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Abstract Single-view object reconstruction aims to recover the geometric structure from a single image, which has wide applications in

3D modeling and virtual reality. The existing methods are limited to complex annotations or single-category models, which affect their

generalizability and practical applications. To tackle this problem, we propose a memory-based single-view reconstruction network called

M-SRN. Given a collection of images, M-SRN can generate high-fidelity reconstructions across diverse categories. Our main contributions

here are three approaches to leverage memory representations. First, a foreground perceptron module was developed through memory-

representation-based contrastive learning, enabling M-SRN to reconstruct raw image collections. Second, a purified memory-based

cross-category feature compensation module was proposed to enhance dataset-level instance consistency. Finally, a dynamic neighbor

consistency enhancement module based on intra-class memory prototypes was proposed to mitigate the inherent ambiguity of single-

view supervision. M-SRN was validated using synthetic and real-world datasets. Experiments demonstrate that M-SRN outperforms

state-of-the-art weakly supervised methods and achieves results comparable to 2D-supervised and 3D-supervised methods.
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1 Introduction

Three-dimensional (3D) shape reconstruction serves as a fundamental task that involves capturing the shapes and
appearances of real objects. Traditional methods [1,2] typically require multiple viewpoints or specialized equipment,
which can be costly and complex. Single-view 3D reconstruction (SVR) aims to infer the 3D shape of an object
from a single image and has attracted considerable attention. Owing to its simplicity, it has various applications
such as augmented reality [3] and robotics [4].

Limited by a single viewpoint, early SVR methods [5–7] used 3D structures corresponding to input images as
labels to train the model for a limited category. They used an encoder-decoder network structure to reconstruct
the point clouds, meshes, or voxels. Although these methods perform well on synthetic datasets, their performance
on real-world datasets is unsatisfactory. To enhance the generalization capability, researchers are gradually shifting
towards exploring weakly supervised SVR methods and diverse-category SVR methods.

Weakly supervised SVR methods focus on reducing the annotations in category-specific reconstructions. Initially,
some methods [8–10] used multi-view images and associated pose information as annotations instead of 3D data.
Furthermore, some approaches [11–13] eliminated the need for multi-view or pose annotations. Recent methods
[14,15] attempted to use only single-view masks for supervision, thereby making the training process more flexible.
Unicorn [16] overcame the need for any form of supervision to achieve unsupervised single-category SVR. Diverse-
category SVR methods use a single model to reconstruct images from multiple categories. Some methods [17, 18]
used 3D Gaussian point clouds as representation to achieve diverse-category reconstruction. ZeroShape [19] has
further broken through category limitations to achieve zero-shot reconstruction.

However, these methods are limited to single categories or complex annotations. Some methods [20, 21] have
attempted to achieve diverse category reconstruction under weakly supervised conditions. ShapeClipper [21] utilizes
a consistency enhancement module to achieve diverse category SDF reconstruction, requiring only mask annotation
corresponding to the input image. However, their consistency reconstruction relies on fixed images for enhancement
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and focuses on intra-category instances, thus limiting the reconstruction accuracy. In addition, their method
depends on labor-intensive manual mask annotations. Although offline models can extract masks, inaccuracies in
some instances can lead to failed reconstructions.

To address the above issues, a memory-based single-view reconstruction network called M-SRN is proposed in
this paper. M-SRN can achieve high-quality diverse category reconstruction from a collection of images. The key
idea of M-SRN is to use memory representations to enhance reconstruction. Memory representations, which served
as high-dimensional feature vectors, were stored in a lightweight memory bank. Its buffering mechanism allows
the model to perform contrastive learning across multiple batches, thereby enhancing contextual awareness. In
addition, the rich prior knowledge embedded in the memory bank enables features to be clustered into purified
representations with distinct semantic meanings. These purified representations are utilized to compensate for
intermediate features, thereby strengthening the ability of the model to express complex topological structures.

Specifically, M-SRN consists of foreground perception, reconstruction, and neighbor consistency enhancement
modules. An offline segmentation network may produce rough or even failed results in instances with significant
domain differences, thereby affecting reconstruction quality. To address this issue, a foreground perception module
was designed to optimize offline segmentation results. First, we obtained foreground cues through contrastive
learning between foreground and background memory representations. These cues were then used to refine the
offline segmentation masks. Owing to the absence of explicit 3D supervision or novel viewpoints, a reconstruction
module with feature compensation was developed to enhance dataset-level instance consistency. We purified noisy
memory representations to obtain representative memory prototypes for each category. These purified memories
were then used to compensate for the encoded features according to their affinity. The aggregated features were
decoded to obtain the reconstructed mesh. The feature compensation network enabled the model to identify
and utilize common features across different categories, such as the legs of tables and chairs, thereby enhancing
its generalization ability. The neighbor consistency enhancement module uses shape-similar images for pseudo-
novel view supervision to strengthen the consistency among instances within the same category. To achieve this, a
dynamically updated consistency enhancement strategy was proposed. Pseudo-view images are dynamically selected
through clusters of memory representations, thereby providing greater flexibility and robustness.

To evaluate M-SRN, we conducted experiments on ShapeNet [22], Pix3D [23] and Pascal3D+ [24]. Extensive ex-
perimental results demonstrate that M-SRN outperforms state-of-the-art weakly supervised approaches and achieves
competitive performance compared to 2D- and 3D-supervised approaches.

The contributions of this study are as follows.

(1) A novel diverse-category single-view reconstruction framework.

(2) An adaptive context-aware foreground perception module, which effectively refines offline segmentation masks.

(3) A purified memory-based cross-category feature compensation module that enhances dataset-level instance
consistency.

(4) A dynamic neighbor consistency enhancement loss, which addresses the ambiguity of single-view reconstruc-
tion.

2 Related work

2.1 Single-view 3D reconstruction

Single-view 3D reconstruction methods can be categorized into three groups based on the annotation type: 3D-
supervised methods [5, 6, 19, 25–30], 2D-supervised methods [8–13, 17, 18, 31–35], and weakly supervised methods
[14–16,21, 36–40].

3D supervision-based methods. These methods rely on 3D shape annotations. Choy et al. [6] reconstructed
3D voxels using a standard long short-term memory (LSTM) framework. Fan et al. [5] proposed a point-set
generation network that marked the first achievement of point-cloud reconstruction. To further enhance the details
of the reconstruction, Di et al. [25] used a centered diffusion probabilistic model to achieve point cloud reconstruction.
However, these methods are limited to specific categories of reconstruction. Huang et al. [19] proposed a strong
regression-based method to achieve zero-shot shape reconstruction.

