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Abstract Probability calibration aims to align the classifier’s confidence with the true likelihood of correctness (i.e., empirical frequen-

cies). Existing calibration methods perform well when labels are clean. However, when labels are corrupted, calibration deterioration is

almost inevitable. In this paper, we study probability calibration under label noise. Specifically, we first observe that existing calibration

methods struggle to maintain calibration quality in the presence of label noise. Second, we reveal that label noise leads to calibration

deterioration due to the failure of the calibration equation, which further results in over-calibration for temperature scaling (TS). To

address this issue, we propose adaptive transitional temperature scaling (TransTS), which adaptively scales the logits according to the

noise level. TransTS constructs a consistent calibrator that can converge to its counterpart trained on clean data, and we provide the-

oretical justifications for this property. As a general post-hoc method, TransTS can be easily integrated with any pre-trained model.

Results on a variety of experimental cases show that TransTS outperforms five built-in methods and eleven post-hoc methods, as well as

several widely used learning with noisy label (LNL) methods.
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1 Introduction

Deep neural networks (DNNs) have achieved great success in many fields, including natural language processing [1],
computer vision [2], and data mining [3], among others. For real-world applications, however, DNN classifiers
are expected not only to be accurate but also to know when they may be wrong [4, 5]. For example, when a
medical diagnostic system makes predictions with low confidence, it should defer to human doctors for takeover.
Unfortunately, it has been shown that modern DNN classifiers tend to be grossly overconfident [6–8]. This hinders
the deployment of DNNs in high-risk scenarios, such as medical diagnostics [9], autonomous driving [10], and
financial fraud detection [11].

Given the importance of this issue, probability calibration has been proposed. Probability calibration provides
statistical guarantees on the predictions, ensuring that the predicted confidence aligns with the true likelihood of
correctness [12–14]. For example, if a classifier is well calibrated, among 100 predictions assigned a 70% confidence
level, 70 of them should be correctly classified. Existing calibration methods fall broadly into two categories:
(1) post-hoc methods, which scale the predicted probabilities after training [12,15–19]; (2) built-in methods, which
calibrate the network during training through designed loss and regularization terms [6–8, 20–23]. These methods
have achieved impressive calibration performance when the labels are clean. However, the assumption for clean
labels may not always hold in real-world practice. Due to the challenges in collecting high-quality data, annotations
are often obtained through substandard methods such as web scraping, crowdsourcing, or surveys, making label
noise inevitable. Existing literature shows that the proportion of label noise in real-world datasets ranges from
8.0% to 38.5% [24]. Such label noise could potentially harm probability calibration, further posing challenges for
deploying DNN classifiers in real-world applications.

A possible solution is to leverage existing learning with noisy label (LNL) techniques [2,25–29]. For instance, one
can first apply LNL methods to denoise the dataset and subsequently perform probability calibration. Although
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Figure 1 (Color online) Label noise causes existing calibration methods to fail. (a) Four network architectures are trained on CIFAR-10 with

built-in calibration methods. The smaller the ECE, the better. Dark for clean, light for noisy. (b) Reliability diagram for post-hoc calibration

methods. All cases are run on CIFAR-10 with 20% symmetry noise.

Figure 2 (Color online) Reliability diagram for denoise methods: DivideMix (Acc: 94.83%) and PLM (Acc: 90.40%). Denoise TS refers to

denoising the validation set firstly and then applying TS. All cases are run on CIFAR-10 with 20% symmetry noise.

label noise can be reduced through LNL, it is rarely completely eliminated. Residual label noise can still hinder
the calibration methods, making calibration poor. To investigate how label noise impacts calibration, we conducted
an empirical study. Figure 1(a) shows that calibration performance significantly deteriorates under label noise for
two built-in calibration methods. When temperature scaling (TS) [12]—a popular post-hoc method—is used, it can
even shift the model from over-confidence to under-confidence, as shown in Figure 1(b). Moreover, Figure 2 shows
that even the widely used LNL methods also fail to effectively calibrate the model. Notably, the Denoise TS is
even counterintuitively more over-confident. This occurs because Denoise TS, which aims to minimize the empirical
risk between output probabilities and their predicted labels, pushes the output probabilities further toward a one-
hot distribution, leading to increased over-confidence. Compared to well-calibrated confidence, under-confidence
requires additional caution or backup plans, which will lose user trust. In downstream decision-making, both
overconfident and underconfident predictions are problematic [8]. This motivates the central question addressed in
this work: how to calibrate DNN classifiers under label noise?

In this paper, we investigate the open problem of probability calibration under label noise. Specifically, we observe
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that label noise can deteriorate the calibration performance of both built-in and post-hoc methods. Furthermore,
we argue that label noise compels TS to learn an overly aggressive scaling factor T . This aggressive scaling factor T
increases the probabilities assigned to incorrect labels, thereby minimizing the negative log-likelihood (NLL) loss.
As a result, under label noise, TS shifts the predicted distribution from being excessively sharp (over-confidence)
to overly smooth (under-confidence)—a phenomenon we refer to as over-calibration.

To calibrate DNN classifiers under label noise, we propose a simple yet effective post-hoc calibration method
called adaptive transitional temperature scaling (TransTS). First, TransTS introduces a noise transition matrix,
which adaptively scales the output probabilities, thereby sharing part of the burden from the temperature scaling
factor. This dual-parameter mechanism enables the temperature scaling factor to be moderate, alleviating over-
calibration while preserving model performance. Second, we also reveal that TransTS essentially constructs a
consistent calibrator that converges to its counterpart learned on clean data. Finally, we show through experiments
on a variety of image classification datasets and noisy settings that TransTS is better calibrated than various built-
in and post-hoc baselines, as well as several widely used LNL methods. Moreover, on clean datasets, TransTS
maintains performance comparable to existing calibration methods. Our main contributions can be summarized as
follows.

(1) We analyze the limitations of existing calibration methods under label noise. Specifically, we theoretically
show that widely used TS suffers from over-calibration in the presence of noisy labels.

(2) We propose a TransTS method, supported by theoretical analysis. We derive a theoretical upper bound for
TransTS, showing that it converges to the calibrator learned on a clean dataset.

(3) Extensive experiments demonstrate that our method achieves superior calibration performance across various
noise types and noise levels.

2 Preliminaries

2.1 Problem formulation

The scope we study in this paper is supervised multiclass classification with DNNs. Let D = {(xi, yi)}
N
i=1 denote

a dataset consisting of N samples drawn from a joint distribution π(X,Y ) = π(Y |X)π(X), where each sample
xi ∈ X ⊆ R

d is the input and yi ∈ Y = {1, 2, . . . ,K} is the given class label. However, the class labels may be
corrupted in the real-world. In this paper, we denote the joint distribution as π(X, Ȳ ) = π(Ȳ |X)π(X) and the noisy
labels by ȳi ∈ Ȳ = {1, 2, . . . ,K}. Let f : Rd → R

n denote a non-probabilistic K-way classifier parameterized by θ
and zi = fθ(xi) be the logits that f predicts on a given input xi, where zi = [zi1, zi2, . . . , zik]

⊤. Then, the vector
pi = softmax(zi) represents the predicted probability distribution for input xi, i.e., pi = [pi1, pi2, . . . , piK ]⊤. The
class that f predicts for xi is computed as ŷi = argmaxȳ∈Ȳ pi, and the predicted confidence as p̂i = maxȳ∈Ȳ pi.

In this paper, following the general setting in learning with noisy labels [2,25,26], the training set and validation
set contain noisy labels and are assumed to be i.i.d. from the same distribution π(X, Ȳ ), whereas the test set is
clean and comes from distribution π(X,Y ). We have πtr(X, Ȳ ) = πval(X, Ȳ ) 6= πte(X,Y ). Note that the test
set serves as the ground truth and gold standard to ensure accurate and unbiased evaluation. This constitutes a
general evaluation paradigm in machine learning. If this gold standard is corrupted (e.g., due to mislabeled data),
the evaluation results (e.g., accuracy, ECE) will be incorrect. In other words, the test set may contain samples with
noisy features to reflect real-world conditions, but the labels must remain correct to accurately assess how well the
model performs. Therefore, the test set used in this work is required to be free of label noise.

2.2 Probability calibration

Calibration equation. A DNN classifier is said to be perfectly calibrated if, for each sample (x, y) ∈ D, the
predicted confidence p equals the model accuracy P (ŷ = ỹ|p̂) on samples with that confidence p. The formal
definition of perfect calibration is given by [5, 8, 12]

P (ŷ = ỹ|p̂ = p) = p, ∀p ∈ [0, 1], (1)

where ỹ represents the given class label, and p denotes predicted confidence. The ỹ may be a noisy label in this
paper. The P (ŷ = ỹ|p̂ = p) on the left side of the equal sign represents the proportion of samples whose predicted
label ŷ is equal to the given label ỹ in the samples with confidence of exactly p, whose statistical interpretation is
empirical frequency. Eq. (1) aligns the confidence of the DNN classifier and the true correctness probability (i.e.,
empirical frequency), which is used to guide the model to achieve perfect calibration.
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Temperature scaling (TS). TS [12], one of the most user-friendly and effective post-hoc calibration methods
that preserves accuracy under the clean-label assumption, has attracted sustained research attention in the latest
important literature [30, 31]. TS adjusts the sharpness of the output probability distribution via the temperature
scaling factor T in the Softmax function

p̂cij =
exp(zij/T

∗)
∑K

k=1 exp(zik/T
∗)
. (2)

The T ∗ value is obtained by minimizing the NLL loss between the logit vectors z scaled by T and the given class
label on the held-out validation set

T ∗ = argmin
T

Ex,y∼πval(x,ȳ) LNLL (σ(z/T ), ȳ) , (3)

where σ(·) is the softmax function.
Expected calibration error (ECE). The ECE [32] is defined as the expected absolute difference between

the model’s confidence and its accuracy, i.e., Ep̂

[
|P(ŷ = y|p̂)− p̂|

]
. However, in discrete classification tasks, this

continuous definition cannot be directly computed due to finite samples. In practice, predictions are partitioned
into M equally spaced confidence bins, and the ECE is estimated as the weighted average of the differences between
accuracy and confidence across these bins

ECE =
M∑

m=1

|Bm|

n
|Am − Cm| , (4)

where Am = 1
|Bm|

∑
j∈Bm

1 (ŷj = yj) and Cm = 1
|Bm|

∑
j∈Bm

p̂j denote the prediction accuracy and average confi-

dence level within the m-th bin, respectively.

