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Abstract As a key component to intuitive cognition and reasoning solutions in human intelligence, causal knowledge provides great

potential for reinforcement learning (RL) agents’ interpretability towards decision-making by helping reduce the searching space. However,

there is still a considerable gap in discovering and incorporating causality into RL, which hinders the rapid development of causal RL.

In this paper, we consider explicitly modeling the generation process of states with the causal graphical model, based on which we

augment the policy. We formulate the causal structure updating into the RL interaction process with active intervention learning of the

environment. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between

two steps: using interventions for causal structure learning during exploration and using the learned causal structure for policy guidance

during exploitation. Due to the lack of public benchmarks that allow direct intervention in the state space, we design the root cause

localization task in our simulated fault alarm environment and then empirically show the effectiveness and robustness of the proposed

method against state-of-the-art baselines. Theoretical analysis shows that our performance improvement is attributed to the virtuous

cycle of causal-guided policy learning and causal structure learning, which aligns with our experimental results. Codes are available at

https://github.com/DMIRLAB-Group/FaultAlarm RL.
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1 Introduction

How to decide the next action in repairing the cascading failure under a complex dynamic online system? Such a
question refers to multifarious decision-making problems in which reinforcement learning (RL) has achieved notable
success [1–4]. However, most off-the-shelf RL methods contain a massive decision space and a black-box decision-
making policy, thus usually suffering from low sampling efficiency, poor generalization, and lack of interpretability.
As such, current efforts [5, 6] incorporate domain knowledge and causal structural information into RL to help
reduce the searching space as well as improve the interpretability; e.g., a causal structure enables to locate the
root cause guiding the policy decision. With the causal knowledge, recent RL approaches are mainly categorized as
implicit and explicit modeling-based.

Implicit modeling-based approaches mostly ignore the detailed causal structure and only focus on extracting the
task-invariant representations to improve the generalizability in unseen environments [7–12]. For instance, Ref. [8]
proposed a method that extracted the reward-relevant representations while eliminating redundant information. In
contrast, explicit modeling-based approaches seek to model the causal structure of the transition of the Markov
decision process (MDP) [13–20]. For instance, Ref. [16] proposed a method to learn the causal structure among
states and actions to reduce the redundancy in modeling while Ref. [13] utilized the causal structure of MDP
through a planning-based method. However, these explicit modeling methods either rely on the causal knowledge
from domain experts or might suffer from low efficiency in learning policy due to the indirect usage of causal
structure in planning and the possible inefficient randomness-driven exploration paradigm.
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Figure 1 (Color online) Intervention-Inference-Guidance loop of online causal reinforcement learning.

Inspired by the intervention from causality and the decision nature of RL actions in online reinforcement learning:
a random action is equivalent to producing an intervention on a certain state such that only its descendants will
change while its ancestors will not; a decision could be made according to the causal influence of the action to a
certain goal. As such, a causal structure can be learned through interventions by detecting the changing states,
which in turn guides a policy with the causal knowledge from the learned causal structure. Although there has been
recent interest in related subjects in causal reinforcement learning, most of them seek to learn a policy either with
a fixed prior causal model or a learned but invariant one [13, 16, 19, 21], which does not naturally fit our case when
the causal model is dynamically updated iteratively via interventions while learning policy learning (i.e., learning
by doing), along with the theoretical identifiability and performance guarantees.

In this work, as shown in Figure 1, we propose an online causal reinforcement learning framework that reframes
RL’s exploration and exploitation trade-off scheme. In exploration, we devise an inference strategy using intervention
to efficiently learn the causal structure between states and actions, modeling simultaneously causal dynamics of the
environment; while in exploitation, we take the best of the learned structure to develop a causal-knowledge-triggered
mask, which leads to a highly effective causal-aware policy. As such, the causal environment, the causal structure
inference strategy, and the causal-aware policy construct a virtuous cycle to the online causal reinforcement learning
framework.

In particular, our framework consists of causal structure learning and policy learning. For causal structure
learning, we start by explicitly modeling the environmental causal structure from the observed data as initial
knowledge. Then we formulate the causal structure updating into the RL interaction process with active intervention
learning of the environment. This novel formulation naturally utilizes post-interaction environmental feedback to
assess treatment effects after applying the intervention, thus enabling correction and identification of causality.
For policy learning, we propose to construct the causal mask based on the learned causal structure, which helps
directly reduce the decision space and thus improves sample efficiency. This leads to an optimization framework
that alternates between causal discovery and policy learning to gain generalizability. Under some mild conditions,
we prove the identifiability of the causal structure and the theoretical performance guarantee of the proposed
framework.