2D supervision-based methods. These methods aim to replace hard-to-obtain 3D information with 2D
annotations. Yan et al. [8] proposed a voxel reconstruction network using multi-view images and the corresponding
pose annotations. They employed a differentiable dense sampling layer to project voxels onto a 2D plane. Tulsiani
et al. [32] simultaneously learned the poses and shapes of input images, eliminating the need for pose annotations.
Navaneet et al. [11] proposed a depth-aware point-feature-rendering module that achieved significant results using
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color, part segmentation, and surface normals as annotations. By leveraging advancements in Gaussian point clouds,
Szymanowicz et al. [17] proposed a diverse-category Gaussian point-cloud reconstruction network. Similarly, Xu
et al. [18] employed a cascaded pipeline to upsample generated Gaussian point clouds to achieve high-quality
reconstructions.

Weakly-supervised methods. These methods rely solely on masks and category-specific priors. Navaneet et
al. [15] used cycle consistency to reconstruct point clouds. Building on [15], Hu et al. [36] introduced interpolation
and landmark consistencies for mesh reconstruction. Monnier et al. [16] proposed a 3D reconstruction network using
progressive conditioning and neighbor consistency. They relied on category-specific parameter priors to implement
progressive training. To enhance generalization, Huang et al. [21] proposed an SDF reconstruction network based
on image-text model consistency, enabling diverse-category reconstruction under weak supervision.

Unlike previous approaches, (1) M-SRN achieves high-quality reconstruction across diverse categories; (2) M-
SRN implements dataset-level consistency reconstruction through a lightweight memory bank; (3) M-SRN utilizes
an innovative neighbor-selection strategy to enhance the flexibility and robustness of the model-training process.

2.2 Foreground perception

This task aimed to predict the corresponding foreground masks for a sequence of images. Zhou et al. [41] generated
class-activation maps (CAM) via a global average pooling layer. The CAM effectively highlighted the key regions
that influenced the classification decisions of the model. However, classifiers typically focus on the most distin-
guishing features of an object for recognition, which results in incomplete outcomes. Xie et al. [42] introduced a
two-stage (generation-refinement) framework. They extracted activation maps directly from shallow features using
convolutional layers, thereby allowing the activation maps to be refined online. Wu et al. [43] learned a high-quality
activation map through the reduction of background pixel activation. Although they achieved effective results, their
model relies on the capability of the classification network, limiting its generalization ability on datasets with few
categories. Xie et al. [44] solved this problem by performing contrastive learning on image features inside the batch.
Their approach did not rely on a classification network, making it more robust. However, their perception capability
was limited by the batch size, which not only consumes substantial resources, but also lacks global contrast.

Unlike previous methods, our memory-bank-based foreground perception method offers a stronger contextual
awareness and is adaptable to inputs with varying category numbers.

2.3 Neighbor reconstruction

Reconstruction based on neighboring images aims to enhance the shape consistency of instances within the same
category during training. The main concept is to find a pseudo-view supervision image with a shape similar to
that of the input image. Navaneet et al. [15] utilized a classification network pre-trained on ImageNet to extract
features from input image sequences. Images with latent codes that closely matched the input were identified as
neighboring images. Monnier et al. [16] recorded the input and intermediate codes via a memory bank during
training. Shape-similar images are identified by comparing the codes of the input images with those stored in the
memory bank. Although they achieved a dynamic selection of pseudo-view images, their accuracy depended heavily
on the quality of the encoder used in the training. With the advancement of image-text models, Huang et al. [21]
leveraged CLIP [45] to obtain latent codes for images, resulting in a significant improvement in accuracy. However,
Refs. [15, 21] required fixing similar images before training. Incorrectly predefined images can negatively affect
model training, leading to suboptimal reconstruction results.

Unlike previous methods, we leveraged memory prototypes to allow the model to autonomously select suitable
pseudo-view images from CLIP-predicted candidates during training, making the process more flexible and accurate.

3 Method

The overall structure of M-SRN is shown in Figure 1. In the preprocessing stage, a pretrained segmentation
network [46] was first used to obtain coarse masks. Foreground cues were then obtained using the foreground
perception module (detailed in Subsection 3.1) to refine the coarse masks. We follow [21] to assign a corresponding
neighbor set Ican to each input image, which is then used for subsequent neighbor reconstruction. In the training
stage, the segmented image Ir is encoded into the shape code zs, texture code zt, and pose code zc, which are
defined as follows:

zs = Es
re(I

r, θse), (1)

zt = Et
re(I

r, θte), (2)
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Figure 1 (Color online) M-SRN architecture. (a) Preprocessing stage. Masks corresponding to the image collections are first predicted via

the proposed foreground perception module. Then, the candidate neighbor image set Ican is selected. (b) Training stage. A segmented input

image Ir is encoded and linearly transformed to obtain latent vectors [zs, zt, zc]. To enhance shape consistency among instances of different

categories, zs is input into the feature compensation module to produce zs. These vectors are then fed into decoders [Ds, Dt, Dc] to generate

shape S, texture T , and camera pose C. The differentiable renderer π is used to convert S, T , and C into a 2D projection I′. Similarly, the

dynamically selected neighbor image In is fed into a shared encoder-decoder network to obtain the projection I′n. The discrepancy between I′

and Ir is used as self-supervised reconstruction loss, while that between In and I′n is used as the neighbor enhancement loss.

zc = Ec
re(I

r, θce), (3)

where Es
re, E

t
re and Ec

re denote the shape, texture, and pose encoders, respectively. We utilize category memory
knowledge to compensate for the shape encoding zs (as detailed in Subsection 3.2), resulting in an enhanced feature
vector z̄s. The reconstructed texture T and pose C are obtained using the corresponding decoders, which are defined
as

T = Dt(zt, θ
t
d), (4)

C = Dc(zc, θ
c
d), (5)

where Dt is the texture decoder composed of convolutional layers and Dc is the pose decoder composed of linear
layers. The enhanced feature is fed into a multilayer perceptronDs to predict ellipse deformation. The reconstructed
mesh S is defined as follows:

S = X +Ds(z̄s, X, θsd), (6)

where X denotes the 3D vertex of the ellipsoid. Because calculating the loss only from the input viewpoint
degrades the shape, the neighbor module is designed to alleviate the ambiguity of single-view supervision. The
high-dimensional feature clusters of each category in the memory bank were used to dynamically select a set of
pseudo-viewpoint supervision images from Ican (detailed in Subsection 3.3). We used the discrepancy between In

and I ′
n as an additional constraint to optimize the overall network (detailed in Subsection 3.4).