2.3 Noise transition matrix

The noise transition matrix T (x) serves as a bridge from the noisy class posterior P (Ȳ |x) to the clean class posterior
P (Y |x) [33–35]. Specifically, the ij-th element of the transition matrix, Tij(x) = P (Ȳ = j|Y = i,X = x), denotes
the probability that a sample x with clean label Y = i has a noisy label Ȳ = j. The diagonal mean of the noise
transition matrix can reflect the noise level. When the noise transition matrix appears as a whole, it can be written
as T (x). The most popular setting in existing studies [36, 37] assumes the transition matrix is class-dependent
and instance-independent, i.e., Tij = P (Ȳ = j|Y = i,X = x) = P (Ȳ = j|Y = i). That is, the noisy label Ȳ
only depends on the true label Y . The transition matrix and noisy class posterior P (Ȳ |X) can be estimated from
the noisy data, which allows inferring the clean class posterior P (Y |X). The relationship between the three is
P (Ȳ |x) = T (x)⊤P (Y |x), eventually ensuring generalization of the model trained on the corrupted labeled training
set. Inspired by this, we hope to achieve calibrated generalization of models trained on corrupted datasets with the
help of a noise transition matrix.

3 How does label noise cause calibration to worsen?

Proposition 1. Eq. (1) does not simultaneously contain the Pclean(·) trained on clean dataset and clean labels Y .
When it is forced to be satisfied, the calibration becomes even worse. Consequently, Eq. (1) cannot guide existing
methods to well calibrate the model.

For noisy data, the calibration equation should be

Pnoise(ŷ = ȳ|p̂ = p) = p, (5)

where Pnoise denotes the model trained on noisy data. And for clean data, the calibration equation is transferred
to

Pclean(ŷ = y|p̂ = p) = p, (6)

where Pclean denotes the model trained on clean data. When labels are corrupted, the calibrator is trained on
noisy data that contains incorrect labels. As a result, the condition required by the calibration equation—ground
truth—is not satisfied. The calibration equation actually executed is

Pnoise(ŷ = y|p̂ = p) 6= p. (7)
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Table 1 Quantitative empirical support for (8). Comparison of average predicted probabilities for correct and incorrect labels.

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Sym-20% Sym-40% Sym-20% Sym-40% Asym-20% Asym-40% Asym-20% Asym-40%

MMCE
E(piȳ) 0.0212 0.0428 0.0060 0.0066 0.0210 0.0448 0.0041 0.0063

E(piy) 0.8192 0.5800 0.5423 0.3488 0.8272 0.6060 0.5671 0.3681

FLSD53
E(piȳ) 0.0259 0.0458 0.0055 0.0066 0.0202 0.0429 0.0046 0.0063

E(piy) 0.7811 0.6088 0.5136 0.3324 0.7905 0.5931 0.5033 0.3270

Figure 3 (Color online) Qualitative observations for temperature scaling. ResNet-50 is trained on CIFAR-10 with 20% symmetric noise using

cross entropy. Incorrect label denotes samples with an incorrect label, while correct label denotes the samples with the true label.

Eq. (7) should be viewed as invalid. However, it is still used to guide the calibrator to perform probability
calibration, inevitably resulting in poor calibration. Next, we analyze why TS methods tend to over-calibrate.

Remark 1. Over-calibration refers to a situation where calibration methods adjust output logits so that the
output probabilities become overly smoothed. This results in the model being under-confident, meaning it assigns
lower probabilities to its predictions than the true likelihood of correctness.

Assumption 1. Even if the label noise rate is r%, the model can still be determined by (1 − r)% clean labels.
The existing literature refers to this as identifiability [33]. We conclude

E(p̂iȳ) < E(p̂iy), (8)

where p̂iy = σ(zi/T )[y] and p̂iȳ = σ(zi/T )[ȳ] denote the probability corresponding to the correct label or incorrect
label, respectively. Obviously, in an output probability distribution, this shows that the probability corresponding
to the correct label is relatively large. We provide quantitative empirical support for (8), as shown in Table 1.

Proposition 2. Given a model fθ(ȳ|xi) trained on noisy data, TS learns the scaling factor T ∗ on noisy vali-
dation set by minimizing the Ex,ȳ∼πval(x,ȳ) LNLL (σ(z/T ), ȳ). However, the learned scaling factor T ∗ tends to be
overly aggressive compared to its counterpart from the clean validation set, resulting in an overly smoothed output
distribution—a phenomenon known as over-calibration.

Assuming a noise rate of r and sample size of N , the following formula is established:

−

N∑

i=N−rN+1

log p̂iy < −

N∑

i=N−rN+1

log p̂iȳ, (9)

where [N − rN + 1 : N ] represents samples with incorrect label. Figure 3(a) gives the qualitative empirical
observation: Eq. (9) holds during temperature scaling optimization.

How does label noise affect TS? First, as an accuracy-preserving method, TS preserves the relative magnitudes
of the model’s output probability distribution. As a result, the highest probability value remains the highest after
scaling. According to Assumption 1, the probability of the incorrect label is smaller than that of the correct label.
When the label is incorrect, TS tend to learn a larger scaling factor T to make the logits smoother. The smoother
logits can increase piȳ, thus contributing to the minimization of the NLL loss. Compared to the clean validation set,
the learned scaling factor T becomes overly large. We also provide quantitative empirical support for the aggressive
scaling factor T ∗, as shown in Table 2.
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Table 2 Quantitative observations for aggressive T . The model is trained on ResNet-50 on CIFAR-10. Noisy TS and clean TS denote TS

executed on noisy/clean validation dataset, respectively.

Loss Method Sym-20% Sym-40% Asym-20% Asym-40% IDN-20% IDN-40%

MMCE

Noisy TS 3.1 2.8 3.3 3.0 3.7 3.0

Clean TS 2.3 1.6 2.3 1.6 2.6 1.8

Ours 2.3 1.5 2.4 1.5 2.7 1.7

FLSD53

Noisy TS 1.6 2.3 1.6 2.3 1.5 1.9

Clean TS 1.1 1.2 1.1 1.2 1.1 1.1

Ours 1.2 1.1 1.2 1.1 1.0 1.1

4 Adaptive transitional temperature scaling (TransTS)

Overview. We propose a simple yet effective method, termed TransTS. First, we introduce a noise estimator
to learn the noise transition matrix, where the noise level can be reflected by the mean of its diagonal elements.
Second, the predicted probabilities are scaled incorporating the estimated noise transition matrix T (x), enabling
the temperature scaling factor to adapt to label noise. As a result, a consistent calibrator is learned on the noisy
validation set that closely matches the one learned on the clean validation set.

Noise transition matrix estimation. In this paper, we study the class-dependent and instance-independent
transition matrix, i.e., P (Ȳ = j|Y = i,X = x) = P (Ȳ = j|Y = i) = Tij . Following existing studies [2, 38–40], we
estimate the noise transition matrix based on the anchor point assumption. Formally, a sample xi ∈ X is defined
as an anchor point of the i-th clean class if P (Y = i|X = xi) = 1. The transition matrix can be estimated via the
noisy class posterior of the anchor points. Given an anchor point of the i-th class if P (Y = i|X = xi) = 1, when
k 6= i, P (Y = k|X = xi) = 0, then the transition matrix can be estimated

P (Ȳ = j|X = xi)

=

K∑

k=1

P (Ȳ = j|Y = k,X = xi)P (Y = k|X = xi)

= P (Ȳ = j|Y = i,X = xi)

= P (Ȳ = j|Y = i)

= Tij ,

(10)

where the second equation holds because when k 6= i, P (Y = k|X = x) = 0. The third equation holds because the
transition matrix is class-dependent and instance-independent. However, perfect anchor points are usually difficult
to obtain when clean labels are unavailable. To address this, we follow [39] and derive approximate anchor points
solely from noisy data, subsequently estimating the noise transition matrix:

X̂ i = top-k
{{

x ∈ X | P
(
Ȳ = i | X = xi

)
> τi

}
, P

(
Ȳ = i | X = xi

)}
, (11)

where X̂ i denotes the approximate anchor point set, τi denotes a percentile, and top-k aims to replace a single
anchor point and reduces the variance within the anchor point [2, 38–40]. In this paper, we set the k to 10.

T̂ij =
1

|X̂ i|

∑

xi∈X i

P (Ȳ = j | X = xi), (12)

where T̂ij denotes the ij-th element of estimated noise transition matrix. The time cost for obtaining the noise
transition matrix is proportional to a single forward pass, with a time complexity of O(k2 · |X |) [39]. The required
time is 18.23 s for CIFAR-10, 19.07 s for CIFAR-100, and 104.23 s for ANIMAL-10N, respectively, which is accept-
able. For all datasets, we train the transition matrix estimator using ResNet-50 and cross entropy loss, and select
the epoch with the best accuracy on the noisy validation set as the final transition matrix estimator.

For instance-dependent noise, the estimated noise transition matrix estimated serves as a global statistic ap-
proximating the dataset’s average noise level. Although not explicitly modeling per-instance variations, it captures
dominant noise level. This global estimation also reduces the burden of the temperature factor T (see Table 2),
while empirical results demonstrate its effectiveness for instance-dependent noise (see Tables 3–5).