To demonstrate the effectiveness of the proposed approach, we established a high-fidelity fault alarm simulation
environment in the communication network in the operations and maintenance (O&M) scenario, which requires
powerful reasoning capability to learn policies. We conduct comprehensive experiments in such an environment,
and the experimental results demonstrate that the agent with causal learning capability can learn the optimal policy
faster than the state-of-the-art model-free RL algorithms, reduce the exploration risk, and improve the sampling
efficiency. Additionally, the interaction feedback from the environment can help learn treatment effects and thus
update and optimize causal structure more completely. Furthermore, our framework with causality can also be
unified to different backbones of policy optimization algorithms and be easily applied to other real-world scenarios.

The main contributions are summarized as follows.



Cai R C, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122104:3

• We propose an online causal reinforcement learning framework, including causal structure and policy learning.
It interactively constructs compact and interpretable causal knowledge via intervention (doing), in order to facilitate
policy optimization (learning).

• We propose a causal structure learning method that automatically updates local causal structures by evaluating
the treatment effects of interventions during agent-environment interactions. Based on the learned causal model,
we also develop a causal-aware policy optimization method triggered by a causal mask.

• We derive theoretical guarantees from aspects of both causality and RL: identifiability of the causal structure
and performance guarantee of the iterative optimization on the convergence of policy that can be bounded by the
causal structure.

• We experimentally demonstrate that introducing causal structure during policy training can greatly reduce the
action space, decrease exploration risk, and accelerate policy convergence.

2 Related work

Reinforcement learning. RL solves sequential decision problems by trial and error, aiming to learn an optimal
policy to maximize the expected cumulative rewards. RL algorithms can be conventionally divided into model-free
and model-based methods. The key idea of the model-free method is that agents update the policy based on the
experience gained from direct interactions with the environment. In practice, model-free methods are subdivided
into value-based and policy-based ones. Value-based methods select the policy by estimating the value function, and
representative algorithms include deep Q-network (DQN) [22], deep deterministic policy gradient (DDPG) [23], and
dueling double DQN (D3QN) [24]. Policy-based methods directly learn the policy function without approximating
the value function. The current mainstream algorithms are proximal policy optimization (PPO) [25], trust region
policy optimization (TRPO) [26], A2C, A3C [27], and SAC [28]. The model-free approach reaches a more accurate
solution at the cost of larger trajectory sampling, while the model-based approach achieves better performance with
fewer interactions [29–33]. Despite the better performance of the model-based approach, it is still more difficult
to train the environment model, and the model-free approach is more general for real-world applications. In this
paper, we apply our approach to the model-free methods.

Causal reinforcement learning. Causal RL [34–36] is a research direction that combines causal learning with
reinforcement learning. Ref. [16] proposed to extract relevant state representations based on the causal structure
between partially observable variables to reduce the error of redundant information in decision-making. Refs. [7,14]
discovered simple causal influences to improve the efficiency of reinforcement learning. Refs. [37, 38] proposed
counterfactual-based data augmentation to improve the sample efficiency of RL. Building dynamic models in model-
based RL [5, 6, 39] based on causal graphs has also been widely studied recently. Ref. [5] leveraged the structural
causal model as a compact way to encode the changeable modules across domains and applied them to model-based
transfer learning. Ref. [6] proposed a causal world model for offline reinforcement learning that incorporated causal
structure into neural network model learning. Most of them utilize pre-defined or pre-learned causal graphs as
prior knowledge or detect single-step causality to enhance the RL policy learning. However, none of them used the
intervention data of the interaction process with the environment to automatically discover or update the complex
causal graph. Our method introduces a self-renewal interventional mechanism for the causal graph based on causal
effects, which ensures the accuracy of causal knowledge and greatly improves the strategy’s efficiency.

Causal discovery. Causal discovery aims to identify the causal relationships between variables. Typical causal
discovery methods from observational data are constraint-based methods, score-based methods, and function-based
methods. Constraint-based methods, such as PC and FCI algorithms [40], rely on conditional independence tests
to uncover an underlying causal structure. Different from constraint-based methods, score-based methods use a
score to determine the causal direction between variables of interest [41–43]. But both constraint-based methods
and score-based methods suffer from the Markov equivalence class (MEC) problem, i.e., different causal structures
imply the same conditional independence tests. By utilizing the data generation process assumptions, like the linear
non-Gaussian assumption [44] and the additive noise assumption [45–47], function-based methods are able to solve
the MEC problem and recover the entire causal structure.