3.1 Foreground perception module

The foreground perception module extracts foreground information from input images. Previous methods [14, 19]
have relied on offline models to produce coarse masks. In the following text, we use ‘off-the-shelf masks’ to refer
to the masks obtained from a pretrained segmentation network. However, for images with complex backgrounds,
off-the-shelf masks often exhibit significant noise artifacts, leading to erroneous loss calculations. To address this
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Figure 2 (Color online) Memory bank-based contrastive learning module.

issue, we designed a foreground cue generation method based on a memory bank. These cues were used to filter
out noise from off-the-shelf masks.

Our foreground cue generation module is based on a previous study [43]. We aimed to fine-tune the ILSVRC [47]
pretrained model for our input data. To achieve this, an additional contrastive loss based on feature representation
was employed during the fine-tuning process, as illustrated in Figure 2. Specifically, for input image Ir, we extract
its foreground cues Mf . To do this, Ir is first fed into the encoder Ep to obtain the feature map F . Then, a
generator with a convolution layer Conv and a sigmoid layer Sig takes F as the input to generate foreground cues
Mf and background cues Mb, which can be formulated as

Mf = Sig(Conv(F, θf )), (7)

Mb = 1−Mf , (8)

where θf represents the parameters of the convolutional layers. To facilitate the subsequent contrastive learning,
[F,Mf ,Mb] are flattened into F̄ ∈ R

Qf×HW , M̄f ∈ R
1×HW and M̄b ∈ R

1×HW , respectively. The foreground
features F̄f and background features F̄b are then computed as follows:

F̄f = M̄f ⊗ F̄Tr, (9)

F̄b = M̄b ⊗ F̄Tr, (10)

where ⊗ and Tr represent matrix multiplication and transposition, respectively. F̄f and F̄b are used for contrastive
learning with the memory representations in the bank. The foreground perceptual memory bank Pf is composed
of a foreground term Lf and background term Lb, which is defined as

Pf = {Lf , Lb}, (11)

Lf , Lb ∈ R
K×Qf , (12)

where K is the number of feature vectors in each term and Qf is the dimensionality of each feature. Lf and Lb

store the foreground and background features recorded during the training, respectively. For F̄f , we strengthened
its alignment with set {f+ ∈ Lf}, While also separating it from set {f− ∈ Lb}. For F̄b, we improved its similarity
with the vectors set {f+

b
∈ Lb}, while distancing it from the key vectors set {f−

b ∈ Lf}.
This process is implemented via loss Lfor, which is represented as

Lffor =
1

K

∑

f+∈Lf

− log
esim(F̄f ,f

+)/γ

esim(F̄f ,f+)/γ +
∑

f−∈Lb
esim(F̄f ,f−)/γ

, (13)
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Figure 3 (Color online) Feature compensation module.

Lbfor =
1

K

∑

f+

b
∈Lb

− log
esim(F̄b,f

+

b
)/γ

esim(F̄b,f
+

b
)/γ +

∑

f−

b
∈Lf

esim(F̄b,f
−

b
)/γ

, (14)

Lfor = L
f
for + L

b
for, (15)

where γ is a temperature hyperparameter and sim denotes the cosine similarity.
We utilized the foreground features F̄f and background features F̄b extracted from the input image to update

the Lf and Lb items in the memory bank. A smoother update approach was used for Pr, which is defined as

lfv ← ηlfv + (1− η)F̄f , (16)

lbv ← ηlbv + (1− η)F̄b, (17)

where η is the momentum of the memory evolution. lf and lb are feature vectors stored in Lf and Lb, respectively.
v is a pointer value ranging from one to K, which marks the position of the feature vector to be updated in the
memory bank. To ensure its effectiveness, the memory representation is updated only when the category prediction
scores (detailed in [43]) exceed δf .

After obtaining the foreground cue Mf , we removed noise from the off-the-shelf masks Mo to produce a refined
mask Ms. U2-Net [46] was used as an offline segmentation network to obtain a rough mask Mo. Pixels in Mf with
activation values below the threshold λ were identified as noise and were subsequently removed from the mask Mo.
The final refined mask M s and corresponding segmented image are defined as follows:

Ms(i, j) =

{

Mo(i, j), if Mf (i, j) > λ,

0, if Mf (i, j) < λ,
(18)

Ir = Ir ×M s, (19)

where i and j represent the pixel coordinates.

3.2 Feature compensation module

In weakly supervised diverse-category single-view reconstruction, the absence of explicit shape supervision often
results in significant detail loss when handling complex topologies. In addition, the model fails to effectively learn the
features of categories with sparse samples, resulting in poor reconstruction quality. To address this issue, a feature
compensation module based on purified memory is proposed, as shown in Figure 3. By exploring the consistency
between different instances (e.g., the legs of tables and chairs and the tyres of motorcycles and bicycles), M-SRN
achieves detail-aware SVR.
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Specifically, we first established a memory representation bank Pr to store the shape encodings of the input
instances. Unlike the memory bank Pf used for foreground perception, memory bank Pr stores memory represen-
tations for each category and is defined as

Pr = {Lc
1, L

c
2, . . . , L

c
T}, (20)

Lc
i ∈ R

K×Qr , i ∈ {1, 2, . . . , T }, (21)

where Qr is the dimensionality of the features and T represents the number of categories. We used memory
representations in the bank to compensate for the latent code zs of the input image. However, the memory vectors
stored in the memory bank Pr contain considerable noise and irrelevant information. To address this issue, Lc was
purified into K ′ representative prototype representations using k-means clustering at the start of each epoch. The
purified memory bank P ′

r is defined as

P ′
r =

{ ⌢

Lc
1,

⌢

Lc
2, . . . ,

⌢

Lc
T

}

, (22)

⌢

Lc
i ∈ R

K′×Qr , i ∈ {1, 2, . . . , T }. (23)

P ′
r effectively filters out outliers and redundant features while retaining the most representative feature prototypes

in each category. To leverage the information in the memory bank related to image features for compensation, we
must calculate the affinity A between the latent encoding zs of the input image and the purified representations P ′

r of
different categories. A was used to perform a weighted fusion of the prototype features, enabling correlation-driven
feature integration. Using this similarity score A, the model can select the purified memories that are most relevant
to the input to compensate for intermediate features. To achieve this, P ′

r is transformed into a tensor P̄r in the
shape T ×K ′ ×Qr. A is defined as

A = sof(zs ⊗ P̄Tr
r ), (24)

where ⊗ represents the matrix multiplication. sof represents the softmax operation that normalizes each input
row. P̄Tr

r indicates the transpose of the matrix P̄r. Based on the affinity score A, the compensation feature zs+ is
calculated as

zs+ = A⊗ P̄r. (25)

The final shape feature zs is defined as follows:

z̄s = Lin([zs, zs+]), (26)

where Lin is the linear layer used to reduce the dimensions back to Qr.

