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Appendix A Table of notation table

Table A1l summarizes notations used in this paper.

Table A1 A summary of the notation used in this paper.

Notation Description
S State space
A Action space
s A vector of state in S, i.e., s = [s1,s2,..., s‘f|]
|S| The number of states in the state space.
p(s’|s, a) the dynamic transition from state s € S to the next state s’ when performing action a € A in state s
r(s,a) A reward on state s and action a
% The discount factor
S; The t-th state variable.
s,? The i-th state variable at time ¢.
Vs The vertex set on causal graph defined on the state variables
E The causal edge set in the causal graph
g Causal graph that contains vertex Vg and edge set E
Pa? The parent set of s; in graph G.
a; The action (treatment) on state s;.
G The adjacency matrix of the causal graph.
C?itisj The average treatment effect for the treated sample from s; to s; when s; is treated.
é?itiwj The estimated ATT of C?ifisj.
Ms(G) The causal mask in the causal policy where Mg(G) = {mg,a}l:i‘l
msg,a The element of mask on action a in the state s on causal graph G
Dry (-, ) Total variation distance.
Vﬂ-g The value function on policy pig
hpig State distribution of causal policy mg
Prg (s’|s) The |S| X |S| state matrix and its entry in s’, s where each present a probability from s to s’ in policy mg
Mg The |S| x |A||S| transition matrix.
Rmax The max reward.
All, B Denote the statistical independence constraint between variables A and B.
Al,B|C Denote the statistical conditional independence constraint between variables A and B conditioned on C.

Appendix B Theoretical proofs
Appendix B.1 Causal discovery

In this section, we provide proof of the identifiability of causal order in the orientation step and the identifiability of causal
structure after the pruning step. In identifying the causal order, we utilize the average treatment effect in treated (ATT)
[57] which can be written as follows:

Coths; =Elss (I =1) — 55 (L = 0)|Li = 1], (B1)
where s;(a; = 1) denotes the potential outcome of s; if s; were treated, s;(a; = 0) denotes the potential outcome if s; were
not treated [53], and E denotes the expectation.

Theorem B1l. Given a causal graph G = (Vs, E), for each pair of states s;,s; with ¢ # j, s; is the ancestor of s; if and
only if [C&™,, | > 0.

Proof. [Proof of Theorem B1.]

= If s; is the ancestor of s;, then the intervention of s; will force manipulating the value of s; by definition and thus result
in the change of s; compared with the s; without intervention. That is, s;(a; = 1) # sj(I; = 0) and therefore |s;([; =
1) — s;(I; = 0)| > 0. By taking the average in population that is treated, we obtain E[|s;(I; = 1) — s;(a; = 0)||I; = 1] > 0.
<=: Similarly, if |C;‘§ﬁsj| > 0, we have |sj(I; = 1) — s;(I; = 0)| > 0 based on Eq. (B1). To show s; is the ancestor of s,
we prove by contradiction. Suppose s; is not the ancestor of s;, then the intervention of s; will not change the value of s;.
That is, s;(I; = 1) = s;(I; = 0) which creates the contradiction. Thus, s; is the ancestor of s; which finishes the proof.
The following theorem shows that the causal structure is identifiable given the correct causal order. The overall proof is
built based on [41]. The main idea is that the causal structure can be identified given the correct causal order if we can
identify the causal skeleton. To learn the causal skeleton, we can resort to identifying the (conditional) independence among
the variables. Thus, in the following, we will show that under the causal Markov assumption, faithfulness assumption and
the sufficiency assumption, the (conditional) independence of the variables can be identified by the proposed BIC score in
our work due to its locally consistent property. We begin with the definition of the locally consistent scoring criterion.

Definition B1 (Locally consistent scoring criterion). Let D be a set of data consisting of m records that are iid samples
from some distribution p(-). Let G be any DAG, and let G’ be the DAG that results from adding the edge X; — X;. A
scoring criterion S(G, D) is locally consistent if in the limit as m grows large the following two properties hold:

1. If Xj ,ﬂ_p X; | Xpag, then S(Q’,D) > S(Q,D)
J

2. If X; AL, X; | Xp_q, then S(G’, D) < S(G, D).
J
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Lemma B1 (Lemma 7 in [41]). The Bayesian scoring criterion (BIC) is locally consistent.