Furthermore, leveraging additional interventional information can provide valuable guidance for the process of
causal discovery [48, 49]. An intuitive concept involves observing changes in variables following an intervention on
another variable. If intervening in one variable leads to changes in other variables, it suggests a potential causal
relationship between the intervened variable and the variables that changed.
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3 Problem formulation

In this section, we majorly give our model assumptions and relevant definitions to formalize the problem. We
concern the RL environment with an MDP 〈S,A, p, r, γ〉, where S denotes the state space, A denotes the action
space, p(s′|s, a) denotes the dynamic transition from state s ∈ S to the next state s′ when performing action a ∈ A
in state s, r is a reward function with r(s, a) denoting the reward received by taking action a in state s, and γ ∈ [0, 1]
is a discount factor.

To formally investigate the causality in online RL, we make the following factorization state space assumption.

Assumption 1 (Factorization state space). The state variables in the state space S = {s1 × s2 × · · · × s|S|} can

be decomposed into disjoint components {si}
|S|
i=1.

Assumption 1 implies that the factorization state space has explicit semantics on each state component and
thus the causal relationship among states can be well defined. Such an assumption can be satisfied through an
abstraction of states which has been extensively studied [9, 50].

Considering that causality implies the underlying physical mechanism, we can formulate the one-step Markov
decision process with the causal graphical model1) [51] as follows.

Definition 1 (Causal graph on Markov decision process). Let G = (VS , E) denote the causal graph where VS is the
vertex set defined on the state space, and the edge set E represents the causal relationships among vertex. Given
the total time span [1, 2, . . . , T ], the causal relationship on the one-step transition dynamics can be represented
through the factored probability:

p(st1, s
t
2, . . . , s

t
|S||s

t−1
1 , st−12 , . . . , st−1|S| ) =

|S|
∏

i=1

p(sti|s
t−1
Pai

), (1)

where |S| is the support of the state space, Pai := {sj |sj → si ∈ E} denotes the parent set of si according to causal
graph G, and st−1Pai

is the parent states from the last time step.

To establish a rigorous framework for causal reasoning in MDPs, we introduce the following assumptions, which
generalize classical causal assumptions to the temporal domain.

Assumption 2 (Causal Markov assumption in MDP). A causal graph G = {VS , E} and a probability transition
distribution p(sti|s

t−1

PaG

i

) satisfy the Markov condition if and only if for every sti state, sti is independent of s1:Ti \

{st+1:T

DesGi
∪ st−1

PaG

i

} given st−1
PaG

i

for all t in MDP, where s1:Ti denote the set of state variables i from time 1 to T , and

st+1:T

DesGi
denotes the descendant of si from time t+ 1 to T .

Assumption 3 (Causal faithfulness assumption in MDP). Let G = {VS , E} be a causal graph and p(sti|s
t−1

PaG

i

)

a transition distribution generated by G. 〈G, p〉 satisfies the faithfulness condition if and only if every conditional
independence relation true in p is entailed by the causal Markov condition applied to G at any time in MDP.

Assumption 4 (Causal sufficiency assumption in MDP). A set of state variables VS in G is causally sufficient if
and only if there are no latent confounders of any two observed state variables at any time in MDP.

These assumptions are just the generalized version of the original one in the time domain such that causal
structure is defined between the last time and the current time using independence. With these assumptions, we
can develop the identifiability results for learning a causal graph in MDP.

An example of such a causal graph in MDP is given in Figure 2(a). In our framework, actions are modeled as
interventions, which inherently influence the state. To capture this, we explicitly consider the impact of each action
on the state. Without loss of generality, we can model the action on each state as a binary treatment Ii ∈ {0, 1}
for state si, where Ii = 0 indicates the state receives no intervention (natural evolution), and Ii = 1 indicates the
state receives the treatment (treated) under which an intervention is performed. For example, I2 = 1 at time t in
Figure 2(a) means that there is an intervention do(s2) on st2 such that the effect of all parents on st2 is removed.
Such action modeling is commonly encountered in many scenarios like network operation, robot control, etc. In
such a case, we have p(do(st2)|s

t−1
Pa2

) = p(do(st2)) [52]. As such, the policy serves as the treatment assignment for
each state, and the action space is structured such that each dimension corresponds to a binary intervention on a
specific state variable (i.e., Ii for si). This design ensures that the action space spans the same dimensions as the
state space: every state variable has an associated intervention “lever” in the action space so that we can intervene