After obtaining the compensated features, we updated Pr using the same method as Pf . To reduce the noise in
the memory bank, a confidence score Sr was obtained by calculating the mask IoU between I ′ and Ir. The memory
representation is updated only if the score Sr exceeds δr.

3.3 Neighbor consistency enhancement module

Training solely with the loss between the projection map and the input image from the input perspective leads to
a degenerated result. This is because supervision from a single perspective only ensures that the reconstruction is
correct from that perspective, without guaranteeing accuracy from other perspectives. The neighbor consistency
enhancement module aims to improve the consistency among instances within the same category by using shape-
similar neighbor images. It introduces a neighborhood loss calculated using similar images on top of the original
input loss. Because the input image and similar images share the same shape, the neighborhood loss computed
from the shape reconstructed using the input image can effectively establish multi-view constraints. Previous
methods [15,21] utilized pretrained classification networks to obtain latent encodings of images. By comparing the
similarity of latent codes, they assigned neighboring images to each input image before training. However, this fixed
assignment method lacks robustness to incorrect neighbor images, which affects the reconstruction accuracy. To
address this issue, we proposed a dynamic neighbor-consistency reconstruction method based on purified memory.

Given an input image Ir, we identified candidate similar image sets Ican during the preprocessing stage. Iall is
the set of input images to be reconstructed, excluding Ir, which is defined as follows:

Iall = {I1, I2, . . . , INum}, (27)
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Figure 4 (Color online) Dynamic neighbor selection module.

where Num denotes the number of images in Iall. To search for Ican in the input set Iall, we leveraged a pretrained
CLIP [45] network N clip to extract latent code for both Ir and images in Iall. The latent code z

clip
inp corresponding

to image Ir and the latent code set Zclip corresponding to set Iall are defined as follows:

z
clip
inp = N clip(Ir), (28)

z
clip
j = N clip(Ij), (29)

Zclip = {zclip1 , . . . , z
clip
j , . . . , z

clip
Num}. (30)

To measure the similarity between the input image Ir and each image Ij in the collection Iall, we calculated the
cosine similarity between their latent codes:

cos(zclipinp , z
clip
j ) =

z
clip
inp · z

clip
j

‖ zclipinp ‖ · ‖ z
clip
j ‖

. (31)

We then selected the top Kcos images from Iall images with the highest cosine similarity scores, thus forming the
candidate set Ican:

Ican =
{

In1 , I
n
2 , . . . , I

n
kcos

}

. (32)

After obtaining the preselected shape-similar image set Ican, we allowed the model to filter the images au-
tonomously during training for consistent reconstruction. Figure 4 shows the details of the dynamic selection
module. We utilized high-dimensional memory clusters to assess the similarity between the candidate image set
and the input image, thereby dynamically filtering neighboring images. In this process, we shared prior knowledge
stored in the memory bank of the feature compensation module. Specifically, the purified memory bank P ′

r is further
refined to obtain P ′′

r . Compared to P ′
r, P

′′
r contains K ′′ more representative prototype memory representations for

each category, which is defined as
P ′′
r = {L̄c

1, L̄
c
2, . . . , L̄

c
T }, (33)

L̄c
i ∈ R

K′′×Qr , i ∈ {1, 2, . . . , T }. (34)

The candidate image set Ican is processed through the encoder of the reconstruction module to obtain their cor-
responding latent code set Zre =

{

zre1 , zre2 , . . . , zrekcos

}

. By calculating the cosine similarity between zs and the K ′′

prototypes of the corresponding category, we obtain the prototype domain indices idinput:

idinput = argmax
j

cos(zs, l̄
c
j), (35)

where l̄cj denotes the jth prototype of the corresponding category item L̄c. Similarly, the set of prototype domain
indices ID corresponding to the images in Ican is defined as follows:

idi = argmax
j

cos(zrei , l̄cj), (36)
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ID = {id1, id2, . . . , idkcos
}. (37)

The filtered candidate image set Ire is defined as

Ire = {I
n
x |idx = idinput}, x ∈ {1, 2, . . . , Nre}, (38)

where Nre is the number of filtered neighboring images. Through dynamic filtering during training, our approach
retains advantage of CLIP in neighbor selection while enhancing the fault tolerance of the model, leading to improved
reconstruction accuracy.

Because the neighbor image In shares similar shapes with the input image Ir, shape S reconstructed from Ir

should also be applicable to In. Therefore, we utilize the shape constraint between the reconstructed shape S and
neighboring image In to provide a novel perspective of supervision for the reconstruction module. Specifically,
the neighboring image In in Ire is input into the reconstruction module to produce the texture T n and pose
Cn. S, T n and Cn are fed into the differentiable projection π to produce a neighboring projection I ′

n
. In our

experiments, SoftRasterizer [10] was selected as the rendering model π. The discrepancy between In and I ′
n
is

utilized to enhance the consistency of the neighbor. Note that we do not use texture consistency reconstruction in
the neighbor reconstruction. This is because the introduction of texture consistency does not improve the shape
prediction accuracy and instead increases the training cost. We believe that this is because of our explicit mask
supervision and flexible neighbor-selection module, which effectively enhances the accuracy of shape prediction,
making the inclusion of texture consistency unnecessary.

