ (x, ˆ̟ )| = max
χ∈Γχ

|ϕ (x̂, ˆ̟ )| = max
χ∈Γχ

|ϕ (x,̟)| = M0 < M. (C7)

Subsequently, we know from definition of Γe that γ → ∞ ⇒ e → 0. It then follows from the continuity and (C7) that there exists a

constant γ1 ∈ [1,∞) such that, for any γ ∈ [γ1,∞),

max
(χ,e)∈Γχ×Γe

|ϕ (x, ˆ̟ )| < M, max
(χ,e)∈Γχ×Γe

|ϕ (x̂, ˆ̟ )| < M,

which further implies that, for any γ ∈ [γ1,∞),

ϕρ(x, ˆ̟ ) = ϕ (x, ˆ̟ ) , ∀ (χ, e) ∈ Γχ × Γe, (C8)

ϕs(x̂, ˆ̟ ) = ϕ(x̂, ˆ̟ ), ∀ (χ, e) ∈ Γχ × Γe, (C9)

ϕs (x, ˆ̟ ) = ϕ (x, ˆ̟ ) , ∀ (χ, e) ∈ Γχ × Γe. (C10)

This means that these terms are not saturated when e is sufficiently small and χ ∈ Γχ. Then the auxiliary state ω in (30) simplifies as,

for any γ ∈ [γ1,∞),

ω = f(η, x) + g̃(χ)ϕ (x, ˆ̟ ) , ∀ (χ, e) ∈ Γχ × Γe. (C11)

In this case, it follows from (24), (18), (C9), (C11), (C1), and (31) that, for any γ ∈ [γ1,∞),

‖∆1(χ, x̂, ˆ̟ )‖ = |g(χ)ϕs(x̂, ˆ̟ ) − g(χ)φ(χ)| = |g(χ)ϕ(x̂, ˆ̟ ) + f(χ) − v(x)|

= |f(χ) + g̃(χ)ϕ (x, ˆ̟ ) + g0ϕ (x, ˆ̟ )− v(x) + g(χ) (ϕ(x̂, ˆ̟ )− ϕ (x, ˆ̟ ))|

6 |ω − ˆ̟ |+ κ1 |ϕ(x̂, ˆ̟ )− ϕ (x, ˆ̟ )| 6 |ω − ˆ̟ |+ κ1Lϕ ‖x− x̂‖

6 δ3 ‖e‖ , ∀ (χ, e) ∈ Γχ × Γe, (C12)

where δ3 , max{1, κ1Lϕ}.

The fourth growth condition. It follows from (C8)–(C10), (C1), and (C2) that, for any γ ∈ [γ1,∞),

‖∆2d(χ, x̂, ˆ̟ )‖ = γ |g(χ)ϕ(x̂, ˆ̟ ) − g̃(χ)ϕ (x, ˆ̟ )− g0ϕ (x̂, ˆ̟ )|

= γ |g̃(χ) (ϕ(x̂, ˆ̟ )− ϕ (x, ˆ̟ ))|

6 (κ1 + κ2)Lϕ ‖e‖ , ∀ (χ, e) ∈ Γχ × Γe. (C13)

On the other hand, it follows from (C4) and (C5), |ρ′| 6 1, the boundedness of ϕρ(·), ḟ(χ) = (∂f(χ)/∂χ) χ̇, ˙̃g(χ) = (∂g̃(χ)/∂χ) χ̇, and

the continuity with respect to χ that there exists a positive constant κ4 independent of γ such that

‖∆2c(χ, x̂, ˆ̟ )‖ 6 κ4 ‖χ̇‖ , ∀ (χ, e) ∈ Γχ × R
n,

which, together with (32), F0(0) = 0, and (C12), can be continued as, for any γ ∈ [γ1,∞),

‖∆2c(χ, x̂, ˆ̟ )‖ 6 κ4 ‖F0(χ)− F0(0) +∆1(χ, x̂, ˆ̟ )‖

6 κ4LF0
‖χ‖+ κ4δ3 ‖e‖ , ∀ (χ, e) ∈ Γχ × Γe, (C14)

where LF0
is the Lipschitz constant of F0(χ) on the compact set Γχ. Combining (C13) and (C14), we can deduce two positive constants

δ4 = (κ1 + κ2)Lϕ + κ4δ3 and δ5 = κ4LF0
independent of γ such that, for any γ ∈ [γ1,∞),

‖∆2(χ, x̂, ˆ̟ )‖ 6 δ4 ‖e‖+ δ5 ‖χ‖ , ∀ (χ, e) ∈ Γχ × Γe.

This proof is finished.
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