1) Generally, in causality, a directed acyclic graph that represents a causal structure is termed a causal graph [40]. Here we generalize each

state variable at a timestep t as one variable of interest.
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Figure 2 (Color online) Illustration of online causal reinforcement learning framework. (a) A full-time causal graph in MDP and the action

on the state can be viewed as an intervention. (b) The summary causal graph of (a) where each state would trigger the next state’s occurrence,

resulting in a cascade error. The actions on (c) s1 and (d) s2 from the policy depends on a given situation St−1 as well as the causal mask.

the state and measure the effect of certain outcomes. This allows us to learn the causal influence within each state,
which will further improve policy learning by selecting the most influenced action to the goal. While we assume full
intervention capability across all state dimensions for simplicity, this framework readily extends to scenarios where
certain states remain non-intervenable by omitting their corresponding action dimensions. Based on Definition 1,
we can define the average treatment effect among states.

Definition 2 (Average treatment effect (ATE) on states). Let si and sj denote two different state variables. Then
the treatment effect of si on sj is

Csi→sj = E[sj(Ii = 1)− sj(Ii = 0)], (2)

where sj (Ii = 1) denotes the potential outcome of sj if si were treated (intervened), sj (Ii = 0) denotes the
potential outcome if si were not treated [53].

Intuitively, the potential outcome depicts the outcome of the state in performing different treatments and the
ATE evaluates the treatment effect on the outcome. That is, ATE answers the question that when an agent performs
an action do(si), how is the average cause of an outcome of sj [52]? Such a question suggests that an action applied
to a state will solely influence its descendants and not its ancestors. This aspect is crucial for causal discovery, as
it reveals the causal order among the states. Moreover, the treatment is not necessarily binary since our goal is
to infer the causal order by the property of intervention in action, i.e., an intervention on the cause will influence
its effect, which is also held in multi-treatment [54] or the continuous-treatment [55]. One can simply modify the
corresponding ATE to adapt to the general treatment. For simplicity, we assume binary treatment in this work.
To further accomplish the causal discovery, we assume that the states satisfy the causal sufficiency assumption [51],
i.e., there are no hidden confounders and all variables are observable.

4 Framework

In this section, with proper definitions and assumptions, we first propose a general online causal reinforcement
learning framework, which consists of two phases: policy learning and causal structure learning. Then, we describe
these two phases in detail and provide a performance guarantee for them. The overall flow of our framework is
eventually summarized in Algorithm 1.

4.1 Causal-aware policy learning

The general objective of RL is to maximize the expected cumulative reward by learning an optimal policy maxπ

E

[

∑T
t=0 γ

tr(st, at)
]

. Inspired by viewing the action as the intervention on state variables, we use the fact that

the causal structure G among state variables is effective in improving the policy decision space, proposing the
causal-aware policy πG(·|s) with the following objective function for optimization:

max
πG

E

[

T
∑

t=0

γtr(st, at)

]

. (3)

Let us consider a simple case where we have already obtained a causal graph G of the state-action space. We
now define a causal policy and associate it with the state-space causal structure G.
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Algorithm 1 Online causal reinforcement learning training process.

Input: Policy network θ; replay buffer B; causal structure G;

while θ not converged do

// Causal-aware policy learning

while t < T do

at ← Causal policy πG(·|st) with causal mask M
s
t (G);

st+1, rt ← Env(st, at);

B ← B ∪ {at, st, rt, st+1};

// Causal structure learning

for i 6 |S| do

for j 6 |S| do

Estimate ĈAtt
si→sj

from B;

Infer the causal relation between si, sj based on ĈAtt
si→sj

(Theorem 1);

Prune redundant edges of G;

Update θ with B.

Definition 3 (Causal policy). Given a causal graph G on the state space, we define the causal policy πG(·|s) under
the causal graph G as follows:

πG(·|s) = Ms(G) ◦ π(·|s), (4)

where Ms(G) is the causal mask vector at state s w.r.t. G, π(·|s) is the action probability distribution, and πG(·|s)
is the distribution of causal policy where each action is masked according to Ms(G).