3.4 Loss function

Lfor is used to optimize the foreground perception module. During the training of the reconstruction network, our
loss function Lr consists of the reconstruction loss Lrec and neighbor reconstruction loss Lne. Lrec calculates the
difference between the input image Ir and projection I ′, which is defined as

Lrgb(I
r, I ′) =

1

hw

∑

i,j

‖ Iri,j − I ′i,j ‖, (39)

Lbce(M
s,M ′) =

1

hw

∑

i,j

−M s
i,j logM

′
i,j − (1−M s

i,j) log(1−M ′
i,j), (40)

Laff(M
s,M ′) =

∑

i,j

min
(k,l)∈Ms

+

((i − k)2 + (j − l)2)M ′
i,jM

s
k,l +

∑

i,j

min
(k,l)∈M ′

+

((i− k)2 + (j − l)2)M s
i,jM

′
k,l, (41)

Lrec = Lbce(M
s,M ′) + ε× Laff(M

s,M ′) + Lrgb(I
r, I ′), (42)

where M s and M ′ are foreground masks corresponding to Ir and I ′. h and w correspond to the length and
width of the input image, respectively. M s

+ and M ′
+ represent the sets of pixel indices in M s and M ′ where the

values are nonzero. Lbce measures the discrepancy between the predicted and ground-truth masks using log-based
regularization terms. Laff was designed to measure the difference between the predicted and input masks. It is
computed by evaluating the spatial and value differences between the predicted and actual masks, ensuring that the
model predicts not only the correct mask location but also the correct mask values. Lne calculates the difference
between neighboring images in Ire and their corresponding projected images, which is defined as

Lnx = Lbce(M
n
x ,M

′n
x ) + ε× Laff(M

n
x ,M

′n
x ) + Lrgb(I

n
x , I

′n
x ), (43)

Lne =
1

Nre

Nre
∑

x=1

Lnx , (44)

where x represents the index of the neighboring images. Lbce and Laff compute the mask loss between the projection
map and neighboring image, whereas Lrgb calculates the RGB loss between them. The overall loss Lr of the
reconstruction module is defined as follows:

Lr = Lrec + Lne + Lnormal + Llap, (45)

where Lnormal [48] ensures mesh smoothness through aligning the neighboring faces, and Llap [49] averages the
positions of vertices with those of their neighbors to reduce mesh noise.
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Table 1 Network parameter values.

K K′ K′′ λ kcos γ η ε δf δr

500 10 5 0.4 6 0.99 0.99 1e−6 0.7 0.5

4 Experiments

4.1 Datasets

We evaluated M-SRN using the following datasets: ShapeNet [22], Pix3D [23] and Pascal3D+ [24].

ShapeNet. ShapeNet is a large-scale 3D object dataset covering fifty-five object categories with extensive shapes
and semantic annotations. We followed [50] to generate rendered images for 13 categories as a dataset.

Pix3D. Pix3D is a dataset that pairs real-world images with accurate 3D models and is designed to advance
research on 3D reconstruction and image-to-model alignment. We used the train/val/test splits provided in [21].

Pascal3D+. Pascal3D+ is a dataset that provides images with 3D pose annotations across twelve rigid object
categories. It features a more complex topology and image background. We followed [31] to generate the train/test
splits.

4.2 Evaluation metrics

To comprehensively evaluate the performance of M-SRN, we utilized three common metrics: chamfer distance
(CD) [5], F-score [21, 25], and 3D IoU [31]. The advantage of CD lies in its ability to accurately quantify global
geometric differences between the reconstructed shape and ground truth. The chamfer distance between the ground
truth and predicted shapes is defined as

dCD (S1, S2) =
∑

x∈S1

min
y∈S2

‖x− y‖
2
2 +

∑

x∈S2

min
y∈S1

‖x− y‖
2
2 . (46)

In contrast, the F-score combines precision and recall, effectively assessing the accuracy of local matches and
providing a holistic measure of the quality of point-cloud reconstruction. The F-score was defined as follows:

F-score =
2× Pre× Re

Pre + Re
, (47)

where Pre is the proportion of correctly predicted positive instances out of the total predicted positive instances
and Re is the proportion of correctly predicted positive instances out of the total actual positive instances. 3D IoU
was compared with the baseline methods for single-category SVR. In our experiments, ICP [51] is used to align the
sampled point clouds.

4.3 Implementation details

Experiments were performed at a 64 × 64 image resolution. We followed [16] by using a sphere as the reconstruction
target to pre-train the reconstruction module. For real-world datasets, we used well-trained network parameters
from ShapeNet for initialization. To facilitate the effective learning of poses, we fixed the size of the latent codes zs
and zt to 1 and 2 before 10k iterations. The neighbor reconstruction module was applied after 10k iterations. The
memory bank was initialized using a random tensor from a standard normal distribution. The feature compensation
module was not applied during training of the first epoch. The M-SRN model was developed in PyTorch and trained
on a GeForce RTX 3090 GPU, with a batch size of 16. The training process used the Adam optimizer, beginning
with a learning rate of 1e−4. The parameter settings are listed in Table 1.

4.4 Comparison of results

In this subsection, M-SRN is compared with leading SVR methods on both synthetic and real-world datasets. We
use the following notation to represent the type of supervision required by each method: ‘M’ for multi-view, ‘K’ for
keypoints, ‘C’ for pose, ‘S’ for silhouette, ‘A’ for assumption, and ‘P’ for prior. ‘I’ is additionally used to denote
the method that uses only the input RGB image as the supervision condition.
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Table 2 Diverse-category quantitative comparison results on ShapeNet. A downward arrow (↓) indicates that a lower value is desirable,

whereas an upward arrow (↑) signifies that a higher value is preferable.

Supervision Chamfer distance↓ F-score@0.01↑

ShapeClipper [21] S+A 3.72 0.169

Unicorn [16] I 2.83 0.216

Splatter [17] M+C+S 1.32 0.434

Ours S 1.61 0.365

Table 3 Diverse-category quantitative comparison results on Pix3D.

Supervision Chamfer distance↓ F-score@0.01↑

SSMP [40] S 6.63 0.105

ShapeClipper [21] S+A 5.58 0.129

One2345 [35] M+C+S 3.89 0.149

OpenLRM [34] M+C+S 4.02 0.153

ZeroShape [19] 3D 2.86 0.208

Ours S 3.29 0.185

4.4.1 Diverse-category reconstruction on ShapeNet

We compared our approach with the state-of-the-art 2D-supervised and weakly supervised methods using the
ShapeNet dataset. The code provided was used to train the diverse-category baseline models. Because Splatter
reconstructs sparse Gaussian point clouds, we sampled the point clouds based on opacity. Because the synthetic
datasets had inherently white backgrounds, our foreground perception module was not utilized in ShapeNet. The
results of the quantitative comparisons are presented in Table 2 [16, 17, 21]. Overall, M-SRN outperformed the
weakly supervised methods and achieved a performance similar to that of Splatter. Although mesh representations
have limitations in modeling objects with complex structures, our method remains competitive with Gaussian
point clouds and SDF-based representations when applied to synthetic datasets with relatively regular topological
structures. The qualitative results are shown in Figure 5. In the baseline methods, Unicorn [16] confuses categories
and produces degraded results. Unicorn relies on the quality of the encoder to select pseudo-view supervision during
training and lacks precise and clear neighbor constraints. In contrast, our neighbor constraint method eliminates
dependence on the encoder, thereby preventing shape degradation. ShapeClipper [21] predicts consistent shapes but
performs poorly on details such as the legs of the chairs. Compared with ShapeClipper, our feature compensation
module enables the selection of the most relevant global features to enhance detail representation, thereby achieving
superior capture of both global shapes and finer details.