Note that, as pointed out by [41], the BIC, which can be rewritten as the {p-norm penalty as Eq. (6) in the main text, is
locally consistent. This property allows us to correctly identify the independence relationship among states by using the
locally consistent BIC score because we can always obtain a greater score if the searched graph consists of (conditional)
independence in the data. Thus, we can always search a causal graph G with the highest score that is ‘correct’ in the sense
that all (conditional) independence consists of the ground truth. This is concluded by the following theorem:

Theorem B2 (Identifiability). Under the causal faithfulness and causal sufficiency assumptions, given the correct causal
order and large enough data, the causal structure among states is identifiable from observational data.

Proof. [Proof of Theorem B2] Based on Lemma B1, Eq. (6) in the main text is locally consistent since it has the same
form of the BIC score and we denote it using S(G, D). Then we can prune the redundant edge if S(G’, D) > S(G, D) where
G’ is the graph that removes one of the redundant edges. The reason is that for any pair of state s;, s; is redundant, there
must exist a conditional set Pa¥(s;) such that s; 1L s; | Pag(s;). Then based on the second property in Definition B1, we
have S(G’, D) > S(G, D) since G can be seen as the graph that adds a redundant edge from G’. Moreover, since we have
causal faithfulness and causal sufficiency assumptions, such independence will be faithful to the causal graph, and thus, by
repeating the above step, we are able to obtain the correct causal structure.

Appendix B.2 Policy performance guarantee

In this section, we provide the policy performance guarantees step by step. We first recap the causal policy in the following
definition:

Definition B2 (Causal policy). Given a causal graph G, we define the causal policy 7g(+|s) under the causal graph G as
follows:

7g(|s) = Ms(G) o (:s), (B2)

where Ms(G) is the causal mask vector at state s under the causal graph G, and 7 (:|s) is the action probability distribution
of the original policy output.

For example, the causal mask Ms(G) = {msg,a}l;i‘l constitute the vector of mask mga € {0,1} of each action in A where

| A| denotes the number of actions in the action space.

Outline of the proof of Theorem 3. Our goal is to show that under the causal policy, the value function under the correct
causal graph will have greater value than the value function that has misspecified causal graph such that the differences of
the value function can be bound by some constant ¢ > 0:

Virgs — Vg < (B3)

To do so, one may first notice that the difference of the value function can be expressed and bounded by the total variation
Drv(prg, prg«):

2Rmax
11—~

|V7Tg>« 7V7Tg| < DTV(pﬂ'g:pﬂ'g*)' (B4)

Such a total variation can be further bound by the total variation of Dpvy (mwg(- | s),mg=(- | s)) (Lemma B3 and Lemma
B4):

1
Drv(prg, prge) < EESNh,{g* [Drv(mg (- | s),mg=(- | 8))]- (B5)
Combining Eq. (B4) and Eq. (B5), we have
2Rmax
[Vrge = Vrg| < WESNMQ* [Drv (g (- |s),mg=(-|s))]. (B6)

By this, we can delve into this bound by investigating the total variation of the causal policy. Based on the definition of
the causal policy in Definition B2. One can deduce that the distance should be related to the difference of the causal mask,
and it is true that as shown in Lemma B2:

Drv(ng=,mg) < - ([|Ms(9) — Ms (G%) |l + ||1{ (B7)

a:msg:lzl/\msg’azl} Hl)

N | =

Finally, by combining Eq. (B6) and Eq. (B7) and further due to the positive of the bound, we obtain the result in Theorem

B3: R
W(\\Ms(g) = Ms(G")hh (B9)

+ Hl{a:msgyzzl/\msgyazl} Hl)

Vigs — Virg <

With the outline above, in the following, we provide the details proof of the Lemma B3, Lemma B4, Lemma B2, and
Theorem B3, respectively.
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Lemma B2. Let mg«(:|s) be the policy under the true causal graph G* = (Vs, E*). For any causal graph G = (Vs, E),
when the defined causal policy g (-|s) converges, the following inequality holds:

1
Dy (rge,7g) < 5 (IMs(€) ~ Me(@")llt + 10 _y g oy ll): (B9)
where ||Ms(G) — Ms (G*) |1 is the £1-norm of the masks measuring the differences of two policies, 1 is an indicator function

and ||1 G G |[1 measures the number of actions that are not masked on both policies.
{a:ms a=1/\ms,a=1}

Proof.  [Proof of Lemma B2] Based on the definition of the total variation and the causal policy we have:

Dy (ng-,7g) = Zlimg(1s) — mg(ls)ls
=2 3 g als) = ns ) (B10)

1 -
=5 2_Imdam"(als) = mg m(als)].
a

Since the mask only takes value in {0, 1}, we can rearrange the summation by considering the different values of the mask
on the two policies:

Dry(rg~,mg) = % > 7" (als)| + > |m(als)] + > |7*(als) — 7 (als)[ | ,
a:m?;:l/\msgﬂ:() a:m§72,:0Amga:1 a:msg;:l/\msg,,,,:1
(B11)
where the summation when mg:; =0A mga = 0 is zero as policy on both side are masked out. Then, based on the fact

that 0 < m(als) < 1 of the policy, we have the following inequality

1
Drv(nge75) < 5 (IM6(9) = M () 1+ ign _yg iyt - (B12)
Then we introduce the following Lemma B3, which bound the state distribution discrepancy based on the causal policy
discrepancy.
Lemma B3. Given a policy wg+ (:|s) under the true causal structure G* = (V, E*) and an policy mg(:|s) under the causal
graph G = (V, E) , we have that

Dry (hirg (8), Bag. (5)) < ﬁxam,,g* [Drv(rg(- | ), 76~ (- | ). (B13)

Proof.  [Proof of Lemma B3] The proof is inspired by [61], we show that the state distribution hyg of causal policy mg can
be denoted as

hrg = (1 =) —vPxg)~ 'ho, (B14)

where P (s's) = Z M*(s' | s,a)ng(a|s), and M*(s' | s,a) is the dynamic model. Denote that Mrg = (I — 'yPTrg)fl,

acA
we then have

Brg —hrg. = (1=7) [(I = 7Pxg) ™! = (I =P

=(1- ’Y)(Mﬂg - Mﬂ'g* Yho

g )71] ho

(B15)
= (1 — ’Y)’YM‘n-g (PTrg - P7Tg>« )Mﬂ'g* hO
= ’YM‘irg (Pﬂ'g — Pﬂ'g* )hﬂ—g* .
Similarly to Lemma 4 in [61], we have
Dry (brg (), hrg. () = 2| Mrg (Prg = Prg. )hng. |1
(B16)

2
< Mg 11 1(Prg = Prge g 1.

Note that

o0 o0 oo

1

[Maglli = 1D 7' Phollt <D A IPrglli <D 4" = T (B17)
=0 t=0 =0
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and we also show that H(Pﬂg —Prg. )hwg* |1 is bounded by

I(Prg = Prg hrg. i < 37 [Prg (8']s) = Prg. (5']5) [Bing. (5)
s,s

=3 | M*(s|s,a)(ng(als) —mg=(a|s))| hng. (s)

s,s lacA
* B18
< 3 M*(s|s.a)lnglals) — mg-(al 8)lhng. () (B18)
(s,a),s
=S ey (5) Y Img(a|'s) — mge(a | 9)]
s ac A
— 2Egun,, [Drv(ng(- | 8), mg-(- | 9))].
Thus, we have
Y
DTV(hTrg (s), h7rg* (s)) < EIIMWQ IE! H(Pﬂ'g - P"'g* )hﬂ'g* (Et
. (B19)
S ey, [D1v(ro(- | 9),mg- (- | 5))
-

Next, we further bound the state-action distribution discrepancy based on the causal policy discrepancy.