The causal mask Ms(G) = {mGs,a}
|A|
a=1 is induced by the causal structure and the current state, aiming to pick

out causes of the state and refine the searching space of policy. In other words, it ensures that all irrelevant actions
can be masked out. For example, in a cascade error scenario of communication in Figure 2(b), where each state
(e.g., system fault alarm) would trigger the next state’s occurrence, resulting in cascade and catastrophic errors in
communication networks, the goal here is to learn a policy that can quickly eliminate system fault alarms. The
most effective and reasonable solution is to intervene on the root cause of the state, to prevent possible cascade
errors. In Figure 2(b), we should intervene on s2 since s1 is not an error and s2 is the root cause of the system on
its current state.

For more general cases, based on the causal structure of errors, we can obtain the TopK causal order representing
K possible root-cause errors and construct the causal mask vector to refine the decision space to a subset of potential
root-cause errors. This is, the i-th element in Ms(G) is not masked (mGs,i = 0) only if si ∈ TopKG̃ where TopKG̃
is the TopK causal order of G̃, and G̃ := G \ {si|s

t
i = 0}, K denotes the number of candidate causal actions. It

is worth mentioning that different tasks correspond to different causal masks, but the essential role of the causal
mask is to use causal knowledge to retain task-related actions and remove task-irrelevant actions, thus helping the
policy to reduce unnecessary sampling. For example, for some goal Y , the causal mask can be set to mGs,i ∝ |Ci→y|
which is proportional to the causal effect where Ci→y = E[Y (Ii = 1) − Y (Ii = 0)] so that the causal mask can be
task-specific for different goal. Note that some relevant causal imitation learning algorithms exist that utilize similar
mask strategies [35,56]. However, they focus on imitation learning settings other than reinforcement learning. And
they use the causal structure accurately while we take the best of causal order information, allowing the presence
of transitory incomplete causal structures in iterations and improving computational efficiency.

In practice, we use an actor-critic algorithm PPO [25] as the original policy, which selects the best action via
maximizing the Q value function Q(st, at). Notice that our method is general enough to be integrated with any
other RL algorithms.

4.2 Causal structure learning

In this phase, we relax the assumption of giving G as a prior and aim to learn the causal structure through the
online RL interaction process. As discussed before, an action is to impose a treatment and perform an intervention
on the state affecting only its descendants while not its ancestors. As such, we develop a two-stage approach for
learning causal structure with orientation and pruning stages.

In the orientation stage, we aim to estimate the treatment effect for each pair to identify the causal order of each
state. However, due to the counterfactual characteristics in the potential outcome [52], i.e., we can not observe both
control and treatment happen at the same time, and thus a proper approximation must be developed. In this work,
instead of estimating ATE, we propose to estimate the average treatment effect for the treated sample (ATT) [57]:

ĈAtt
si→sj =

1

n

∑

{k:Ii=1}

[s
(k)
j (Ii = 1)− ŝ

(k)
j (Ii = 0)], (5)
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where n denotes the number of treated samples when Ii = 1, s
(k)
j (Ii = 1) is the k-th observed sample, and

ŝ
(k)
j (Ii = 0) is an estimation that can be estimated from the transition in 1.

Theorem 1. Given a causal graph G = (VS , E), for each pair of states si, sj with i 6= j, si is the ancestor of sj,
i.e., si has a direct path to sj if and only if |CAtt

si→sj | > 0.

Please see Appendix B for detailed proofs of all theorems and lemmas. Theorem 1 ensures that ATT can be used
to identify the causal order. However, redundant edges might still exist even when accounting for the causal order.
To address this, we introduce a pruning stage and formulate a pruning method using a score-based approach to
refine the causal discovery results. Specifically, the aim of causal structure learning can be formalized as maximizing
the score of log-likelihood with an ℓ0-norm penalty:

max
G

T
∑

t=1

|S|
∑

i=1

log p(sti|s
t−1
Pai

)− α‖G‖0, (6)

where G is the adjacency matrix of the causal graph [41]. Note that such ℓ0-norm can be relaxed to a quadratic
penalty practically for optimization [58] but we stick to the ℓ0-norm here for the theoretical plausibility. Then by
utilizing the score in (6), we can prune the redundant edges by checking whether the removed edge can increase the
score above. We continue the optimization until no edge can be removed. By combining the orientation and the
pruning stage, the causal structure is identifiable, which is illustrated theoretically in Theorem 2.

