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Appendix A Table of notation table

Table A1 summarizes notations used in this paper.

Table A1 A summary of the notation used in this paper.

Notation Description

S State space

A Action space

s A vector of state in S, i.e., s = [s1, s2, . . . , s|∫|]
|S| The number of states in the state space.

p(s′|s, a) the dynamic transition from state s ∈ S to the next state s′ when performing action a ∈ A in state s

r(s, a) A reward on state s and action a

γ The discount factor

si The i-th state variable.

sti The i-th state variable at time t.

VS The vertex set on causal graph defined on the state variables

E The causal edge set in the causal graph

G Causal graph that contains vertex VS and edge set E

PaG
i

The parent set of si in graph G.

ai The action (treatment) on state si.

G The adjacency matrix of the causal graph.

CAtt
si→sj

The average treatment effect for the treated sample from si to sj when si is treated.

ĈAtt
si→sj

The estimated ATT of CAtt
si→sj

.

Ms(G) The causal mask in the causal policy where Ms(G) = {mG
s,a}

|A|
a=1

mG
s,a The element of mask on action a in the state s on causal graph G

DTV (·, ·) Total variation distance.

VπG The value function on policy piG
hpiG State distribution of causal policy πG

PπG (s′|s) The |S| × |S| state matrix and its entry in s′, s where each present a probability from s to s′ in policy πG
MπG The |S| × |A||S| transition matrix.

Rmax The max reward.

A ⊥⊥p B Denote the statistical independence constraint between variables A and B.

A ⊥⊥p B | C Denote the statistical conditional independence constraint between variables A and B conditioned on C.

Appendix B Theoretical proofs

Appendix B.1 Causal discovery

In this section, we provide proof of the identifiability of causal order in the orientation step and the identifiability of causal

structure after the pruning step. In identifying the causal order, we utilize the average treatment effect in treated (ATT)

[57] which can be written as follows:

CAtt
si→sj

= E[sj(Ii = 1)− sj(Ii = 0)|Ii = 1], (B1)

where sj(ai = 1) denotes the potential outcome of sj if si were treated, sj(ai = 0) denotes the potential outcome if si were

not treated [53], and E denotes the expectation.

Theorem B1. Given a causal graph G = (VS , E), for each pair of states si, sj with i ̸= j, si is the ancestor of sj if and

only if |CAtt
si→sj

| > 0.

Proof. [Proof of Theorem B1.]

=⇒: If si is the ancestor of sj , then the intervention of si will force manipulating the value of si by definition and thus result

in the change of sj compared with the sj without intervention. That is, sj(ai = 1) ̸= sj(Ii = 0) and therefore |sj(Ii =

1)− sj(Ii = 0)| > 0. By taking the average in population that is treated, we obtain E[|sj(Ii = 1)− sj(ai = 0)||Ii = 1] > 0.

⇐=: Similarly, if |CAtt
si→sj

| > 0, we have |sj(Ii = 1)− sj(Ii = 0)| > 0 based on Eq. (B1). To show si is the ancestor of sj ,

we prove by contradiction. Suppose si is not the ancestor of sj , then the intervention of si will not change the value of sj .

That is, sj(Ii = 1) = sj(Ii = 0) which creates the contradiction. Thus, si is the ancestor of sj which finishes the proof.

The following theorem shows that the causal structure is identifiable given the correct causal order. The overall proof is

built based on [41]. The main idea is that the causal structure can be identified given the correct causal order if we can

identify the causal skeleton. To learn the causal skeleton, we can resort to identifying the (conditional) independence among

the variables. Thus, in the following, we will show that under the causal Markov assumption, faithfulness assumption and

the sufficiency assumption, the (conditional) independence of the variables can be identified by the proposed BIC score in

our work due to its locally consistent property. We begin with the definition of the locally consistent scoring criterion.

Definition B1 (Locally consistent scoring criterion). Let D be a set of data consisting of m records that are iid samples

from some distribution p(·). Let G be any DAG, and let G′ be the DAG that results from adding the edge Xi → Xj . A

scoring criterion S(G, D) is locally consistent if in the limit as m grows large the following two properties hold:

1. If Xj ̸⊥⊥p Xi | XPaG
j
, then S(G′, D) > S(G, D).

2. If Xj ⊥⊥p Xi | XPaG
j
, then S(G′, D) < S(G, D).
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Lemma B1 (Lemma 7 in [41]). The Bayesian scoring criterion (BIC) is locally consistent.