Lemma B4. Given a policy mg= (-|s) under the true causal structure G* = (V, E*) and an policy 7g(+|s) under the causal
graph G = (V, E) , we have that

1
Drv(prg, prge) < T Bt [Drv(mg (- | s),mg=(- | 8))]- (B20)

Proof.  [Proof of Lemma B4] Note that for any policy mg under any causal graph G, the state-action distribution prg (s, a) =
mg(a | s)hrg(s), we have

Drv(prg,prg«) = ! E [[mg=(a|s) —mg(a|s)hrg(s) + [hrg. (s) — hrg (s)]mg(a | s)|
2
(s,a)

< % > Imge(a|s) —mg(a|s)|hrg(s) + % > wg(al]s)|hng. (s) = hrg (s)]

(s,a) (s,a) (B21)
= Bsnngg, [Drv(mg(- [ 8), 7= (- | )] + Drv (hrg (s), hrg. (s))
S ﬁEMhm [Drv(mg (- [ 8),mg=(- | 8))],

where the last inequality follows Lemma B3.
Based on all the above Lemma B4, we finally give the policy performance guarantee of our proposed framework. Specifically,
we bound the policy value gap (i.e., the difference between the value of learned causal policy and the optimal policy) based
on the state-action distribution discrepancy.

Theorem B3. Given a causal policy mg~(:|s) under the true causal graph G* = (Vs, E*) and a policy mg(-|s) under the
causal graph G = (Vs, E), recalling Rmax is the upper bound of the reward function, we have the performance difference of
wg+(+|s) and 7g(-|s) be bounded as below,

Rmax
Vaew — Veg S——= (|| M, — M, *
o = Vro < (1Ma(0) = MGl -
+ Hl{a:m?::l/\mga:1}Hl)'

Proof. [Proof of theorem B3]

1
Note that for any policy mg under any causal graph G, its policy value can be reformulated as Vr, = TE(S’G)NIJWQ [r,a].
-
Based on this, we have
1 1
‘Vﬂg* - Vﬂg' = EE(s,a)r\apﬂ-g [T, a] - EE(s,a)Npﬂ-g* [7’, CL}
1
< : Z I(pﬂ'g (S,(I) - pﬂ'g* (s,a))r(s,a)\ (B23)
(s,a)eESxXA
g 2Rmax

1 5 DTV(pTrgvpﬂ'g*)'
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Figure C1 (a)-(c)Cumulative rewards, intervention steps, and average number of alarms per episode for Causal PPO based on
random initialization structures at different K in the topology-free environment.

Table C1 Results of causal structure learning of topology-free environment

Methods F1 score Precision Recall Accuracy SHD

Random Initiation 0.006 £ 0.006 0.025 £ 0.025 0.003 £ 0.003 0.669 + 0.983 169.0 + 5.362
Causal PPO (Random) 0.755 + 0.023 0.814 + 0.024 0.705 + 0.025 0.993 + 0.001 68.50 + 6.225
Causal SAC (Random) 0.595 £ 0.027 0.558 £ 0.057 0.643 £ 0.017 0.987 + 0.002 132.0 + 15.859

Combining Lemma B4 and Lemma B2, we have

2R,
Vﬂ'g* — Vﬂ'g < 1 :n:x DTV(PWQ»PWQ*)
2Rmax
S (= )2 Bevdng, DTV (g (- |8), 76+ (- | 9))] (B24)
< Bmax (4ar(G) — Ma (6 1 + 11 I
Sz s s 1 {am@a=1AmE o=1} 1)

which completes the proof.

Appendix C Additional experiment of topology-free environment

Considering that topology-free fault alarm scenarios also exist in real O&M environments, we constructed another topology-
free alarm environment with 100-dimensional alarm types based on real alarm data. The specific experimental configurations
are shown in the Table E1. We also conducted comparative experiments in this environment. In policy learning, we used the
model-free algorithms PPO [25], SAC [28], and DQN [22] as baseline, and applied our method to PPO and SAC, resulting
in Causal PPO and Causal SAC. To better demonstrate the advantages of our method in causal structure learning, we use
random graphs as the initial structures for the causal learning process.

As shown in Figure C1, our methods outperform the baseline algorithms in terms of cumulative rewards, number of
interactions, and average number of alarms per episode metrics. In terms of structure learning, discovering causality among
100-dimensional causal alarm nodes is challenging. However, as shown in Table C1, compared to the randomized initial
graph, our approaches can gradually learn a basic causal structure, which helps improve the convergence performance of
the policy. This also demonstrates the applicability of our algorithm in multiple scenarios.