Adaptive transitional calibration. TransTS aims to learn a calibrator from a held-out noisy validation set
Dval(x, ȳ):

pc = gT (ȳ|z), (13)
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Table 3 Main results: the ECE (%) on Sym, Asym and IDN noise. ResNet-50 and ViT are trained on CIFAR-10/100. Un-post denotes no

post-hoc method is used, the same below. The best scores are bold.

Built-in Post-hoc

ResNet-50 Vision Transformer

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Sym-20 Sym-40 Asym-20 Asym-40 IDN-20 IDN-40 Sym-20 Sym-40 Asym-20 Asym-40 IDN-20 IDN-40 Sym-40 Asym-40 Sym-40 Asym-40

Dual focal

Un-post 13.83 30.72 14.16 30.72 13.51 24.26 12.29 15.25 17.76 15.25 16.73 16.05 21.74 21.79 12.12 12.48

Vector 13.92 20.72 13.13 20.76 13.44 19.83 14.08 20.14 11.28 20.01 11.27 18.24 28.39 28.69 21.81 21.35

Spline 17.52 22.36 15.33 22.52 17.24 24.56 12.86 19.04 12.32 18.93 12.15 18.52 25.98 27.07 15.90 14.99

CPCS 14.55 21.05 13.87 21.16 14.79 22.30 11.76 23.39 11.58 23.36 11.95 22.77 26.55 27.36 16.92 16.43

TS 13.29 20.99 13.70 21.23 14.41 19.82 14.44 19.53 19.57 20.80 12.79 19.21 29.17 29.42 22.50 22.47

CTS 13.73 20.41 13.16 20.52 13.45 19.79 14.04 19.91 11.18 19.83 11.09 18.45 28.25 28.58 22.17 21.59

ETS 14.71 20.74 14.03 20.99 14.97 21.47 13.58 19.04 11.47 19.19 11.89 18.85 21.74 21.79 12.12 12.48

PTS 13.73 20.76 12.99 20.80 13.46 19.53 14.44 20.41 11.61 20.38 12.09 18.43 28.33 28.87 23.26 22.91

STCL 14.55 21.72 13.72 21.84 14.58 20.60 15.19 21.20 12.51 21.15 12.93 19.40 29.43 29.91 24.04 23.54

TvA 14.02 18.60 13.20 18.68 14.38 21.26 17.13 22.21 14.64 22.15 15.65 22.40 26.51 27.46 16.85 16.05

HB 17.22 21.87 16.36 21.75 17.61 24.12 12.59 15.58 15.06 15.55 13.05 14.58 26.17 27.16 11.10 11.29

BBQ 17.50 23.04 16.35 22.63 18.03 25.17 17.07 21.34 16.65 21.23 15.96 21.34 26.24 27.23 16.15 15.01

Ours 3.86 7.38 3.81 7.38 2.45 3.38 7.40 7.99 7.67 7.99 8.04 9.51 2.12 7.45 1.90 2.07

AdaFocal

Un-post 11.18 19.35 11.75 20.13 10.80 20.75 10.59 7.19 11.45 6.30 10.67 7.52 27.16 26.05 12.93 11.28

Vector 12.49 24.30 13.61 24.48 12.60 19.54 10.14 18.99 10.14 21.86 9.01 18.26 29.76 28.68 22.56 21.29

Spline 17.82 26.58 16.94 26.82 17.65 24.33 11.35 18.18 11.82 20.25 11.29 19.59 27.70 25.77 16.07 14.42

CPCS 13.23 24.87 14.45 25.09 14.02 22.21 10.55 20.63 10.30 22.72 10.46 22.21 27.96 26.76 17.00 15.79

TS 12.39 25.68 14.38 24.87 13.47 18.67 10.79 19.90 10.23 23.11 10.59 18.35 30.91 29.77 23.40 21.59

CTS 12.42 23.98 13.42 24.26 12.45 19.47 10.11 18.98 9.91 21.74 8.90 18.09 29.66 28.58 22.79 21.68

ETS 13.79 25.02 14.27 24.84 13.89 22.44 11.33 19.23 10.87 20.94 11.04 19.73 27.16 26.05 12.93 11.28

PTS 12.71 24.62 13.52 24.61 12.58 18.87 10.08 19.35 10.34 22.36 9.33 18.96 29.85 28.82 23.78 22.21

STCL 13.60 25.93 14.33 25.53 13.75 19.61 11.02 20.17 11.23 23.10 10.14 19.74 30.74 29.86 24.52 22.89

TvA 13.33 24.91 14.46 25.22 14.20 22.83 12.45 20.53 12.72 22.89 12.96 22.24 27.87 26.45 16.81 15.41

HB 16.65 25.43 17.07 25.98 17.28 23.35 12.93 12.32 12.96 14.41 13.27 13.46 27.91 26.60 10.72 11.44

BBQ 17.27 26.27 17.00 26.63 18.27 24.43 17.21 20.83 16.60 22.20 16.98 21.69 27.87 26.08 16.30 14.64

Ours 3.49 3.67 3.01 8.21 2.67 4.81 4.96 6.46 5.30 6.29 4.80 7.52 3.64 4.04 2.12 1.84

MMCE

Un-post 13.40 19.65 13.45 20.27 13.52 23.29 9.06 8.95 12.16 9.31 9.61 9.13 19.65 20.57 9.92 11.55

Vector 13.96 21.75 13.46 22.22 13.62 16.65 15.38 21.14 12.45 21.59 14.87 19.79 28.14 28.09 17.57 20.77

Spline 16.33 22.18 16.98 22.79 16.66 20.73 12.50 18.80 12.29 20.33 13.56 17.94 26.16 26.00 11.55 14.84

CPCS 14.65 22.12 14.15 22.61 14.99 19.19 11.71 21.82 11.05 23.62 13.24 22.30 26.66 26.54 12.86 16.23

TS 13.88 21.75 13.00 22.90 13.12 16.92 16.68 20.68 12.55 22.62 15.60 20.57 27.35 28.25 18.90 21.59

CTS 13.50 21.91 13.49 22.18 13.43 19.46 15.17 20.69 12.52 21.78 13.37 12.95 28.06 27.99 17.71 21.20

ETS 15.00 22.72 14.00 21.74 14.21 18.91 13.59 18.90 12.44 20.74 15.11 12.45 19.65 20.57 9.92 11.55

PTS 13.86 22.27 13.57 22.34 13.51 20.13 15.61 21.40 12.98 22.18 13.87 11.67 28.16 27.93 18.32 21.78

STCL 14.73 23.37 14.45 23.27 14.62 21.18 16.26 22.23 13.69 22.95 14.57 12.74 29.24 28.92 19.04 22.41

TvA 14.65 22.47 14.40 23.09 14.33 20.31 18.16 22.56 16.04 23.69 16.46 12.56 26.63 26.40 12.37 16.01

HB 16.30 21.68 17.08 22.67 16.12 19.69 11.89 12.56 13.97 13.93 11.85 7.53 26.48 26.22 9.15 10.90

BBQ 16.95 23.08 17.10 23.82 17.97 20.92 18.01 19.21 17.16 20.28 17.56 8.99 26.19 26.05 11.90 15.08

Ours 2.80 5.94 2.80 8.08 2.87 11.11 9.06 8.95 7.06 9.31 8.6 9.13 3.40 3.21 1.07 1.55

FLSD53

Un-post 6.43 10.54 5.95 10.54 4.35 8.85 3.19 6.00 2.84 4.80 3.61 5.64 32.38 33.86 14.48 14.85

Vector 12.73 25.47 13.21 24.51 12.18 18.34 10.77 19.33 11.46 18.82 10.09 16.47 27.71 28.88 21.66 22.12

Spline 16.32 26.27 17.90 22.79 15.79 21.79 11.40 18.17 11.96 17.58 11.30 18.73 25.49 25.15 15.12 14.04

CPCS 12.57 23.32 13.20 23.46 12.35 19.17 9.96 19.91 10.63 19.56 10.04 20.48 25.12 25.77 15.77 15.10

TS 11.33 25.59 14.66 24.00 10.57 17.79 11.23 18.12 11.65 20.56 9.80 17.50 29.02 30.43 23.78 24.02

CTS 12.70 24.96 12.95 24.51 11.80 17.63 10.46 19.59 11.39 19.25 10.15 16.72 27.96 29.32 22.14 22.37

ETS 12.53 24.46 13.76 24.36 12.49 19.45 12.42 19.99 12.20 18.67 11.78 20.16 32.38 33.86 14.48 14.85

PTS 12.72 24.84 13.08 24.92 11.74 16.85 11.08 20.40 11.69 19.24 10.46 17.53 27.84 28.93 23.05 23.05

STCL 13.48 26.03 13.83 25.89 12.53 17.83 11.91 21.38 12.64 20.10 11.38 18.44 28.81 29.78 23.74 23.70

TvA 13.05 22.41 13.34 22.91 12.87 19.47 12.25 20.18 12.78 19.35 12.45 20.79 24.99 25.52 15.42 14.67

HB 16.01 25.46 16.44 24.92 15.64 21.73 12.76 13.50 12.03 11.51 11.91 11.77 25.47 26.45 13.08 12.18

BBQ 16.82 26.51 17.25 25.43 16.45 22.32 17.39 21.68 17.02 21.04 17.22 20.86 25.48 25.40 15.32 14.36

Ours 2.25 7.42 2.45 7.30 2.53 5.79 3.19 5.40 2.84 4.80 3.60 5.68 4.81 3.50 4.48 4.64

MbLs

Un-post 11.28 25.31 12.17 26.95 10.45 22.81 9.55 8.24 9.83 8.99 7.77 8.44 20.80 21.36 15.70 14.55

Vector 14.90 23.03 13.77 22.10 15.17 20.99 11.36 20.52 11.58 25.50 11.26 19.02 21.88 23.06 17.98 17.10

Spline 17.65 25.77 16.41 24.62 17.80 23.59 12.39 19.22 12.34 25.49 12.43 19.19 20.07 22.84 12.97 12.25