Theorem 2 (Identifiability). Under the causal faithfulness and causal sufficiency assumptions, given the correct
causal order and large enough data, the causal structure among states is identifiable from observational data.

4.3 Performance guarantees

To analyze the performance of the optimization of the causal policy, we first list the important Lemma 1 where the
differences between two different causal policies are highly correlated with their causal graphs, and then show that
policy learning can be well supported by the causal learning.

Lemma 1. Let πG∗(·|s) be the policy under the true causal graph G∗ = (VS , E
∗). For any causal graph G = (VS , E),

when the defined causal policy πG(·|s) converges, the following inequality holds:

DTV (πG∗ , πG) 6
1

2
(‖Ms(G)−Ms(G

∗)‖1

+ ‖1{a:mG∗

s,a=1∧mG
s,a=1}‖1),

(7)

where ‖Ms(G)−Ms (G
∗) ‖1 is the ℓ1-norm of the masks measuring the differences of two policies, 1 is an indicator

function and ‖1{a:mG∗

s,a=1∧mG
s,a=1}‖1 measures the number of actions that are not masked on both policies.

Lemma 1 shows that the total variation distance between two polices πG∗(·|s) and πG(·|s), is upper bounded by
two terms that depend on the divergence between the estimated causal structure (causal masks) and the true one.
It bridges the gap between causality and reinforcement learning, which also verifies that causal knowledge matters
in policy optimization. In turn, this lemma facilitates the improvement of the value function’s performance, as
shown in Theorem 3.

Theorem 3. Given a causal policy πG∗(·|s) under the true causal graph G∗ = (VS , E
∗) and a policy πG(·|s) under

the causal graph G = (VS , E), recalling Rmax is the upper bound of the reward function, we have the performance
difference of πG∗(·|s) and πG(·|s) being bounded as

VπG∗ − VπG
6

Rmax

(1− γ)2
(‖Ms(G)−Ms(G

∗)‖1

+ ‖1{a:mG∗

s,a=1∧mG
s,a=1}‖1).

(8)

An intuition of performance guarantees is that policy exploration helps to learn better causal structures through
intervention, while better causal structures indicate better policy improvements. The detailed proofs of the above
lemma and theorems are in Appendix B.

5 Experiments

In this section, we first discuss the basic setting of our designed environment as well as the baselines used in the
experiments. Then, to evaluate the proposed approach, we conducted comparative experiments on the environment
and provided the numerical results and detailed analysis.
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5.1 Environment design

Since most commonly used RL benchmarks do not explicitly allow causal reasoning, we constructed FaultAlarmRL,
a simulated fault alarm environment based on the real alarm data in the real-world application of wireless commu-
nication networks [59].

FaultAlarmRL environment is designed to mimic the operation process in a large communication network within
an MDP framework. In the O&M process of such networks, efficiently and accurately locating the root cause
of alarms within a given time period is crucial. Timely fault elimination improves O&M efficiency and ensures
communication quality. In real wireless networks, the alarm event sequences of different nodes influence each other
through the node topology, and the causal mechanisms between different types of alarm events are also affected by
the underlying topology.

The simulation environment contains 50 device nodes and 18 alarm types, with the true causal relationships
between alarm types and the meaning of each alarm type shown in Appendix E, Table E2. Alarm events are
generated by root cause events based on the alarm causal graph and device topology graph propagation. There
also exist spontaneous noise alarms in the environment. To mimic the operation in a large communication network,
we designed an MDP transition environment modified from the topological Hawkes process. For example, the
number of alarm events that occur in Xt+1 is determined by the number of alarms in the previous time interval
Xt without decay. This means that alarms persist until they are “fixed” and this type of transition constructs an
MDP environment where the alarm propagation process can be expressed as

p(st+1|st, at;GV , GN ) = P (Xt+1|Xt;GV , GN )

=
∏

n∈N,v∈V

P (Xn,v,t+1|Xn,PAv ,t)

=
∏

n∈N,v∈V

Pois(Xn,v,t+1;λv(n, t+ 1)),

where Xn,v,t+1 is the count of occurrence events of event type v at node n in the time interval [t+1−∆t, t+1], Pois
is the Poisson distribution, and λv(n, t) is the Hawkes process intensity function. Specifically, λv(n, t) is defined as

λv(n, t) = µv +
∑

v′∈PAv

∑

n′∈N

K
∑

k=0

αv′,v,kÂ
K
n′,nκXn′,v′,t−1,

where Xn,v,t−1 is the count of occurrence alarms of type v at node n in the time interval [t − 1 −∆t, t − 1], κ is
the exponential kernel function, k is the maximum hop, αv′,v,k is the propagation intensity function of the alarm,

Â := D−1/2AD−1/2 is the normalized adjacency matrix of the topological graph, A is the adjacency matrix, D is the
diagonal degree matrix, ÂK

n′,n denotes the n′, n-th entries of the K-hop topological graph, and µv is the spontaneous
intensity function of the alarm v.