Appendix D Additional experiment on cart-pole environment

To evaluate the performance of our approach on classic control tasks, we included the cart-pole environment from the
OpenAl Gym toolkit. The cart-pole environment is a well-known benchmark in reinforcement learning, where the goal is
to balance a pole on a moving cart by applying forces to the cart. The state space consists of the cart’s position, velocity,
pole angle, and pole angular velocity, while the action space is discrete, allowing the agent to push the cart either left or
right.

In the cart-pole environment, there is a clear causal relationship between the pole’s angle and the cart’s acceleration: when
the pole tilts to the right, continuing to apply force in that direction exacerbates the tilt, whereas applying force to the
left helps restore balance. Leveraging this causal structure, we introduce a causal action masking mechanism that softly
masks actions aligned with the tilt direction at extreme angles, thereby reducing ineffective exploration and expediting
policy convergence. Specifically, since the goal Y of cart-pole environment is to control the angle of pole, the causal mask
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Table E1 Environment configurations used in experiments.
Environment Parameters Value
1000 4 -
Max step size 100
T State dimension 1800
© 800 4 Action dimension 900
% Action type Discrete
& Topology time range 50
@ 600 environment max hop 2
.E a range [0.0001, 0.0013]
© [ range [0.0005, 0.0008]
S 400 root cause num 50
g Max step size 100
(@) 200 1 (P:sgsal PPO State dimension 200
SAC Action dimension 100
D3QN Action type Discrete
oA DQN Topology-free time range 100
T T T T T T T T T environment max hop 1
0 50 100 150 200 250 300 350 400 o range [0.00015, 0.0025]
Episodes u range [0.0005, 0.0008]
root cause num 20

Figure D1 Cumulative rewards in the cart-pole environment.

is learned by setting it proportionally to the effect of the action m,

be masked if it increases the angle.

g

s,

X |Sangle(£; = 1)| such that the action will more likely

The experimental results (shown in Figure D1.) indicate that the proposed Causal PPO significantly outperforms other
baselines in terms of cumulative rewards, and demonstrates faster convergence and higher stability during training, which
fully proves that explicitly embedding causal inference in the action space is of key significance for efficient reinforcement
learning of samples.

Appendix E Hyper-parameters

We first list all important hyper-parameters in the implementation for the specific Topology environment and Topology-free
environment in Table E1. We also provide the ground truth of the causal structure that is used in our FaultAlarmRL
environment in Table E2. The hyper-parameters for FaultAlarmRL environment are also provided in Table E3.
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Table E2 Ground truth