CPCS 16.02 23.69 14.77 22.78 16.74 23.19 14.27 23.99 13.71 28.65 14.58 24.76 20.47 22.73 15.10 13.54

TS 15.58 23.08 14.79 22.16 14.47 20.76 11.10 22.46 10.50 26.24 13.68 19.47 20.80 24.79 18.71 17.50

CTS 14.88 22.83 13.72 21.86 15.13 21.27 11.34 20.15 11.45 25.32 11.16 19.03 21.95 23.03 18.25 17.43

ETS 15.65 24.20 14.96 22.82 16.45 23.08 12.99 21.05 12.86 26.08 13.71 21.14 20.80 21.36 15.70 14.55

PTS 15.15 23.19 13.95 22.19 15.28 20.58 11.68 20.95 11.62 25.99 11.78 19.69 21.58 22.96 19.05 17.50

STCL 15.93 23.92 14.84 23.17 16.30 21.50 12.55 21.86 12.50 26.74 12.62 20.55 22.06 23.78 19.73 18.17

TvA 16.02 23.22 14.84 22.02 16.90 23.33 15.03 22.71 14.53 27.75 15.58 23.27 20.30 22.87 14.68 13.18

HB 17.40 24.27 16.40 23.39 17.16 22.87 12.80 13.74 13.51 21.64 13.01 14.97 21.17 22.45 11.20 10.96

BBQ 17.43 25.19 16.98 24.46 18.03 23.94 17.48 21.62 18.05 28.64 18.89 21.70 20.11 22.61 13.37 12.47

Ours 3.23 5.58 4.43 5.97 3.11 4.38 6.83 7.22 5.11 4.70 7.77 8.44 6.96 8.07 1.21 1.41

where T is the calibrator parameter, i.e., the scaling factor; z denotes the output logits; ȳ denotes the given noisy
label; and pc denotes the calibrated probability distribution. If the noise transition matrix T̂ (x) has been estimated,
the optimization objective of TransTS is as follows:

T ∗ = argmin
T

Ex,ȳ∼Dval(x,ȳ) LNLL

(
T̂ (x)⊤σ(z/T ), ȳ

)
, (14)

where T̂ (x)⊤ denotes the transpose of the noise transition matrix. This means the solution (T ∗) of (14) is conditional
on the noise level. Different noise levels will result in different T ∗, which gives TransTS the adaptability to the noise
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Table 4 Main results: the AdaECE (%) on Sym, Asym and IDN noise. ResNet-50 and ViT are trained on CIFAR-10/100. Un-post denotes

no post-hoc method is used, the same below. The best scores are bold.

Built-in Post-hoc

ResNet-50 Vision Transformer

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Sym-20 Sym-40 Asym-20 Asym-40 IDN-20 IDN-40 Sym-20 Sym-40 Asym-20 Asym-40 IDN-20 IDN-40 Sym-40 Asym-40 Sym-40 Asym-40

Dual focal

Un-post 13.83 30.69 14.11 30.69 13.45 24.25 12.20 15.03 17.68 15.03 16.71 16.02 21.74 21.80 12.09 12.48

Vector 13.90 20.72 13.09 20.75 13.38 19.84 14.09 19.89 11.37 19.78 11.25 18.27 28.39 28.69 21.81 21.35

Spline 17.52 22.36 15.33 22.52 17.24 24.56 12.87 19.04 12.32 18.93 12.15 18.52 25.98 27.08 15.90 15.00

CPCS 14.53 21.04 13.87 21.15 14.76 22.27 11.69 23.34 11.60 23.30 12.10 22.73 26.55 27.36 16.92 16.43

TS 13.27 20.98 13.70 20.98 14.38 19.72 14.47 19.49 11.56 19.49 12.92 19.08 29.17 29.42 22.50 22.47

CTS 13.72 20.41 12.95 20.52 13.41 19.79 14.25 19.75 11.27 19.68 11.12 18.45 28.25 28.58 22.17 21.59

ETS 14.70 20.73 14.04 20.98 14.95 21.42 13.58 19.05 11.44 19.19 11.89 18.85 21.74 21.80 12.09 12.48

PTS 13.71 20.75 12.97 20.79 13.44 19.41 14.50 20.32 11.63 20.29 12.29 18.40 28.33 28.87 23.26 22.91

STCL 14.53 21.71 13.72 21.83 14.55 20.53 15.25 21.12 12.47 21.06 13.05 19.28 29.43 29.91 24.04 23.54

TvA 14.01 18.60 13.20 18.68 14.36 21.20 17.15 22.15 14.52 22.08 15.63 22.36 26.51 27.46 16.85 16.05

HB 16.25 21.77 15.75 21.64 16.69 24.12 12.52 14.87 13.64 14.86 12.88 14.47 26.17 27.15 11.10 11.29

BBQ 16.94 22.94 15.98 22.67 17.54 25.17 17.12 21.37 16.92 21.38 15.62 21.69 26.24 27.23 16.15 15.01

Ours 4.95 7.36 4.45 7.36 3.62 3.77 7.49 7.94 7.70 7.94 8.00 9.51 2.15 7.45 2.00 2.25

AdaFocal

Un-post 11.18 19.32 11.75 20.11 10.76 20.70 10.50 6.99 11.32 6.47 10.63 7.48 27.16 26.05 12.93 11.28

Vector 12.49 24.28 13.61 24.47 12.59 19.50 10.13 18.84 10.25 21.54 9.16 18.23 29.76 28.68 22.56 21.30

Spline 17.82 26.58 16.94 26.82 17.65 24.33 11.36 18.18 11.82 20.26 11.28 19.60 27.70 25.78 16.07 14.42

CPCS 13.13 24.84 14.41 25.01 13.96 22.19 10.51 20.61 10.29 22.61 10.49 22.11 27.96 26.76 17.00 15.79

TS 12.28 25.64 14.34 24.81 13.42 18.66 10.75 19.87 10.15 23.03 10.59 18.34 30.91 29.77 23.40 21.59

CTS 12.42 23.97 13.42 24.24 12.44 19.47 10.11 18.86 9.98 21.53 8.97 18.16 29.67 28.58 22.78 21.68

ETS 13.69 25.00 14.23 24.79 13.84 22.41 11.33 19.23 10.86 20.94 11.04 19.73 27.16 26.05 12.93 11.28

PTS 12.60 24.62 13.47 24.53 12.57 18.86 10.09 19.32 10.33 22.23 9.47 18.95 29.85 28.82 23.78 22.21

STCL 13.50 25.92 14.29 25.43 13.71 19.60 10.98 20.14 11.12 23.02 10.24 19.70 30.74 29.86 24.52 22.89

TvA 13.24 24.86 14.43 25.14 14.15 22.79 12.38 20.51 12.62 22.77 12.74 22.14 27.87 26.45 16.81 15.41

HB 15.69 25.43 16.59 26.00 16.85 23.35 12.95 12.46 12.82 14.67 13.18 13.56 27.90 26.60 10.72 11.44

BBQ 17.19 26.27 16.89 26.62 17.37 24.43 17.00 20.84 16.74 22.33 16.62 22.01 27.87 26.08 16.30 14.64

Ours 4.05 4.25 4.05 8.18 3.08 4.82 4.92 6.18 5.22 6.47 4.82 7.48 3.84 4.20 2.55 1.85

MMCE

Un-post 13.39 19.55 13.44 20.04 13.50 23.06 9.11 8.83 12.18 9.27 9.69 9.08 19.64 20.57 9.92 11.53

Vector 13.82 22.05 13.56 22.44 13.57 16.65 15.41 20.61 12.69 21.46 14.78 19.75 28.14 28.08 17.57 20.77

Spline 16.62 22.74 17.27 23.63 17.03 20.12 13.33 18.07 12.24 20.02 14.03 18.26 26.14 26.00 11.56 14.84

CPCS 14.54 22.41 14.24 22.85 15.06 19.21 12.01 21.85 11.13 23.06 13.14 21.85 26.65 26.54 12.86 16.23

TS 13.84 21.75 12.98 22.88 13.06 16.89 16.71 20.58 12.67 22.53 15.66 20.50 27.34 28.25 18.90 21.59

CTS 13.50 21.91 13.45 22.18 13.60 16.54 15.24 20.68 12.54 21.61 14.66 20.23 28.05 27.99 17.71 21.20

ETS 14.98 22.72 13.99 21.74 14.65 18.68 13.59 18.90 12.44 20.74 14.45 19.94 19.64 20.57 9.92 11.53

PTS 13.81 22.27 13.55 22.34 13.67 16.25 15.56 21.24 13.14 22.11 15.68 20.82 28.15 27.93 18.32 21.78

STCL 14.69 23.37 14.43 23.27 14.69 17.09 16.26 22.04 13.82 22.88 16.34 21.70 29.23 28.92 19.04 22.41

TvA 14.60 22.47 14.39 23.09 14.84 19.79 18.19 22.41 16.10 23.65 19.13 23.67 26.63 26.40 12.37 16.01

HB 15.90 21.62 16.37 22.66 17.59 20.12 12.30 12.73 13.38 14.01 12.38 13.53 26.45 26.22 9.15 10.90

BBQ 16.54 23.04 16.52 23.80 17.45 21.50 18.06 19.29 17.00 20.68 18.19 20.25 26.19 26.05 11.90 15.08

Ours 3.06 5.79 3.92 5.48 3.35 6.70 9.11 8.83 7.19 9.31 8.38 9.08 3.44 3.19 1.47 1.80

FLSD53

Un-post 6.31 10.52 5.94 10.53 4.25 8.79 3.25 5.84 2.91 4.88 3.73 5.58 32.38 33.86 14.48 14.85

Vector 12.77 25.18 13.12 24.57 11.99 18.15 10.44 19.60 11.57 19.24 10.26 16.58 27.71 28.88 21.66 22.12

Spline 16.01 25.38 15.71 24.99 16.11 22.42 11.80 18.70 11.36 17.76 11.27 18.90 25.50 25.15 15.12 14.04