The state in FaultAlarmRL is the current observed alarm information, which includes the time of the fault alarm,
the fault alarm device, and the fault alarm type. The state space has 50 × 18× 2 = 1800 dimensions. The action
space contains 900 discrete actions, each of which represents a specific alarm type on a specific device. We define
the reward function as

r =
Nt −Nt+1

Nt
−

t

stepmax

,

where Nt represents the number of alarms at time t, and stepmax is the maximum number of steps in an episode,
which is set to 100. Please see Appendix E for further details on the hyper-parameters of the environment. Ad-
ditionally, we further evaluate our method in cart-pole environment from the OpenAI Gym toolkit (see Appendix
D).

5.2 Experimental setups

We evaluate the performance of our methods in terms of both causal structure learning and policy learning. We first
sampled 2000 alarm observations from the environment for the pre-causal structure learning. We learn the initial
causal structure leveraging the causal discovery method topological Hawkes process (THP) [59] that considers the
topological information behind the event sequence. In policy learning, we take the SOTA model-free algorithms
PPO [25], SAC [28], D3QN [24], and DQN [22] which are suitable for discrete cases as the baselines, and call
the algorithms after applying our method Causal PPO, Causal SAC, Causal D3QN, and Causal DQN. For a fair
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Figure 3 (Color online) (a) Cumulative rewards of Causal PPO, Causal SAC, Causal D3QN, Causal DQN with THP-initialized structures

and random-initialized structures, respectively, and baselines; (b) intervention steps of our proposed approach compared to the baselines;

(c) average number of alarms per episode for our methods compared to the baselines; (d) the F1 score of causal structure learning from different

methods.

comparison, we use the same network structure, optimizer, learning rate, and batch size when comparing the native
methods with our causal methods. We measure the performance of policy learning in terms of cumulative reward,
number of interactions, and average number of alerts per episode. In causal structure learning, Recall, Precision,
F1, Accuracy and SHD are used as the evaluation metrics. All results were averaged across four random seeds, with
standard deviations shown in the shaded area.

5.3 Analysis of policy learning

To evaluate the performance of our methods, the cumulative reward, the number of interventions, and the average
number of alarms are used as evaluation metrics. As shown in Figure 3(a), our methods significantly outperform
the native algorithms after introducing our framework. It can be found that our algorithms only need to learn fewer
rounds to reach higher cumulative rewards, which proves that the learned causal structure indeed helps to narrow
the action space, and greatly speed up the convergence of the policy.

We also show the results of different algorithms on the number of intervention steps in Figure 3(b). Impressively,
our method requires fewer interventions to eliminate all the environmental alarms and does not require excessive
exploration in the training process compared to the baselines. This is very important in real-world O&M processes,
because too many explorations may pose a huge risk. The above result also reflects that policies with causal
structure learning capabilities have a more efficient and effective training process and sampling efficiency.

As shown in Figure 3(c), our method has a much smaller average number of alarms compared to the baselines.
This indicates that our methods can detect root cause alarms in time, and thus avoid the cascade alarms generated
from the environment. It is worth noting that the huge performance difference between our methods and baselines
shows that the learned causal mechanisms of the environment play a pivotal role in RL.

5.4 Analysis of causal structure learning

To better demonstrate the effectiveness of our method, we only provide a small amount of observational data in the
early causal structure learning. As shown in Table 1, the causal structure learned by THP in the initial stage has
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Table 1 Results of causal structure learning. The best results are in bold.