Cause Effect Cause Effect
MW_RDI LTI MW_BER_SD LTI
MW_RDI CLK_NO_.TRACE_MODE MW_BER_SD S1_.SYN_CHANGE
MW_RDI S1_.SYN_CHANGE MW_BER_SD PLA_MEMBER_-DOWN
MW_RDI LAG_MEMBER_DOWN MW_BER_SD MW_RDI
MW _RDI PLA_MEMBER_DOWN MW_BER_SD MW_LOF
MW _RDI ETH-LOS MW_BER-SD ETH_-LINK_.DOWN
MW _RDI ETH_LINK_-DOWN MW_BER_-SD NE_.COMMU_BREAK
MW _RDI NE_.COMMU_BREAK MW_BER_SD R_LOF
MW_RDI R_LOF R_LOF LTI
TU_AIS LTI R_LOF S1_.SYN_.CHANGE
TU_AIS CLK_NO_.TRACE_MODE R_LOF LAG_-MEMBER_-DOWN
TU_AIS S1_.SYN_CHANGE R_-LOF PLA_MEMBER_-DOWN
RADIO_RSL_.LOW LTI R_-LOF ETH_.LINK_DOWN
RADIO_RSL_LOW S1_.SYN_.CHANGE R_LOF NE_.COMMU_BREAK
RADIO_RSL_-LOW LAG_-MEMBER_-DOWN LTI CLK_-NO_.TRACE_-MODE
RADIO_RSL_.LOW PLA_MEMBER_DOWN HARD_BAD LTI
RADIO_RSL_LOW MW_RDI HARD_BAD CLK_NO_TRACE_MODE
RADIO_RSL_LOW MW_LOF HARD_BAD S1.SYN_.CHANGE
RADIO_RSL_LOW MW_BER_SD HARD_BAD BD_STATUS
RADIO_RSL_.LOW ETH_LINK_DOWN HARD_BAD POWER_ALM
RADIO_RSL_.LOW NE_.COMMU_BREAK HARD_BAD LAG_MEMBER_DOWN
RADIO_RSL_.LOW R_LOF HARD_BAD PLA_MEMBER_-DOWN
BD_STATUS S1.SYN_.CHANGE HARD_BAD ETH-LOS
BD_STATUS LAG_-MEMBER_-DOWN HARD_BAD MW _RDI
BD_STATUS PLA_MEMBER_DOWN HARD_BAD MW_LOF
BD_STATUS ETH_LOS HARD_BAD ETH_LINK_DOWN
BD_STATUS MW_RDI HARD_BAD NE_.COMMU_BREAK
BD_STATUS MW_LOF HARD_BAD R_LOF
BD_STATUS ETH_LINK_DOWN HARD_BAD NE_NOT_LOGIN
BD_STATUS RADIO_RSL_.LOW HARD_BAD RADIO_RSL_.LOW
BD_STATUS TU_AIS HARD_BAD TU_AIS
NE_-COMMU_BREAK LTI ETH_LOS LTI
NE_-COMMU_BREAK CLK_-NO_.TRACE_-MODE ETH_LOS CLK_-NO_.TRACE_-MODE
NE_.-COMMU_BREAK S1.SYN_.CHANGE ETH_LOS S1.SYN_.CHANGE
NE_COMMU_BREAK LAG_MEMBER_-DOWN ETH_LOS LAG_MEMBER_-DOWN
NE_.COMMU_BREAK PLA_MEMBER_DOWN ETH_LOS PLA_MEMBER_DOWN
NE_.COMMU_BREAK ETH_LOS ETH_LOS ETH_LINK_DOWN
NE_COMMU_BREAK ETH_LINK_DOWN MW_LOF LTI
NE_.COMMU_BREAK NE_NOT_LOGIN MW_LOF CLK_NO_.TRACE_MODE
ETH_LINK_DOWN LTI MW_LOF S1_.SYN_CHANGE
ETH_-LINK_-DOWN CLK_-NO_.TRACE_-MODE MW_LOF LAG_-MEMBER_-DOWN
ETH_LINK_.DOWN S1.SYN_.CHANGE MW_LOF PLA_MEMBER_-DOWN
S1_.SYN_.CHANGE LTI MW_LOF ETH_LOS
POWER_ALM BD_STATUS MW_LOF MW _RDI
POWER_-ALM ETH_LOS MW_LOF ETH_LINK_DOWN
POWER_ALM MW_RDI MW_LOF NE_.COMMU_BREAK
POWER_ALM MW_LOF MW_LOF R_LOF
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Table E3 Hyper-parameters of methods used in experiments.

Models

Parameters

Value

Causal DQN & Causal D3QN

Learning rate
Size of buffer mathcalB
Epoch per max iteration
Batch size
Reward discount ~
MLP hiddens
MLP layers
Update timestep
Random sample timestep
e-greedy ratio

e-causal ratio 7

0.0003
100000
100
64
0.99
128
2
5
512
0.1
0.2

Causal PPO

Actor learning rate
Critic learning rate
Epoch per max iteration
Batch size
Reward discount ~
MLP hiddens
MLP layers
Clip
K epochs
Update timestep
Random sample timestep
e-greedy ratio

e-causal ratio n

0.0003
0.0003
100
64
0.99
128
2
0.2
50
256
512
0.1
0.3

DQN & D3QN

Learning rate
Size of buffer mathcalB
Epoch per max iteration
Batch size
Reward discount
MLP hiddens
MLP layers
Update timestep
Random sample timestep

e-greedy ratio

0.0003
100000
100
64
0.99
128
2
5
512
0.1

PPO

Actor learning rate
Critic learning rate
Epoch per max iteration
Batch size
Reward discount ~
MLP hiddens
MLP layers
Clip
K epochs
Update timestep
Random sample timestep

0.0003
0.0003
100
64
0.99
128

0.2
50
512
512




	Table of notation table
	Theoretical proofs
	Causal discovery
	Policy performance guarantee

	Additional experiment of topology-free environment
	Additional experiment on cart-pole environment
	Hyper-parameters