CPCS 12.71 22.87 13.07 23.12 12.43 18.67 10.00 20.70 10.33 19.50 10.15 20.52 25.12 25.77 15.77 15.10

TS 11.13 25.61 14.57 25.69 10.50 17.52 11.22 22.11 11.63 20.53 10.68 17.42 29.02 30.43 23.78 24.02

CTS 12.64 24.96 12.92 24.48 11.75 17.63 10.45 19.53 11.39 19.25 10.24 16.49 27.96 29.32 22.14 22.37

ETS 12.35 24.45 13.73 24.28 12.44 19.12 12.42 19.99 12.20 18.67 11.78 20.16 32.38 33.86 14.48 14.85

PTS 12.54 24.83 12.99 24.81 11.67 16.69 11.03 20.40 11.69 19.24 10.46 17.42 27.84 28.93 23.05 23.05

STCL 13.32 26.02 13.74 25.84 12.50 17.58 11.91 21.38 12.61 20.08 11.38 18.34 28.81 29.78 23.74 23.70

TvA 12.88 22.39 13.24 22.75 12.83 19.13 12.23 20.18 12.78 19.35 12.45 20.68 24.99 25.52 15.42 14.67

HB 15.97 25.44 16.37 24.92 15.61 21.73 12.76 13.57 11.78 11.79 11.66 12.01 25.46 26.45 13.08 12.18

BBQ 16.89 26.51 17.31 25.42 16.37 22.32 17.65 21.74 17.10 21.08 17.25 20.98 25.48 25.40 15.32 14.36

Ours 2.91 7.38 2.81 7.30 2.98 5.72 3.25 5.68 2.91 6.01 3.73 5.76 4.85 3.93 4.47 4.65

MbLs

Un-post 11.27 25.30 12.17 26.95 10.45 22.81 9.37 8.23 9.90 8.97 7.57 8.26 18.91 18.23 14.59 14.62

Vector 14.90 23.03 13.77 22.09 15.17 20.98 11.36 20.46 11.58 25.50 11.32 18.89 22.79 22.51 19.26 19.13

Spline 17.65 25.77 16.41 24.62 17.80 23.59 12.39 19.22 12.32 25.38 12.43 19.19 20.32 19.67 13.52 12.88

CPCS 16.02 23.68 14.77 22.78 16.74 23.19 14.27 23.99 13.71 28.61 14.58 24.76 20.82 20.54 15.05 14.07

TS 15.59 23.07 14.79 22.16 14.48 20.77 11.06 22.46 10.47 26.19 13.68 19.47 22.18 21.48 20.48 20.27

CTS 14.88 22.82 13.72 21.86 15.08 21.27 11.35 20.10 11.45 25.32 11.30 18.89 22.84 22.61 19.77 19.44

ETS 15.65 24.19 14.96 22.83 16.45 23.09 12.99 21.05 12.86 26.04 13.71 21.14 18.91 18.23 14.59 14.62

PTS 15.15 23.18 13.96 22.19 15.28 20.58 11.66 20.95 11.62 25.94 11.75 19.69 23.01 22.54 20.71 20.02

STCL 15.93 23.91 14.84 23.17 16.30 21.50 12.55 21.86 12.50 26.69 12.61 20.55 23.48 23.37 21.36 20.60

TvA 16.02 23.22 14.84 22.02 16.90 23.32 15.03 22.71 14.53 27.72 15.58 23.27 20.55 20.03 14.75 13.94

HB 16.68 24.28 15.80 23.39 17.21 22.87 13.15 13.77 13.19 21.28 13.76 15.04 21.77 21.01 11.20 11.87

BBQ 17.38 25.19 16.53 24.46 17.48 24.01 17.46 21.62 18.05 28.65 18.70 22.18 20.56 19.88 13.82 13.24

Ours 3.77 5.85 4.38 6.23 3.28 4.25 6.85 7.08 5.12 4.66 7.57 8.24 8.31 8.85 5.51 5.87

level. The optimal temperature scaling factor T ∗ is applied to adjust the logits. Given an input xi ∼ πte(X,Y ), we
compute the calibrated probability as follows:

p̂cij =
exp(zij/T

∗)
∑K

k=1 exp(zik/T
∗)
, (15)

where p̂cij represents the calibrated prediction confidence. In this section, our method adaptively operates on the
noisy dataset, without any prior knowledge about the noise (e.g., noise rates, types, or access to clean samples).

Assumption 2. The noise transition matrix is a doubly stochastic matrix, i.e.,
∑

i Tij = 1 and
∑

j Tij = 1 for all
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Table 5 Main results: the ClasswiseECE (%) on Sym, Asym and IDN noise. ResNet-50 and ViT are trained on CIFAR-10/100. Un-post

denotes no post-hoc method is used, the same below. The best scores are bold. The “–” denotes that Classwise calculation is not supported.

Built-in Post-hoc

ResNet-50 Vision Transformer

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Sym-20 Sym-40 Asym-20 Asym-40 IDN-20 IDN-40 Sym-20 Sym-40 Asym-20 Asym-40 IDN-20 IDN-40 Sym-40 Asym-40 Sym-40 Asym-40

Dual focal

Un-post 2.81 6.29 2.87 6.29 2.74 4.95 0.31 0.38 0.41 0.38 0.39 0.40 5.07 4.98 0.39 0.39

Vector 3.41 4.85 3.30 4.85 3.23 5.23 0.37 0.41 0.33 0.42 0.33 0.41 6.38 6.37 0.54 0.53

Spline – – – - – – – – – - – – – – – –

CPCS 3.54 5.09 3.52 5.11 3.53 5.56 0.34 0.44 0.35 0.44 0.33 0.46 6.07 6.10 0.46 0.45

TS 3.28 5.09 3.48 5.09 3.45 5.09 0.38 0.40 0.35 0.40 0.34 0.42 6.59 6.54 0.55 0.55

CTS 3.35 4.91 3.29 4.94 3.25 5.05 0.38 0.42 0.34 0.42 0.33 0.40 6.38 6.35 0.55 0.53

ETS 3.56 5.06 3.54 5.09 3.57 5.44 0.37 0.43 0.36 0.43 0.34 0.43 5.07 4.98 0.39 0.39

PTS 3.37 5.06 3.33 5.06 3.27 5.03 0.38 0.41 0.35 0.41 0.34 0.41 6.42 6.42 0.56 0.56

STCL 3.54 5.18 3.49 5.20 3.48 5.23 0.39 0.42 0.36 0.42 0.35 0.42 6.64 6.64 0.57 0.57

TvA 3.43 4.73 3.38 4.74 3.44 5.37 0.41 0.43 0.38 0.43 0.38 0.46 3.43 4.73 3.38 4.74

HB 2.81 6.29 2.87 6.29 2.74 4.95 0.31 0.38 0.41 0.38 0.39 0.40 2.81 6.29 2.87 6.29

BBQ 2.81 6.29 2.87 6.29 2.74 4.95 0.31 0.38 0.41 0.38 0.39 0.40 2.81 6.29 2.87 6.29

Ours 1.10 1.83 1.18 1.83 1.08 1.80 0.26 0.29 0.26 0.29 0.26 0.31 1.38 1.63 0.29 0.30

AdaFocal

Un-post 2.31 4.00 2.43 4.08 2.21 4.28 0.29 0.29 0.30 0.29 0.29 0.29 6.09 5.90 0.39 0.41

Vector 3.09 5.50 3.37 5.55 3.10 5.34 0.33 0.43 0.33 0.45 0.32 0.43 6.61 6.38 0.55 0.54

Spline – – – – – – – – – – – – – – – –

CPCS 3.22 5.68 3.54 5.74 3.39 5.71 0.35 0.45 0.34 0.46 0.34 0.48 6.24 6.04 0.46 0.48

TS 3.05 5.82 3.53 5.71 3.30 5.08 0.35 0.45 0.34 0.47 0.34 0.43 6.86 6.66 0.57 0.56

CTS 3.07 5.60 3.34 5.64 3.06 5.10 0.34 0.44 0.34 0.46 0.32 0.43 6.61 6.37 0.56 0.55

ETS 3.33 5.73 3.51 5.70 3.37 5.75 0.36 0.45 0.35 0.46 0.36 0.46 6.09 5.90 0.39 0.41

PTS 3.12 5.62 3.38 5.66 3.12 5.12 0.34 0.44 0.34 0.46 0.33 0.44 6.64 6.47 0.57 0.57

STCL 3.29 5.87 3.52 5.83 3.34 5.25 0.36 0.45 0.35 0.47 0.34 0.45 6.82 6.68 0.58 0.58

TvA 3.24 5.68 3.54 5.76 3.43 5.82 0.37 0.45 0.37 0.47 0.37 0.48 3.24 5.68 3.54 5.76

HB 2.31 4.00 2.43 4.08 2.21 4.28 0.29 0.29 0.30 0.29 0.29 0.29 2.31 4.00 2.43 4.08

BBQ 2.31 4.00 2.43 4.08 2.21 4.28 0.29 0.29 0.30 0.29 0.29 0.29 2.31 4.00 2.43 4.08

Ours 1.13 1.51 1.14 1.84 0.93 1.96 0.26 0.28 0.25 0.29 0.25 0.29 1.30 1.45 0.29 0.33

MMCE

Un-post 2.76 4.10 2.75 4.14 2.76 4.82 0.28 0.30 0.32 0.30 0.27 0.31 4.73 4.94 0.38 0.37

Vector 3.27 4.99 3.33 5.16 3.28 4.69 0.37 0.39 0.35 0.42 0.36 0.41 6.45 6.43 0.45 0.51