Note that, as pointed out by [41], the BIC, which can be rewritten as the ℓ0-norm penalty as Eq. (6) in the main text, is

locally consistent. This property allows us to correctly identify the independence relationship among states by using the

locally consistent BIC score because we can always obtain a greater score if the searched graph consists of (conditional)

independence in the data. Thus, we can always search a causal graph G with the highest score that is ‘correct’ in the sense

that all (conditional) independence consists of the ground truth. This is concluded by the following theorem:

Theorem B2 (Identifiability). Under the causal faithfulness and causal sufficiency assumptions, given the correct causal

order and large enough data, the causal structure among states is identifiable from observational data.

Proof. [Proof of Theorem B2] Based on Lemma B1, Eq. (6) in the main text is locally consistent since it has the same

form of the BIC score and we denote it using S(G, D). Then we can prune the redundant edge if S(G′, D) > S(G, D) where

G′ is the graph that removes one of the redundant edges. The reason is that for any pair of state si, sj is redundant, there

must exist a conditional set PaG(sj) such that si ⊥⊥ sj | PaG(sj). Then based on the second property in Definition B1, we

have S(G′, D) > S(G, D) since G can be seen as the graph that adds a redundant edge from G′. Moreover, since we have

causal faithfulness and causal sufficiency assumptions, such independence will be faithful to the causal graph, and thus, by

repeating the above step, we are able to obtain the correct causal structure.

Appendix B.2 Policy performance guarantee

In this section, we provide the policy performance guarantees step by step. We first recap the causal policy in the following

definition:

Definition B2 (Causal policy). Given a causal graph G, we define the causal policy πG(·|s) under the causal graph G as

follows:

πG(·|s) = Ms(G) ◦ π(·|s), (B2)

where Ms(G) is the causal mask vector at state s under the causal graph G, and π(·|s) is the action probability distribution

of the original policy output.

For example, the causal mask Ms(G) = {mG
s,a}

|A|
a=1 constitute the vector of mask mG

s,a ∈ {0, 1} of each action in A where

|A| denotes the number of actions in the action space.

Outline of the proof of Theorem 3. Our goal is to show that under the causal policy, the value function under the correct

causal graph will have greater value than the value function that has misspecified causal graph such that the differences of

the value function can be bound by some constant c > 0:

VπG∗ − VπG ⩽ c. (B3)

To do so, one may first notice that the difference of the value function can be expressed and bounded by the total variation

DTV(ρπG , ρπG∗ ):

|VπG∗ − VπG | ⩽
2Rmax

1− γ
DTV(ρπG , ρπG∗ ). (B4)

Such a total variation can be further bound by the total variation of DTV(πG(· | s), πG∗ (· | s)) (Lemma B3 and Lemma

B4):

DTV(ρπG , ρπG∗ ) ⩽
1

1− γ
Es∼hπG∗

[DTV(πG(· | s), πG∗ (· | s))]. (B5)

Combining Eq. (B4) and Eq. (B5), we have

|VπG∗ − VπG | ⩽
2Rmax

(1− γ)2
Es∼hπG∗

[DTV(πG(· | s), πG∗ (· | s))]. (B6)

By this, we can delve into this bound by investigating the total variation of the causal policy. Based on the definition of

the causal policy in Definition B2. One can deduce that the distance should be related to the difference of the causal mask,

and it is true that as shown in Lemma B2:

DTV (πG∗ , πG) ⩽
1

2
(∥Ms(G)−Ms (G∗) ∥1 + ∥1{

a:mG∗
s,a=1∧mG

s,a=1
}∥1). (B7)

Finally, by combining Eq. (B6) and Eq. (B7) and further due to the positive of the bound, we obtain the result in Theorem

B3:

VπG∗ − VπG ⩽
Rmax

(1− γ)2
(∥Ms(G)−Ms(G∗)∥1

+ ∥1{a:mG∗
s,a=1∧mG

s,a=1}∥1).
(B8)

With the outline above, in the following, we provide the details proof of the Lemma B3, Lemma B4, Lemma B2, and

Theorem B3, respectively.
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Lemma B2. Let πG∗ (·|s) be the policy under the true causal graph G∗ = (VS , E
∗). For any causal graph G = (VS , E),

when the defined causal policy πG(·|s) converges, the following inequality holds:

DTV (πG∗ , πG) ⩽
1

2
(∥Ms(G)−Ms(G∗)∥1 + ∥1{a:mG∗

s,a=1∧mG
s,a=1}∥1), (B9)

where ∥Ms(G)−Ms (G∗) ∥1 is the ℓ1-norm of the masks measuring the differences of two policies, 1 is an indicator function

and ∥1{
a:mG∗

s,a=1∧mG
s,a=1

}∥1 measures the number of actions that are not masked on both policies.