4.4.2 Diverse-category reconstruction on Pix3D

To verify the generalization ability of real-world data, M-SRN was evaluated on the Pix3D dataset, which featured
diverse shapes, textures, and environments. Qualitative and quantitative comparisons are presented in Figure 6 and
Table 3 [19,21,34,35,40]. Despite the increased complexity of real-world topological shapes, M-SRN still outperforms
weakly supervised approaches and achieves competitive performance compared to 3D-supervised approaches. Owing
to the introduction of the global consistency module, M-SRN maintains high-precision predictions for several low-
sample categories within the Pix3D dataset. We observed that ShapeClipper predicted uneven surfaces and tended to
lose some of the structural information. Compared with ShapeClipper, our mesh-based encoder-decoder architecture
enables smoother reconstructions. In addition, our flexible selection of pseudo-view images within high-dimensional
clusters reduces the detrimental effects of ShapeClipper’s predefined errors, thereby enhancing the overall detail
of the reconstruction. However, owing to the inherent initial connectivity of the 3D mesh representation, M-
SRN struggles to accurately capture hollow spaces in categories such as chairs and bookcases. Consequently, our
performance lags behind that of ZeroShape.

4.4.3 Diverse-category reconstruction on Pascal3D+

We conducted experiments on the Pascal3D+ dataset, which included more categories and complex backgrounds.
The quantitative comparison results are presented in Table 4 [19,21,30,34,35]. Our method achieved better perfor-
mance on more challenging in-the-wild images. The qualitative results are shown in Figure 7. ShapeClipper often
predicts more generalized or average shapes when reconstructing complex structures, leading to a significant loss of
fine details. Although OpenLRM predicts relatively accurate shapes, it suffers from deformation and degradation in
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Figure 5 (Color online) Diverse-category visual comparison results on ShapeNet.

Table 4 Diverse-category quantitative comparison results on Pascal3D+.

Supervision Chamfer distance↓ F-score@0.01↑

ShapeClipper [21] S+A 5.83 0.120

One2345 [35] M+C+S 4.31 0.146

OpenLRM [34] M+C+S 4.18 0.150

Transfer [30] 3D 2.29 –

ZeroShape [19] 3D 3.94 0.157

Ours S 3.41 0.173

certain instances. As a zero-shot model, ZeroShape is trained using a large amount of synthetic data. This makes
it overly reliant on the visible parts of an image for understanding novel real-world scenarios. In addition, it tends
to generate degraded shapes in certain instances, which can be attributed to erroneous predictions of intermediate
representations. Our weakly supervised approach allows for the optimization of unlabeled datasets, thereby enhanc-
ing domain adaptability. Furthermore, it improves the model’s ability to infer unseen regions, thereby maintaining
the integrity of the predicted shapes.

4.4.4 Single-category reconstruction

To further demonstrate its effectiveness, M-SRN was compared with the leading single-category SVR methods on
ShapeNet and Pascal3D+ Car. A single model was used to train and evaluate a single category. The quantita-
tive comparison results for ShapeNet are listed in Table 5 [13, 16, 17, 21, 52]. For the weakly supervised methods
ShapeClipper and Unicorn, we achieved better performance across most categories. In the categories of cars and
chairs, M-SRN outperformed existing weakly supervised approaches and achieved results comparable to those of
the 2D-supervised method, Splatter. A comparison of weakly-supervised methods on the Pascal3D+ Car dataset
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Figure 6 (Color online) Diverse-category visual comparison results on Pix3D.

Table 5 Single-category quantitative comparison results on ShapeNet.

Method Supervision
Chamfer distance ↓

airplane bench cabinet car chair display lamp phone rifle sofa speaker table vessel

TARS [13] S+C 1.25 – – 1.48 2.55 – – – – – – – –

DVR [52] M+C+S 1.11 1.76 1.58 1.53 2.05 1.63 2.81 0.76 0.83 1.60 2.15 2.30 1.51

Unicorn [16] I 1.10 1.59 1.37 1.68 2.53 2.20 5.23 1.27 0.97 1.92 2.24 2.43 1.55

ShapeClipper [21] S+A 1.81 2.15 1.25 2.14 4.56 3.07 5.84 1.58 1.20 3.13 2.94 3.96 1.73

Splatter [17] M+C+S – – – 1.15 1.48 – – – – – – – –

Ours S 0.91 1.21 1.52 1.41 1.89 1.72 3.81 1.47 1.13 1.62 1.96 2.03 1.42

is presented in Table 6 [14, 16, 21, 31, 37, 38]. M-SRN surpasses existing weakly supervised reconstruction methods
and achieves high-quality single-category SVR under in-the-wild image conditions. These results demonstrate that
our dynamic neighbor module provides effective pseudo-view supervision for input images, even when predicting a
single category. Our consistency module enables our method to achieve notable single-category inference results for
both synthetic and real-world datasets.

4.5 Ablation experiments

4.5.1 Effectiveness analysis

Foreground perception module. We validated the effectiveness of the foreground perception module on Pas-
cal3D+. The qualitative results are shown in Figure 8. Owing to the differences in image feature distributions
across domains, the offline segmentation method [46] predicts erroneous masks with noise in some instances. The
activation map obtained in [43] highlights rough foreground regions, leading to suboptimal denoising results. Us-
ing the activation maps generated by our method to denoise off-the-shelf masks, we achieved results that closely
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Figure 7 (Color online) Diverse-category visual comparison results on Pascal3D+.

Table 6 Single-category quantitative comparison results on Pascal3D+ Car.