Spline – – – – – – – – – – – – – – – –

CPCS 3.42 5.15 3.47 5.26 3.61 5.12 0.35 0.40 0.33 0.41 0.34 0.43 6.18 6.18 0.41 0.45

TS 3.28 5.02 3.19 5.26 3.23 4.67 0.40 0.39 0.35 0.41 0.38 0.42 6.32 6.53 0.49 0.52

CTS 3.22 5.07 3.29 5.12 3.31 4.48 0.38 0.40 0.35 0.41 0.37 0.41 6.43 6.42 0.47 0.52

ETS 3.50 5.33 3.41 5.26 3.53 5.05 0.38 0.41 0.36 0.43 0.38 0.44 4.73 4.94 0.38 0.37

PTS 3.27 5.13 3.32 5.17 3.35 4.54 0.39 0.40 0.35 0.41 0.38 0.42 6.49 6.46 0.48 0.53

STCL 3.45 5.32 3.50 5.34 3.53 4.71 0.40 0.40 0.36 0.41 0.39 0.43 6.71 6.67 0.49 0.53

TvA 3.43 5.16 3.49 5.30 3.56 5.23 0.42 0.40 0.39 0.42 0.42 0.45 3.43 5.16 3.49 5.30

HB 2.76 4.10 2.75 4.14 2.76 4.82 0.28 0.30 0.32 0.30 0.27 0.31 2.76 4.10 2.75 4.14

BBQ 2.76 4.10 2.75 4.14 2.76 4.82 0.28 0.30 0.32 0.30 0.27 0.31 2.76 4.10 2.75 4.14

Ours 1.13 1.69 1.13 1.64 1.12 2.04 0.28 0.30 0.25 0.30 0.27 0.31 1.44 1.36 0.31 0.29

FLSD53

Un-post 1.45 2.39 1.28 2.25 1.08 2.37 0.25 0.31 0.26 0.30 0.26 0.30 7.39 7.53 0.42 0.44

Vector 3.03 5.38 3.00 5.54 2.80 4.33 0.33 0.47 0.36 0.46 0.35 0.44 6.35 6.43 0.53 0.55

Spline – – – – – – – – – – – – – – – –

CPCS 3.09 4.97 3.02 5.20 2.97 4.72 0.33 0.49 0.35 0.47 0.35 0.49 5.90 5.82 0.44 0.44

TS 2.81 5.56 3.31 5.76 2.61 4.51 0.35 0.51 0.37 0.48 0.36 0.45 6.72 6.78 0.57 0.58

CTS 3.01 5.36 2.99 5.50 2.75 4.24 0.35 0.48 0.37 0.46 0.35 0.44 6.46 6.50 0.54 0.56

ETS 3.06 5.71 3.23 5.80 3.02 4.81 0.37 0.48 0.38 0.45 0.37 0.48 7.39 7.53 0.42 0.44

PTS 3.05 5.39 3.00 5.57 2.84 4.34 0.35 0.49 0.37 0.47 0.35 0.45 6.48 6.48 0.57 0.57

STCL 3.21 5.64 3.15 5.79 2.98 4.52 0.36 0.50 0.38 0.48 0.37 0.46 6.68 6.65 0.57 0.58

TvA 3.12 4.88 3.05 5.13 3.03 4.82 0.36 0.49 0.39 0.47 0.38 0.50 3.12 4.88 3.05 5.13

HB 1.45 2.39 1.28 2.26 1.08 2.37 0.25 0.31 0.26 0.30 0.26 0.30 1.45 2.39 1.28 2.26

BBQ 1.45 2.39 1.28 2.26 1.08 2.37 0.25 0.31 0.26 0.30 0.26 0.30 1.45 2.39 1.28 2.26

Ours 1.07 1.87 0.93 1.75 0.98 2.13 0.25 0.29 0.26 0.30 0.26 0.29 1.65 1.37 0.31 0.34

MbLs

Un-post 2.33 5.15 2.50 5.51 2.17 4.70 0.27 0.30 0.28 0.27 0.26 0.29 5.10 4.73 0.43 0.44

Vector 3.53 5.49 3.39 5.28 3.64 5.46 0.33 0.42 0.33 0.55 0.33 0.42 5.73 5.53 0.49 0.49

Spline – – – – – – – – – – – – – – – –

CPCS 3.75 5.59 3.58 5.56 3.89 5.81 0.38 0.46 0.37 0.60 0.37 0.48 5.45 5.22 0.44 0.43

TS 3.66 5.50 3.59 5.45 3.47 5.34 0.34 0.44 0.33 0.56 0.36 0.42 5.73 5.39 0.51 0.51

CTS 3.57 5.45 3.38 5.36 3.59 5.34 0.35 0.43 0.34 0.54 0.33 0.42 5.71 5.55 0.50 0.49

ETS 3.67 5.67 3.62 5.57 3.85 5.80 0.37 0.44 0.36 0.57 0.37 0.45 5.10 4.73 0.43 0.44

PTS 3.57 5.51 3.43 5.45 3.63 5.30 0.34 0.42 0.34 0.55 0.33 0.42 5.89 5.60 0.51 0.51

STCL 3.73 5.62 3.60 5.63 3.81 5.48 0.35 0.44 0.36 0.56 0.35 0.43 5.98 5.77 0.51 0.51

TvA 3.75 5.52 3.60 5.42 3.92 5.83 0.39 0.44 0.38 0.58 0.39 0.46 3.75 5.52 3.60 5.42

HB 2.33 5.15 2.50 5.51 2.17 4.70 0.27 0.30 0.28 0.27 0.26 0.29 2.33 5.15 2.50 5.51

BBQ 2.33 5.15 2.50 5.51 2.17 4.70 0.27 0.30 0.28 0.27 0.26 0.29 2.33 5.15 2.50 5.51

Ours 1.11 1.50 1.15 1.60 1.20 1.95 0.25 0.29 0.26 0.26 0.26 0.29 2.32 2.22 0.32 0.34

i, j, which includes well-known cases such as symmetric and asymmetric label noise.

Proposition 3. The TransTS introduces the noise transition matrix T (x) to scale the output probabilities pi =
softmax(zi) adaptively, share the effect of the temperature scaling factor T , prevent T from being too aggressive,
thereby alleviating the over-calibration.

Multiply the output probability distribution P by the noise transition matrix to obtain the new probability
distribution P ′, where p′i =

∑
j pjTji

1). We aim to show that the noise transition matrix can smooth the output

1) For clarity, we denote the probability distribution as P = {p1, p2, . . . , pk} and denote noise transition matrix as T (x) rather than T̂ (x)

in this proof.
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probabilities, i.e., H(P ′) > H(P ). We first introduce the concave entropy function f(x) = −x log x. Applying
Jensen’s inequality yields

−


∑

j

pjTji


 log


∑

j

pjTji


 >

∑

j

Tji(−pj log pj). (16)

Sum on all i
∑

i

−



∑

j

pjTji


 log



∑

j

pjTji


 >

∑

i

∑

j

Tji(−pj log pj). (17)

By exchanging the order of summation and using
∑

i Tji = 1, the right side can be simplified to
∑

i

∑

j

Tji(−pj log pj) =
∑

j

(−pj log pj)
∑

i

Tji =
∑

j

−pj log pj. (18)

Now
∑

i

−



∑

j

pjTji


 log



∑

j

pjTji


 >

∑

j

−pj log pj . (19)

It is
H(P ′) > H(P ). (20)

Figure 3(b) shows that TransTS makes the entropy of the probability distribution larger, which confirms (20).
Further, the noise transition matrix shares part of the scaling effect of the scaling factor T , preventing T from being
too large. Table 2 shows that the scaling factor T learned by TransTS is usually moderate.

Proposition 4. Suppose that the noise transition matrix T (x) is invertible, TransTS achieves consistent cali-
bration: the calibrator learned on the noisy validation set Dval(x, ȳ) converges to the one learned on the clean
validation set Dval(x, y).

We consider TransTS to be a single-parameter model with learnable scaling factor T . It takes z as input and
outputs the calibrated output probabilities. The relationship between the noisy class posteriors P (ȳ = j|z) and the
clean class posteriors P (y = i|z) is

P (ȳ = j|z) =

K∑

i=1

P (ȳ = j|y = i, z)P (y = i|z)

=

K∑

i=1

Tij(z)P (y = i|z)

=

K∑

i=1

Tij(x)P (y = i|z).

(21)

Since the transition matrix is class-dependent and instance-independent, Tij(z) and Tij(x) are equivalent. Note
that Proposition 4 requires the noise transition matrix to be invertible, which means that the clean class posterior
derived from the noisy class posterior has a unique solution [28, 39, 40]:

argmin
P

Ez,ȳℓ(ȳ, P (z)) = argmin
P

Ez,yℓ(y, P (z)), (22)

where the ℓ(·) denotes the loss function. In practice, the noise transition matrix is almost certainly invertible. Even
when the noise transition matrix exhibits a certain degree of non-invertibility, its condition number can be improved
by mixing identity matrix, thereby approximately satisfying invertibility [39]. Therefore, we can call (21) calibrator
consistent, which means that the calibrator learned on the noisy validation set can converge to the one learned on
the clean validation set. Further, for the calibration equation, we can get

P (ȳ = j|p̂ = p)

=
K∑

i=1

P (ȳ = j|y = i, p̂ = p)P (y = i|p̂ = p)

=

K∑

i=1

Tij(x)P (y = i|p̂ = p).

(23)
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Science TransTS can converge to the clean label domain, what TransTS actually implements is P (y = i|p̂ = p) →
P (ŷ = y|p̂ = p) = p, which aligns with the ideal calibration behavior under clean labels. This effectively resolves the
issue identified in Proposition 1. Thanks to TransTS’s consistent calibration property, Eq. (7) becomes valid even
in the presence of label noise. This ensures that the calibration equation remains effective in guiding the calibration
process for DNN classifiers, just as it would with clean data. Proposition 4 shows that TransTS theoretically
approaches the performance upper bound achievable with a clean validation set. Importantly, this performance is
achieved relying only on noisy data. Compared with single-matrix methods (such as matrix scaling), TransTS can
adaptively adjust the temperature scaling factor according to the estimated noise level. Furthermore, TransTS can
achieve consistent calibration, which single-matrix methods (such as matrix scaling) cannot do.