Proof. [Proof of Lemma B2] Based on the definition of the total variation and the causal policy we have:

DTV (πG∗ , πG) =
1

2
∥πG∗ (·|s)− πG(·|s)∥1

=
1

2

∑
a

|πG∗ (a|s)− πG(a|s)|

=
1

2

∑
a

|mG∗
s,aπ

∗(a|s)−mG
s,aπ(a|s)|.

(B10)

Since the mask only takes value in {0, 1}, we can rearrange the summation by considering the different values of the mask

on the two policies:

DTV (πG∗ , πG) =
1

2

 ∑
a:mG∗

s,a=1∧mG
s,a=0

|π∗(a|s)|+
∑

a:mG∗
s,a=0∧mG

s,a=1

|π(a|s)|+
∑

a:mG∗
s,a=1∧mG

s,a=1

|π∗(a|s)− π(a|s)|

 ,

(B11)

where the summation when mG∗
s,a = 0 ∧ mG

s,a = 0 is zero as policy on both side are masked out. Then, based on the fact

that 0 ⩽ π(a|s) ⩽ 1 of the policy, we have the following inequality

DTV (πG∗ , πG) ⩽
1

2

(
∥Ms(G)−Ms (G∗) ∥1 + ∥1{

a:mG∗
s,a=1∧mG

s,a=1
}∥1

)
. (B12)

Then we introduce the following Lemma B3, which bound the state distribution discrepancy based on the causal policy

discrepancy.

Lemma B3. Given a policy πG∗ (·|s) under the true causal structure G∗ = (V,E∗) and an policy πG(·|s) under the causal

graph G = (V,E) , we have that

DTV (hπG (s),hπG∗ (s)) ⩽
1

1− γ
Es∼hπG∗

[DTV(πG(· | s), πG∗ (· | s))]. (B13)

Proof. [Proof of Lemma B3] The proof is inspired by [61], we show that the state distribution hπG of causal policy πG can

be denoted as

hπG = (1− γ)(I − γPπG )
−1h0, (B14)

where PπG (s
′|s) =

∑
a∈A

M∗(s′ | s, a)πG(a | s), and M∗(s′ | s, a) is the dynamic model. Denote that MπG = (I − γPπG )
−1,

we then have

hπG − hπG∗ = (1− γ)
[
(I − γPπG )

−1 − (I − γPπG∗ )−1
]
h0

= (1− γ)(MπG −MπG∗ )h0

= (1− γ)γMπG (PπG −PπG∗ )MπG∗h0

= γMπG (PπG −PπG∗ )hπG∗ .

(B15)

Similarly to Lemma 4 in [61], we have

DTV (hπG (s),hπG∗ (s)) =
γ

2
∥MπG (PπG −PπG∗ )hπG∗ ∥1

⩽
γ

2
∥MπG∥1∥(PπG −PπG∗ )hπG∗ ∥1.

(B16)

Note that

∥MπG∥1 = ∥
∞∑
t=0

γtPt
πG∥1 ⩽

∞∑
t=0

γt∥PπG∥
t
1 ⩽

∞∑
t=0

γt =
1

1− γ
, (B17)
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and we also show that ∥(PπG −PπG∗ )hπG∗ ∥1 is bounded by

∥(PπG −PπG∗ )hπG∗ ∥1 ⩽
∑
s,s′

|PπG (s
′|s)−PπG∗ (s

′|s)|hπG∗ (s)

=
∑
s,s

∣∣∣∣∣∣
∑
a∈A

M∗(s | s, a)(πG(a | s)− πG∗ (a | s))

∣∣∣∣∣∣hπG∗ (s)

⩽
∑

(s,a),s

M∗(s | s, a)|πG(a | s)− πG∗ (a | s)|hπG∗ (s)

=
∑
s

hπG∗ (s)
∑
a∈A

|πG(a | s)− πG∗ (a | s)|

= 2Es∼hπG∗
[DTV(πG(· | s), πG∗ (· | s))].