Method Supervision 3D IoU↑ CD↓

CMR [31] S+A+C 64.0 –

UMR [38] S+A 62.0 –

UCMR [37] S+A 67.3 1.72

MeshInversion [14] S+P 66.0 –

ShapeClipper [21] S+A – 1.82

Unicorn [16] I 65.9 1.63

Ours S 67.2 1.47

matched the ground-truth annotations. M-SRN was compared with M-SRN using ground truth mask annotations
(M-SRN/GT) and M-SRN using offline segmentation annotations [46] (M-SRN/OF). Table 7 presents the quan-
titative analysis results. Compared to M-SRN/OF, our foreground perception module effectively improved the
reconstruction accuracy, achieving results close to those of M-SRN/GT.

Consistency modules. We confirmed the feature compensation module (FC) and neighbor consistency (NC)
module on the ShapeNet dataset. The results of the qualitative and quantitative comparison are presented in Figure
9 and Table 8, respectively. After excluding the FC layer, the object loses details such as wheels and chair legs.
When NC is removed, we observed a degraded reconstruction, where the object is only correct when viewed from
the input perspective. Additionally, owing to the lack of supervision from new viewpoints, reconstruction often
confuses categories, resulting in inaccurate results.

Dynamic neighbor selection. We also validated the effectiveness of the memory-based neighbor selection
method on the Pascal3D+ dataset. Two variants of M-SRN were used for comparison: M-SRN using Unicorn
neighbor selection (M-SRN/Un) and M-SRN using ShapeClipper’s neighbor selection (M-SRN/SC). The results of
the quantitative comparisons are presented in Table 9. Because M-SRN/Un relies entirely on the quality of the
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Figure 8 (Color online) Qualitative results of foreground masks. (a) Input images; (b) ground truth masks; (c) offline segmentation masks

produced by [46]; (d) activation maps produced by [43]; (e) our activation maps; (f) refined masks using [43]; (g) refined masks using our

activation maps.

Table 7 Quantitative ablation results of foreground perception module on Pascal3D+.

Chamfer distance↓ F-score@0.01↑

M-SRN/OF 3.62 0.164

M-SRN/GT 3.25 0.186

M-SRN 3.41 0.173

Table 8 Quantitative ablation results on ShapeNet.

Chamfer distance↓ F-score@0.01↑

w/o FC 1.84 0.352

w/o NC 3.81 0.160

M-SRN 1.61 0.365

Table 9 Quantitative results of different neighbor selection methods on Pascal3D+.

Chamfer distance↓ F-score@0.01↑

M-SRN/Un 4.55 0.145

M-SRN/SC 3.68 0.163

M-SRN 3.41 0.173

encoder, it performs poorly in diverse-category SVR with a wide variety of topological structures. Our dynamic se-
lection method builds on ShapeClipper to further enable the model to eliminate incorrect neighbors during training,
thereby achieving higher precision in 3D reconstruction.

4.5.2 Hyperparameter analysis

K ′ represents the number of purified memories for each category in the feature compensation module. We evaluated
the performance of the values set to 5, 10, and 20 on the ShapeNet dataset, as listed in Table 10. When K ′ is set
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Figure 9 (Color online) Visual ablation results on ShapeNet.

Table 10 Quantitative results of K′ on ShapeNet.

K′ = 5 K′ = 10 K′ = 20

F-score@0.01↑ 0.360 0.365 0.363

Table 11 Quantitative results of K′′ on Pascal3D+.

K′′ = 2 K′′ = 5 K′′ = 8

F-score@0.01↑ 0.170 0.173 0.166

Table 12 Quantitative results of kcos on Pascal3D+.

kcos = 3 kcos = 6 kcos = 8

F-score@0.01↑ 0.165 0.173 0.172

to five, M-SRN degrades significantly. K ′′ represents the number of purified memories in the neighbor consistency
enhancement module. As K ′′ increases, more images are excluded from the preselected neighbor set. We tested the
values set to 2, 5, and 8 on Pascal3D+, as listed in Table 11. When K ′′ is either too low or too high, the model fails
to effectively filter neighbors, affecting the accuracy of the results. kcos represents the number of candidate images
for neighbor reconstruction. Unlike SDF-based methods, mesh-based approaches allow us to use more candidate
neighbor images. We tested the values of 3, 6, and 8 on Pascal3D+, as listed in Table 12. The performance degraded
when kcos was set to three. When kcos was greater than six, M-SRN demonstrated stable performance.

5 Conclusion

We proposed a diverse-category single-view 3D reconstruction method called M-SRN. Owing to the utilization of
memory representations, the proposed approach achieves dataset-level and category-level consistency reconstructions
without requiring mask annotations. The experimental results demonstrate that our method outperforms state-of-
the-art weakly supervised methods and achieves results comparable to 3D supervised methods on both synthetic
and real-world datasets.

Although M-SRN achieves high-quality diverse category reconstruction, some limitations remain. First, our
method struggles with the categories of complex topologies. Second, M-SRN still requires category labels for images,
which can be labor-intensive for annotation in large-scale scenarios. Finally, the proposed method can reconstruct a
limited number of categories in a single model. We believe that achieving high-quality, weakly supervised zero-shot
single-view reconstruction will be an exciting research direction in the future.



Guo H Y, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122106:17

Acknowledgements This work was partially supported by Natural Science Foundation of Jilin Province of China (Grant No. 20240101366JC).

References

1 Wang C, Li X, Gu Y F, et al. An adaptive 3D reconstruction method for asymmetric dual-angle multispectral stereo imaging system on
UAV platform. Sci China Inf Sci, 2024, 67: 182305

2 Yao Y, Luo Z, Li S, et al. MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on
Computer Vision (ECCV), 2018. 767–783

3 Zhou Z, Meng M, Zhou Y, et al. Model-guided 3D stitching for augmented virtual environment. Sci China Inf Sci, 2023, 66: 112106
4 Liu C X, Qin J H, Wang S, et al. Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal. Sci China

Inf Sci, 2022, 65: 202206
5 Fan H Q, Su H, Guibas L, et al. A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the

30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017. 2463–2471
6 Choy C B, Xu D F, Gwak J Y, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Proceedings of

the 14th European Conference on Computer Vision (ECCV), Amsterdam, 2016. 628–644
7 Wang N, Zhang Y, Li Z, et al. Pixel2Mesh: generating 3D mesh models from single RGB images. In: Proceedings of the European

Conference on Computer Vision (ECCV), 2018. 52–67
8 Yan X C, Yang J M, Yumer E, et al. Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision.