5 Experiments

5.1 Experimental setup

Dataset and network architecture. In this paper, we use the CIFAR-10, CIFAR-100 [41]. CIFAR-10 and
CIFAR-100 both contain 50000 training images and 10000 test images, with 10 classes and 100 classes, respectively.
The number of images per class is approximately equal. We also use a real-world noisy dataset: ANIMAL-10 [42],
which contains 5 pairs of confusing animal categories and a total of 55000 images. The training dataset contains
50000 images and the test dataset contains 5000 images. The noise rate is about 8%. Two network architectures
are considered in this paper: ResNet-50 [43] and ViT-Base [44]. The ViT is designed to process input images of size
32x32 pixels, dividing them into 4x4 patches. The model uses a 512-dimensional embedding space, a transformer
encoder with 6 layers, and 8 attention heads. The feed-forward network within the transformer has a hidden
dimension of 512. In addition, we performed supplementary analyses on ResNet-110 [43], Wide-ResNet-26-10 [45],
and DenseNet-121 [46]. Following existing studies [2,38–40], we employ τ values of 94% for CIFAR-10/ANIMAL-10
and 99.6% for CIFAR-100 from a 10% held-out validation set.

Baselines. For built-in baselines, we use MMCE [47], FLSD53 [6], dual focal [8], AdaFocal [7], and MbLs [20].
For post-hoc baselines, we use HB [48], BBQ [32], vector scaling [49], TS [12], Splines [17], CPCS [19], CTS [50],
ETS [6], PTS [16], STCL [51], and TvA [18]. Additionally, we include the following LNL baselines: DivideMix [29],
Dual-T [40], LogitsClip [52], PLM [2], and RENT [53].

Metrics. Three metrics are used in this paper: ECE [32], adaptive ECE (AdaECE) [54], and ClasswiseECE [55].
For ECE, AdaECE and ClasswiseECE, the number of bins is set to 15.

Noisy setting. Following existing studies [2, 26, 29, 52, 53], we artificially corrupt the dataset to obtain noisy
datasets with noise rates of 20% and 40%. We evaluate both symmetric and asymmetric label noise, which are
generated by randomly flipping a portion of labels in the training and validation sets to any other class. Although
our method is designed for class-dependent and instance-independent label noise, it is also evaluated under instance-
dependent noise settings, see Subsection 5.2. For clarity, we abbreviate the three noise types as follows: symmetric
noise (Sym), asymmetric noise (Asym), and instance-dependent noise (IDN).

Model training. In our experiments, the training settings are consistent with existing studies [6–8]. For training
networks on CIFAR-10, CIFAR-100, and ANIMAL-10N, we use SGD with a momentum of 0.9 as our optimizer,
and train the networks for 350 epochs. The learning rate is set according to epoch, and the learning rate changes
at 150th, 250th, and 350th are 0.1, 0.01, 0.001, respectively. The training batch size is set to 128. All experiments
are conducted on Ubuntu 22.10. The computing device used is NVIDIA GeForce RTX 4090. The software platform
versions are as follows: CUDA version 12.10, PyTorch version 1.7.1, and Python version 3.7.5. Since our method is
a post-hoc method, the results will remain consistent across multiple runs for an already-trained model. Therefore,
we did not report variances. For temperature scaling, the temperature scaling factor ranges from 0.1 to 100 with a
step size of 0.1, and the loss function is the NLL. For the LNL methods, we strictly follow their respective official
implementations.

5.2 Main results

Synthetic noisy dataset. We evaluate our method under symmetric, asymmetric, and instance-dependent label
noise on CIFAR-10 and CIFAR-100 with label noise introduced at rates of 20% and 40%, as shown in Table 3.
In this experiment, we employ ResNet-50 and ViT as backbones. In all cases, the performance of all post-hoc
baselines degrades under label noise, while our method consistently outperforms them. The reason is that label
noise can also lead to over-calibration in other post-hoc methods, whereas TransTS mitigates this by adaptively
scaling the logits to obtain a moderate scaling factor T . To support this, we provide a visual analysis in Figure 4.
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Figure 4 (Color online) Over-calibration and its mitigation on the CIFAR-10. ResNet-50 model trained under Sym-20% noise.

The results show that the temperature scaling method still suffers from severe over-calibration, while our method
significantly alleviates it and achieves better calibration results. We also provide quantitative empirical support
for the moderate scaling factor T ∗ in Table 2. For the built-in baseline methods, our method achieves the best
ECE in the vast majority of cases. For example, when combined with DualFocal and AdaFocal losses, our method
significantly improved calibration performance, yielding the best calibration results. Our method achieved the best
ECE across most experimental settings when integrated with MMCE, FLSD53, and MbLs. However, in a few cases
on CIFAR-100, our method performed similarly to built-in methods such as MMCE. We argue that, when the
number of classes is large, the validation data is partitioned into highly imbalanced subsets by post-hoc calibration
methods, which lack sufficient examples for reliable calibration [18]. For ViT, when all built-in methods perform
poorly, our method achieves the best performance in all cases, indicating that our method remains effective with
the ViT backbone. The results of AdaECE and ClasswiseECE scores are shown in Tables 4 and 5, respectively.

Real-world noisy dataset. We evaluate our method on the real-world noisy dataset ANIMAL-10N. Table 6
shows that our method achieves the best calibration performance in all cases. Take ECE scores as an example,
under MMCE, FLSD53, DualFocal, AdaFocal, and MbLs, our method consistently outperforms other approaches,
irrespective of the post-hoc calibration method used. Without combining with post-hoc baselines, each built-in
method performs differently. For example, FLSD53 demonstrates moderate performance, indicating a certain level
of effectiveness on real-world noisy datasets. However, when combined with our method, it achieves significant
improvements. Moreover, we provide a visual analysis in Figure 5. The results show that, when faced with real-
world noisy datasets, TS also suffers from severe over-scaling, while our method effectively mitigates this issue. The
results of AdaECE and ClasswiseECE scores are also shown in Table 6.

5.3 TransTS can effectively calibrate LNL method

We evaluate our method combined with LNL methods, as shown in Table 7. The calibration of LNL baselines is
suboptimal as they are not specifically designed for calibration. Among these baselines, DivideMix performs slightly
better, whereas LogitsClip exhibits the worst calibration performance. When denoising strategies are applied (i.e.,
first using an LNL method to denoise the validation set, then combining with TS), the calibration performance
tends to degrade. For example, DivideMix achieves 94.83% accuracy with 20% symmetric noise. Applying it to
denoise the validation set reduces label noise by 14.83%. TS is applied to the output probabilities of DivideMix
and its predicted labels. Due to the use of argmax in label prediction, the output probabilities align exactly
with the predicted class labels, which naturally minimizes the empirical classification risk. But TS, which aims
to further minimize empirical risk, pushes the predicted probabilities toward a one-hot distribution, leading to
over-confidence. We provide reliability diagrams in Figure 6 to demonstrate that denoising strategies lead to over-
confidence. In contrast, our method achieves the best results in all cases. When RENT is used, we observe a 48.24%
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Table 6 Main results: evaluation on the real-world noisy dataset ANIMAL-10N. The ECE, AdaECE and ClasswiseECE scores trained on

ResNet-50 are shown. The best scores are bold. The “–” denotes that Classwise calculation is not supported.

ECE (%)

Built-in Un-post Vector Spline CPCS TS CTS ETS PTS STCL TvA HB BBQ Ours

MMCE 10.16 3.66 5.90 4.68 4.47 3.40 5.24 4.04 5.04 6.17 6.08 6.94 2.03

FLSD53 3.01 4.25 4.94 4.67 2.96 3.92 4.67 4.00 5.07 4.62 5.09 5.41 1.85

DualFocal 10.65 4.17 6.27 5.15 3.69 4.09 5.55 4.22 5.12 6.52 8.16 8.28 1.48

AdaFocal 8.87 3.33 5.08 4.46 3.89 3.19 4.72 3.35 4.50 5.43 7.78 8.65 0.93

MbLs 8.78 3.46 5.75 5.25 3.90 3.35 5.25 3.67 4.32 5.34 8.10 8.68 2.54

AdaECE (%)

Built-in Un-post Vector Spline CPCS TS CTS ETS PTS STCL TvA HB BBQ Ours

MMCE 6.45 3.78 4.92 4.66 3.37 3.54 5.14 4.07 5.07 6.16 6.32 7.42 3.61

FLSD53 3.05 4.11 5.57 4.53 3.14 4.00 4.53 3.79 4.90 4.39 5.60 5.24 1.72

Dual 10.62 4.17 6.13 5.17 3.93 4.02 5.55 4.36 5.15 6.52 7.90 8.12 2.84

Ada 8.87 3.07 5.15 4.30 3.77 3.06 4.58 3.21 4.33 5.25 7.66 9.07 2.08

MbLs 8.77 3.31 5.42 4.96 3.44 2.92 4.96 3.22 4.00 5.07 8.81 8.65 3.02

ClasswiseECE (%)

Built-in Un-post Vector Spline CPCS TS CTS ETS PTS STCL TvA HB BBQ Ours

MMCE 1.44 1.20 – 4.57 1.18 1.19 1.51 1.27 1.42 1.61 1.44 1.44 1.10

FLSD53 1.29 1.08 – 4.67 1.36 1.10 1.58 1.47 1.64 1.57 1.29 1.29 1.29

Dual 2.23 1.28 – 5.15 1.32 1.30 1.60 1.38 1.52 1.74 2.23 2.23 0.97

Ada 1.87 1.11 – 4.46 1.38 1.20 1.50 1.28 1.44 1.60 1.87 1.87 0.99

MbLs 1.82 1.21 – 5.25 1.46 1.31 1.70 1.42 1.55 1.71 1.82 1.82 1.01

Figure 5 (Color online) Over-calibration and its mitigation on the real-world noisy dataset ANIMAL-10N. ResNet-50 model trained under

Sym-20% noise.