(B18)

Thus, we have

DTV (hπG (s),hπG∗ (s)) ⩽
γ

2
∥MπG∥1∥(PπG −PπG∗ )hπG∗ ∥1

⩽
1

1− γ
Es∼hπG∗

[DTV(πG(· | s), πG∗ (· | s))].
(B19)

Next, we further bound the state-action distribution discrepancy based on the causal policy discrepancy.

Lemma B4. Given a policy πG∗ (·|s) under the true causal structure G∗ = (V,E∗) and an policy πG(·|s) under the causal

graph G = (V,E) , we have that

DTV(ρπG , ρπG∗ ) ⩽
1

1− γ
Es∼hπG∗

[DTV(πG(· | s), πG∗ (· | s))]. (B20)

Proof. [Proof of Lemma B4] Note that for any policy πG under any causal graph G, the state-action distribution ρπG (s, a) =

πG(a | s)hπG (s), we have

DTV(ρπG , ρπG∗ ) =
1

2

∑
(s,a)

|[πG∗ (a | s)− πG(a | s)]hπG (s) + [hπG∗ (s)− hπG (s)]πG(a | s)|

⩽
1

2

∑
(s,a)

|πG∗ (a | s)− πG(a | s)|hπG (s) +
1

2

∑
(s,a)

πG(a | s)|hπG∗ (s)− hπG (s)|

= Es∼hπG∗
[DTV(πG(· | s), πG∗ (· | s))] +DTV (hπG (s),hπG∗ (s))

⩽
1

1− γ
Es∼hπG∗

[DTV(πG(· | s), πG∗ (· | s))],

(B21)

where the last inequality follows Lemma B3.

Based on all the above Lemma B4, we finally give the policy performance guarantee of our proposed framework. Specifically,

we bound the policy value gap (i.e., the difference between the value of learned causal policy and the optimal policy) based

on the state-action distribution discrepancy.

Theorem B3. Given a causal policy πG∗ (·|s) under the true causal graph G∗ = (VS , E
∗) and a policy πG(·|s) under the

causal graph G = (VS , E), recalling Rmax is the upper bound of the reward function, we have the performance difference of

πG∗ (·|s) and πG(·|s) be bounded as below,

VπG∗ − VπG ⩽
Rmax

(1− γ)2
(∥Ms(G)−Ms(G∗)∥1

+ ∥1{a:mG∗
s,a=1∧mG

s,a=1}∥1).
(B22)

Proof. [Proof of theorem B3]

Note that for any policy πG under any causal graph G, its policy value can be reformulated as VπG =
1

1− γ
E(s,a)∼ρπG

[r, a].

Based on this, we have

|VπG∗ − VπG | =
∣∣∣∣ 1

1− γ
E(s,a)∼ρπG

[r, a]−
1

1− γ
E(s,a)∼ρπG∗ [r, a]

∣∣∣∣
⩽

1

1− γ

∑
(s,a)∈S×A

|(ρπG (s, a)− ρπG∗ (s, a))r(s, a)|

⩽
2Rmax

1− γ
DTV(ρπG , ρπG∗ ).

(B23)
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Figure C1 (a)-(c)Cumulative rewards, intervention steps, and average number of alarms per episode for Causal PPO based on

random initialization structures at different K in the topology-free environment.

Table C1 Results of causal structure learning of topology-free environment

Methods F1 score Precision Recall Accuracy SHD

Random Initiation 0.006 ± 0.006 0.025 ± 0.025 0.003 ± 0.003 0.669 ± 0.983 169.0 ± 5.362

Causal PPO (Random) 0.755 ± 0.023 0.814 ± 0.024 0.705 ± 0.025 0.993 ± 0.001 68.50 ± 6.225

Causal SAC (Random) 0.595 ± 0.027 0.558 ± 0.057 0.643 ± 0.017 0.987 ± 0.002 132.0 ± 15.859

Combining Lemma B4 and Lemma B2, we have

VπG∗ − VπG ⩽
2Rmax

1− γ
DTV(ρπG , ρπG∗ )

⩽
2Rmax

(1− γ)2
Es∼dπG∗

[DTV(πG(· | s), πG∗ (· | s))]

⩽
Rmax

(1− γ)2

(
∥Ms(G)−Ms (G∗) ∥1 + ∥1{

a:mG∗
s,a=1∧mG

s,a=1
}∥1

)
,

(B24)

which completes the proof.