In: Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS), Barcelona, 2016. 1696–1704
9 Tulsiani S, Zhou T H, Efros A A, et al. Multi-view supervision for single-view reconstruction via differentiable ray consistency. In:

Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017. 209–217
10 Liu S, Li T, Chen W, et al. Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019. 7708–7717
11 Navaneet K L, Mandikal P, Jampani V, et al. Differ: moving beyond 3D reconstruction with differentiable feature rendering. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019. 18–24
12 Insafutdinov E, Dosovitskiy A. Unsupervised learning of shape and pose with differentiable point clouds. In: Proceedings of Advances in

Neural Information Processing Systems, 2018. 2807–2817
13 Duggal S, Pathak D. Topologically-aware deformation fields for single-view 3D reconstruction. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2022. 1536–1546
14 Zhang J, Ren D, Cai Z, et al. Monocular 3D object reconstruction with GAN inversion. In: Proceedings of European Conference on

Computer Vision, 2022. 673–689
15 Navaneet K L, Mathew A, Kashyap S, et al. From image collections to point clouds with self-supervised shape and pose networks. In:

Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 1129–1137
16 Monnier T, Fisher M, Efros A A, et al. Share with thy neighbors: single-view reconstruction by cross-instance consistency. In: Proceedings

of European Conference on Computer Vision, 2022. 285–303
17 Szymanowicz S, Rupprecht C, Vedaldi A. Splatter image: ultra-fast single-view 3D reconstruction. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2024. 10208–10217
18 Xu D, Yuan Y, Mardani M, et al. AGG: amortized generative 3D Gaussians for single image to 3D. 2024. ArXiv:2401.04099
19 Huang Z, Stojanov S, Thai A, et al. ZeroShape: regression-based zero-shot shape reconstruction. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2024. 10061–10071
20 Alwala K V, Gupta A, Tulsiani S. Pre-train, self-train, distill: a simple recipe for supersizing 3D reconstruction. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. 3773–3782
21 Huang Z, Jampani V, Thai A, et al. Shapeclipper: scalable 3D shape learning from single-view images via geometric and clip-based

consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023. 12912–12922
22 Chang A X, Funkhouser T, Guibas L, et al. ShapeNet: an information-rich 3D model repository. 2015. ArXiv:1512.03012
23 Sun X, Wu J, Zhang X, et al. Pix3D: dataset and methods for single-image 3D shape modeling. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018. 2974–2983
24 Xiang Y, Mottaghi R, Savarese S. Beyond Pascal: a benchmark for 3D object detection in the wild. In: Proceedings of IEEE Winter

Conference on Applications of Computer Vision, 2014. 75–82
25 Di Y, Zhang C, Wang P, et al. CCD-3DR: consistent conditioning in diffusion for single-image 3D reconstruction. 2023. ArXiv:2308.07837
26 Melas-Kyriazi L, Rupprecht C, Vedaldi A. PC2: projection-conditioned point cloud diffusion for single-image 3D reconstruction. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023. 12923–12932
27 Kim T, Lee J, Lee K T, et al. Single-view 3D reconstruction based on gradient-applied weighted loss. J Electr Eng Technol, 2024, 19:

4523–4535
28 Tochilkin D, Pankratz D, Liu Z, et al. TripoSR: fast 3D object reconstruction from a single image. 2024. ArXiv:2403.02151
29 Yang X, Lin G, Zhou L. Single-view 3D mesh reconstruction for seen and unseen categories. IEEE Trans Image Process, 2023, 32: 3746–3758
30 Kaiber N E H, Mekhaznia T, Lakhdara Z. Transfer learning-based approach for 3D reconstruction from a single 2D image. In: Proceedings

of International Conference on Control, Automation and Diagnosis (ICCAD), 2024. 1–6
31 Kanazawa A, Tulsiani S, Efros A A, et al. Learning category-specific mesh reconstruction from image collections. In: Proceedings of the

European Conference on Computer Vision (ECCV), 2018. 371–386
32 Tulsiani S, Efros A A, Malik J, et al. Multi-view consistency as supervisory signal for learning shape and pose prediction. In: Proceedings

of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, 2018. 2897–2905
33 Lin C H, Wang C, Lucey S. SDF-SRN: learning signed distance 3D object reconstruction from static images. In: Proceedings of Advances

in Neural Information Processing Systems, 2020. 11453–11464
34 Hong Y, Zhang K, Gu J, et al. LRM: large reconstruction model for single image to 3D. 2023. ArXiv:2311.04400
35 Liu M, Xu C, Jin H, et al. One-2-3-45: any single image to 3D mesh in 45 seconds without per-shape optimization. In: Proceedings of

Advances in Neural Information Processing Systems, 2024
36 Hu T, Wang L, Xu X, et al. Self-supervised 3D mesh reconstruction from single images. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2021. 6002–6011
37 Goel S, Kanazawa A, Malik J. Shape and viewpoint without keypoints. In: Proceedings of the 16th European Conference on Computer

Vision, Glasgow, 2020. 88–104
38 Li X, Liu S, Kim K, et al. Self-supervised single-view 3D reconstruction via semantic consistency. In: Proceedings of the 16th European

Conference on Computer Vision, Glasgow, 2020. 677–693
39 Tulsiani S, Kulkarni N, Gupta A. Implicit mesh reconstruction from unannotated image collections. 2020. ArXiv:2007.08504
40 Ye Y, Tulsiani S, Gupta A. Shelf-supervised mesh prediction in the wild. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2021. 8843–8852
41 Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016. 2921–2929
42 Xie J, Luo C, Zhu X, et al. Online refinement of low-level feature based activation map for weakly supervised object localization. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021. 132–141
43 Wu P, Zhai W, Cao Y. Background activation suppression for weakly supervised object localization. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 14228–14237

https://doi.org/10.1007/s11432-024-4056-8
https://doi.org/10.1007/s11432-021-3323-2
https://doi.org/10.1007/s11432-021-3425-8
https://arxiv.org/abs/2401.04099
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/2308.07837
https://doi.org/10.1007/s42835-024-01812-z
https://arxiv.org/abs/2403.02151
https://doi.org/10.1109/TIP.2023.3279661
https://arxiv.org/abs/2311.04400
https://arxiv.org/abs/2007.08504


Guo H Y, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122106:18

44 Xie J, Xiang J, Chen J, et al. Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic
segmentation. 2022. ArXiv:2203.13505

45 Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision. In: Proceedings of
International Conference on Machine Learning, 2021. 8748–8763

46 Qin X, Zhang Z, Huang C, et al. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn, 2020, 106:
107404

47 Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis, 2015, 115: 211–252
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