Method F1 score Precision Recall Accuracy SHD

THP 0.638 ± 0.017 0.775 ± 0.020 0.543 ± 0.015 0.824 ± 0.007 57.00 ± 2.121

Causal PPO (THP) 0.861 ± 0.018 0.865 ± 0.007 0.856 ± 0.029 0.921 ± 0.009 26.00 ± 2.915

Causal SAC (THP) 0.858 ± 0.013 0.871 ± 0.007 0.846 ± 0.024 0.919 ± 0.007 26.25 ± 2.165

Causal D3QN (THP) 0.836 ± 0.015 0.849 ± 0.021 0.823 ± 0.014 0.904 ± 0.009 31.00 ± 3.000

Causal DQN (THP) 0.832 ± 0.020 0.848 ± 0.020 0.817 ± 0.025 0.904 ± 0.013 31.00 ± 4.062

Random initiation 0.188 ± 0.013 0.130 ± 0.009 0.130 ± 0.009 0.669 ± 0.017 107.5 ± 5.362

Causal PPO (Random) 0.840 ± 0.019 0.847 ± 0.015 0.834 ± 0.025 0.909 ± 0.011 29.50 ± 3.640

Causal SAC (Random) 0.837 ± 0.019 0.864 ± 0.015 0.811 ± 0.022 0.908 ± 0.010 29.75 ± 3.269

Causal D3QN (Random) 0.839 ± 0.016 0.847 ± 0.022 0.832 ± 0.017 0.907 ± 0.011 30.25 ± 3.491

Causal DQN (Random) 0.830 ± 0.019 0.849 ± 0.025 0.813 ± 0.020 0.904 ± 0.013 31.25 ± 4.085

Figure 4 (Color online) (a) Ground truth; discovered causal graphs by (b) Causal PPO, (c) Causal SAC, (d) Causal DQN, (e) Causal D3QN

with THP-initialized causal structure. Rows and columns correspond to the variables in FaultAlarmRL environment, where a cell (i, j) indicates

a causal influence from variable i to variable j.

a large distance from the ground truth. However, as we continue to interact with the environment, our methods
gradually update the causal graph, bringing the learned causal structure closer to the ground truth. From Table 1
we can see that the F1 score values of our causal method are all over 0.8, which is significant compared to the
initial THP result. The learned causal structures are given in Figure 4. We can see that the proposed method can
indeed identify the correct structure and interestingly all the root cause variables are mostly identified due to the
identification of the causal order. In order to verify the robustness of our causal graph updating mechanism, we
also conducted experiments on the initial random graph. As shown in Table 1, even if the initial random graph is
far from the ground truth, through continuous interactive updating, we can eventually learn a more accurate causal
structure compared with the THP algorithm. In addition, as shown in Figure 3(d), our methods converge to the
optimal value early in the pre-training period for the learning of causal structure, regardless of whether it is given
a random graph or a prior graph, which indicates that a small amount of intervention up front is enough to learn
the causal structure. Taking Causal PPO as an example, its F1 score has reached 0.7 after only 20 episodes. This
shows that even in the case of a random initial causal structure, our method can still achieve a correct causal graph
by calculating the treatment effects and performing the pruning step, which is more robust in the application.
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Figure 5 (Color online) (a) Cumulative rewards, (b) intervention steps, and (c) average number of alarms per episode for Causal PPO based on

THP initialization structures at different K values; (d) the F1 scores of causal structure learning based on Causal PPO with THP initialization

structure for different K values.

5.5 Sensitivity analysis

The parameter K represents the number of potential root-cause errors considered in the causal order. We further
conduct sensitivity experiments to evaluate the sensitivity of the hyperparameterK, which controls the TopK causal
order in policy learning. We conduct a sensitivity analysis using Causal PPO as a case study. The results are given
in Figures 5(a)–(d), which show the variations in the accuracy and robustness of policy learning and causal structure
learning for different values of K. Specifically, when the K is too large (e.g., K > 11), the candidate action under
the causal mask would also be large, increasing the redundancy of the action space which decreases the policy’s
performance. Similarly, when the K value is small (e.g., K < 5), the policy’s performance worsens because the
overly constrained action space may limit the exploration of optimal actions. Thus, the K controls the trade-off
between the exploration and the exposition in our method.

6 Conclusion

This paper proposes an online causal reinforcement learning framework with a causal-aware policy that injects
the causal structure into policy learning while devising a causal structure learning method by connecting the
intervention and the action of the policy. We theoretically prove that our causal structure learning can identify the
correct causal structure. To evaluate the performance of the proposed method, we constructed a FaultAlarmRL
environment. Experiment results show that our method achieves accurate and robust causal structure learning as
well as superior performance compared with SOTA baselines for policy learning.
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