Appendix C Additional experiment of topology-free environment

Considering that topology-free fault alarm scenarios also exist in real O&M environments, we constructed another topology-

free alarm environment with 100-dimensional alarm types based on real alarm data. The specific experimental configurations

are shown in the Table E1. We also conducted comparative experiments in this environment. In policy learning, we used the

model-free algorithms PPO [25], SAC [28], and DQN [22] as baseline, and applied our method to PPO and SAC, resulting

in Causal PPO and Causal SAC. To better demonstrate the advantages of our method in causal structure learning, we use

random graphs as the initial structures for the causal learning process.

As shown in Figure C1, our methods outperform the baseline algorithms in terms of cumulative rewards, number of

interactions, and average number of alarms per episode metrics. In terms of structure learning, discovering causality among

100-dimensional causal alarm nodes is challenging. However, as shown in Table C1, compared to the randomized initial

graph, our approaches can gradually learn a basic causal structure, which helps improve the convergence performance of

the policy. This also demonstrates the applicability of our algorithm in multiple scenarios.

Appendix D Additional experiment on cart-pole environment

To evaluate the performance of our approach on classic control tasks, we included the cart-pole environment from the

OpenAI Gym toolkit. The cart-pole environment is a well-known benchmark in reinforcement learning, where the goal is

to balance a pole on a moving cart by applying forces to the cart. The state space consists of the cart’s position, velocity,

pole angle, and pole angular velocity, while the action space is discrete, allowing the agent to push the cart either left or

right.

In the cart-pole environment, there is a clear causal relationship between the pole’s angle and the cart’s acceleration: when

the pole tilts to the right, continuing to apply force in that direction exacerbates the tilt, whereas applying force to the

left helps restore balance. Leveraging this causal structure, we introduce a causal action masking mechanism that softly

masks actions aligned with the tilt direction at extreme angles, thereby reducing ineffective exploration and expediting

policy convergence. Specifically, since the goal Y of cart-pole environment is to control the angle of pole, the causal mask
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Figure D1 Cumulative rewards in the cart-pole environment.

Table E1 Environment configurations used in experiments.

Environment Parameters Value

Topology

environment

Max step size 100

State dimension 1800

Action dimension 900

Action type Discrete

time range 50

max hop 2

α range [0.0001, 0.0013]

µ range [0.0005, 0.0008]

root cause num 50

Topology-free

environment

Max step size 100

State dimension 200

Action dimension 100

Action type Discrete

time range 100

max hop 1

α range [0.00015, 0.0025]

µ range [0.0005, 0.0008]

root cause num 20

is learned by setting it proportionally to the effect of the action mG
s,i ∝ |sangle(Ii = 1)| such that the action will more likely

be masked if it increases the angle.

The experimental results (shown in Figure D1.) indicate that the proposed Causal PPO significantly outperforms other

baselines in terms of cumulative rewards, and demonstrates faster convergence and higher stability during training, which

fully proves that explicitly embedding causal inference in the action space is of key significance for efficient reinforcement

learning of samples.

Appendix E Hyper-parameters

We first list all important hyper-parameters in the implementation for the specific Topology environment and Topology-free

environment in Table E1. We also provide the ground truth of the causal structure that is used in our FaultAlarmRL

environment in Table E2. The hyper-parameters for FaultAlarmRL environment are also provided in Table E3.
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Table E2 Ground truth

Cause Effect Cause Effect

MW RDI LTI MW BER SD LTI
MW RDI CLK NO TRACE MODE MW BER SD S1 SYN CHANGE
MW RDI S1 SYN CHANGE MW BER SD PLA MEMBER DOWN
MW RDI LAG MEMBER DOWN MW BER SD MW RDI
MW RDI PLA MEMBER DOWN MW BER SD MW LOF
MW RDI ETH LOS MW BER SD ETH LINK DOWN
MW RDI ETH LINK DOWN MW BER SD NE COMMU BREAK
MW RDI NE COMMU BREAK MW BER SD R LOF
MW RDI R LOF R LOF LTI
TU AIS LTI R LOF S1 SYN CHANGE
TU AIS CLK NO TRACE MODE R LOF LAG MEMBER DOWN
TU AIS S1 SYN CHANGE R LOF PLA MEMBER DOWN