ECE improvement in CIFAR-100 with 40% symmetric noise. This further indicates that our method, as a general
post-hoc method, can be combined with any pre-trained model, regardless of how it was trained.

5.4 TransTS has adaptability on clean data

On clean datasets, TransTS maintains performance comparable to existing calibration methods. According to
the anchor point assumption (i.e., a sample x ∈ X is considered to be an anchor point of the i-th clean class if
P (Y = i|X = x) = 1), clean labels do not transfer to noisy labels, implying that the transition matrix is an identity
matrix. For a well-trained model on a clean dataset, the confidence of anchor points obtained from it is close to 1.
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Table 7 Evaluation on the LNL methods. The ECE, AdaECE and ClasswiseECE scores are shown. The best scores are bold.

LNL Type

ECE (%) AdaECE (%) ClasswiseECE (%)

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Sym-20 Sym-40 Sym-20 Sym-40 Sym-20 Sym-40 Sym-20 Sym-40 Sym-20 Sym-40 Sym-20 Sym-40

DivideMix

Un-post 7.34 3.63 12.34 9.99 7.34 3.61 12.34 9.98 1.53 0.80 0.31 0.27

TS 18.92 38.83 15.11 33.53 18.91 38.82 15.05 33.53 4.01 7.82 0.41 0.74

Denoise TS 9.03 4.76 20.66 21.29 9.04 4.73 20.66 21.29 1.75 0.94 0.42 0.44

Ours 1.80 2.47 4.42 8.14 2.35 2.41 4.51 8.05 1.19 0.62 0.24 0.29

Dual-T

Un-post 12.25 18.25 13.78 10.02 12.24 18.24 13.78 10.01 2.60 3.76 0.42 0.38

TS 20.52 32.34 15.41 21.46 20.53 32.34 15.41 21.45 4.24 6.80 0.40 0.46

Denoise TS 25.75 31.18 52.33 59.03 25.75 31.17 52.34 59.03 5.19 6.22 1.09 1.24

Ours 1.35 1.91 2.69 6.22 1.64 1.85 2.80 6.23 0.89 0.98 0.27 0.28

LogitsClip

Un-post 34.13 29.02 34.60 44.46 34.13 29.03 47.98 43.34 7.54 6.67 0.72 0.46

TS 21.73 29.02 14.52 22.11 21.70 29.03 20.14 21.06 5.10 6.67 0.47 0.46

Denoise TS 16.20 19.88 16.07 42.88 16.19 19.88 41.11 44.07 3.28 4.02 0.86 0.93

Ours 3.76 6.02 3.90 12.86 5.10 5.99 5.43 12.92 1.42 1.64 0.31 0.36

PLM

Un-post 8.80 13.64 8.81 18.95 8.80 13.64 8.79 18.95 2.16 3.32 0.32 0.50

TS 21.26 33.95 14.70 30.61 21.26 33.95 14.70 30.61 4.63 7.30 0.41 0.71

Denoise TS 8.90 13.62 30.38 33.74 8.86 13.62 30.38 33.73 1.81 2.77 0.64 0.71

Ours 1.73 3.89 3.40 2.88 1.74 3.64 3.46 2.91 0.91 1.15 0.24 0.25

RENT

Un-post 10.98 17.56 43.87 50.70 2.63 4.91 40.74 49.77 1.30 1.64 0.93 1.13

TS 41.16 33.54 38.29 50.70 65.66 64.96 37.97 49.77 11.00 0.28 0.03 1.13

Denoise TS 17.03 21.01 58.60 64.54 17.77 21.91 58.39 65.72 3.60 4.37 1.02 1.04

Ours 1.52 4.57 2.17 2.46 1.84 2.46 1.65 2.73 1.36 1.67 0.30 0.31

Figure 6 (Color online) Reliability diagram of LNL methods. ResNet-50 model trained on CIFAR-10 under Sym-20% noise.

Figure 7(a) confirms this: the estimated transfer matrix is an approximate identity matrix. Our method scales the
logits by the approximate identity matrix, which is nearly equivalent to applying no scaling at all. Consequently,
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Figure 7 (Color online) TransTS’s adaptability to clean data. (a) shows the estimated transition matrix from the clean dataset, and is diagonal

mean is almost equal to 1. (b) and (c) present the ECE scores under MMCE. These results demonstrate that when the dataset is clean, our

method adaptively reduces to TS without compromising its calibration performance. In addition, (d) is the result of anchor-based denoising

baseline on CIFAR-10.

Table 8 Parameter analysis of τ . The τ represents the percentile in noise transition matrix estimation, defined in (11). The T (x) error denotes

the transition matrix error, defined as the difference between the average diagonal value of the estimated transition matrix and that of the true

transition matrix. The best score is bold.

τ Un-post 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

T (x) error – −0.652 −0.491 −0.185 −0.060 −0.007 +0.018 +0.034 +0.048 +0.061 +0.078 +0.138

ECE 13.4 12.32 11.47 9.02 4.46 2.80 4.07 4.7 4.72 5.83 6.88 9.44

our method adaptively degrades to the original TS. As shown in Figures 7(b) and (c), our method performs the
same as the original TS. This demonstrates that our method has strong adaptability to clean datasets.

5.5 Analysis on estimation of noise transition matrix

In this section, we conduct more analysis on the estimation of the noise transition matrix. First, we introduced a
baseline using an anchor-derived validation set to further demonstrate the advantages of our method, see Figure 7(d).
In this section, the selected anchor points X̂ are regarded as anchor-driven clean data (approximation). Among
them, the xi ∈ X̂ , but yi has two options: predicted label or given noisy label. We evaluated them separately.
The results reveal that the original TS fails to achieve effective calibration, as it remains only approximately clean
without guaranteed noise elimination. Moreover, minimizing the NLL between predicted labels and logits amplifies
overconfidence. These findings collectively underscore our method’s efficacy in calibrating DNN classifiers across
both noisy and clean environments. Furthermore, we also performed a parameter analysis to present the impact of
imperfect noise transition matrix on the calibration, see Table 8. The results show that an accurate noise transition
matrix provides a direct benefit for the calibration. For example, when τ is 94, the T (x) error is only −0.007, which
means that the estimated noise transition matrix is closer to the true noise transition matrix, and the ECE score
is the best at this time. When τ is 90, the T (x) error is −0.652, and the ECE score is the worst at this time,
only 12.32, which is only slightly better than the uncalibrated one (Un-post). Fortunately, TransTS can accurately
estimate the noise transition matrix of noisy data and thus achieve better calibration performance.

6 Related work

Probability calibration for DNNs. Existing calibration methods can be broadly categorized into two classes:
built-in methods and post-hoc methods. Built-in methods calibrate the model during the training process through
the designed learning objectives, such as maximum mean calibration error (MMCE) [47], sample-dependent fo-
cal loss (FLSD53) [6, 8], adaptive focal loss (AdaFocal) [7], dual focal loss (DualFocal) [8], class adaptive label
smoothing (CALS) [56], and margin-based label smoothing (MbLs) [20]. However, the built-in methods require
modification of the training process, which is difficult to decouple from label noise. Post-hoc methods aim to cali-
brate confidence for already-trained models, which decouple accuracy optimization and calibration. These methods
include histogram binning (HB) [48], Bayesian binning into quantiles (BBQ) [32], vector scaling (VS) [49], TS [12],
splines [17], calibrated prediction with covariate shift (CPCS) [19], class-based temperature scaling (CTS) [50], en-
semble temperature scaling (ETS) [6], parameterized temperature scaling (PTS) [16], scaling of class-wise training
losses (SCTL) [51], and top-versus-all (TvA) [18]. Due to their simplicity and no need to retrain the classifier, the
post-hoc methods show more promise for calibrating DNN classifiers under label noise. Therefore, in this paper,
we aim to study probability calibration under label noise by combining existing post-hoc calibration methods.
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Learning with noisy labels. LNL aims to mitigate the impact of noisy label data during training, thereby
improving model accuracy. Among these methods, sample selection and loss correction have attracted widespread
attention. Sample selection methods optimize training by dynamically removing noisy labeled data. For example,
Ref. [29] divided the data into labeled and unlabeled subsets for semi-supervised training; Ref. [57] minimized the
KL divergence between the outputs of two networks to align their predictions more closely with the true labels.
Ref. [58] employed evidence deep learning to select reliable samples based on prediction uncertainty. Loss correction
methods use a noise transition matrix to adjust the loss function, ensuring the classifier converges toward the true
data distribution. For instance, Ref. [53] proposed a resampling strategy to better utilize transition matrices; Ref. [2]
improved noise-aware class posterior estimation through a partial label learning framework; Ref. [40] estimated
transition matrices in two stages to improve accuracy; and Ref. [52] introduced a logit clipping mechanism to
enhance robustness against noisy labels. It is worth noting that the pursuit of improved accuracy in LNL represents
only one aspect of the problem. The complementary challenge—calibrating DNN classifiers under label noise—also
warrants further investigation.

7 Conclusion

This paper focuses on probability calibration under label noise, a critical aspect for deploying DNNs in real-world
applications. Specifically, we observe that label noise can deteriorate model calibration in both built-in and post-hoc
methods. Furthermore, we argue that label noise compels temperature scaling to learn an aggressive scaling factor
T . This aggressive factor leads to over-calibration. To address this issue, we propose the adaptive transitional
calibration method (TransTS). TransTS introduces a noise transition matrix, which adaptively scales the output
probabilities, thereby obtaining a moderate scaling factor T and alleviating over-calibration. We also show that
TransTS essentially builds a consistent calibrator that can converge to its counterpart learned on clean data. Finally,
we show that TransTS achieves better calibration through experiments on a variety of cases. Finally, we validate
the effectiveness of TransTS through experiments across multiple datasets, demonstrating improved calibration
performance in terms of metrics such as ECE, AdaECE, and ClasswiseECE. Future work will explore building an
end-to-end framework that simultaneously optimizes for both accuracy and calibration under label noise, eliminating
the need for post-hoc calibration.
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