RADIO RSL LOW LTI R LOF ETH LINK DOWN
RADIO RSL LOW S1 SYN CHANGE R LOF NE COMMU BREAK
RADIO RSL LOW LAG MEMBER DOWN LTI CLK NO TRACE MODE
RADIO RSL LOW PLA MEMBER DOWN HARD BAD LTI
RADIO RSL LOW MW RDI HARD BAD CLK NO TRACE MODE
RADIO RSL LOW MW LOF HARD BAD S1 SYN CHANGE
RADIO RSL LOW MW BER SD HARD BAD BD STATUS
RADIO RSL LOW ETH LINK DOWN HARD BAD POWER ALM
RADIO RSL LOW NE COMMU BREAK HARD BAD LAG MEMBER DOWN
RADIO RSL LOW R LOF HARD BAD PLA MEMBER DOWN

BD STATUS S1 SYN CHANGE HARD BAD ETH LOS
BD STATUS LAG MEMBER DOWN HARD BAD MW RDI
BD STATUS PLA MEMBER DOWN HARD BAD MW LOF
BD STATUS ETH LOS HARD BAD ETH LINK DOWN
BD STATUS MW RDI HARD BAD NE COMMU BREAK
BD STATUS MW LOF HARD BAD R LOF
BD STATUS ETH LINK DOWN HARD BAD NE NOT LOGIN
BD STATUS RADIO RSL LOW HARD BAD RADIO RSL LOW
BD STATUS TU AIS HARD BAD TU AIS

NE COMMU BREAK LTI ETH LOS LTI
NE COMMU BREAK CLK NO TRACE MODE ETH LOS CLK NO TRACE MODE
NE COMMU BREAK S1 SYN CHANGE ETH LOS S1 SYN CHANGE
NE COMMU BREAK LAG MEMBER DOWN ETH LOS LAG MEMBER DOWN
NE COMMU BREAK PLA MEMBER DOWN ETH LOS PLA MEMBER DOWN
NE COMMU BREAK ETH LOS ETH LOS ETH LINK DOWN
NE COMMU BREAK ETH LINK DOWN MW LOF LTI
NE COMMU BREAK NE NOT LOGIN MW LOF CLK NO TRACE MODE
ETH LINK DOWN LTI MW LOF S1 SYN CHANGE
ETH LINK DOWN CLK NO TRACE MODE MW LOF LAG MEMBER DOWN
ETH LINK DOWN S1 SYN CHANGE MW LOF PLA MEMBER DOWN
S1 SYN CHANGE LTI MW LOF ETH LOS

POWER ALM BD STATUS MW LOF MW RDI
POWER ALM ETH LOS MW LOF ETH LINK DOWN
POWER ALM MW RDI MW LOF NE COMMU BREAK
POWER ALM MW LOF MW LOF R LOF
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Table E3 Hyper-parameters of methods used in experiments.

Models Parameters Value

Causal DQN & Causal D3QN

Learning rate 0.0003

Size of buffer mathcalB 100000

Epoch per max iteration 100

Batch size 64

Reward discount γ 0.99

MLP hiddens 128

MLP layers 2

Update timestep 5

Random sample timestep 512

ϵ-greedy ratio 0.1

ϵ-causal ratio η 0.2

Causal PPO

Actor learning rate 0.0003

Critic learning rate 0.0003

Epoch per max iteration 100

Batch size 64

Reward discount γ 0.99

MLP hiddens 128

MLP layers 2

Clip 0.2

K epochs 50

Update timestep 256

Random sample timestep 512

ϵ-greedy ratio 0.1

ϵ-causal ratio η 0.3

DQN & D3QN

Learning rate 0.0003

Size of buffer mathcalB 100000

Epoch per max iteration 100

Batch size 64

Reward discount γ 0.99

MLP hiddens 128

MLP layers 2

Update timestep 5

Random sample timestep 512

ϵ-greedy ratio 0.1

PPO

Actor learning rate 0.0003

Critic learning rate 0.0003

Epoch per max iteration 100

Batch size 64

Reward discount γ 0.99

MLP hiddens 128

MLP layers 2

Clip 0.2

K epochs 50

Update timestep 512

Random sample timestep 512
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