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Abstract Multimodal large language models (MLLMs) have already begun to be used in visual question answering (VQA), autonomous
driving, and smart healthcare, showing great application potential. However, existing MLLMs have significant gaps compared with human
intelligence in terms of spatial awareness tasks, especially in accurately identifying and interpreting complex spatial relationships between
target entities. This deficiency severely impacts the accuracy of VQA, the safety of autonomous driving, and the reliability of smart
healthcare. In order to meet the requirements for the accuracy of spatial relationship recognition in specific applications, we propose a
novel framework named PGPL, which attempts to enhance the spatial awareness ability of an MLLM by integrating precise geometric
position information between target entities on the MLLM without the need for additional training of the MLLM. Specifically, the PGPL
framework leverages the spatial position generation model and the scene graph generation model to obtain geometric absolute position
and geometric relative position of the target entities in the visual input. And then, it introduces a multidimensional information fusion
strategy to guide the MLLM to accurately answer questions related to spatial awareness. The quantitative experimental results of six
popular datasets and twelve MLLMs, as well as the related qualitative experimental results, fully demonstrate the importance of the
precise geometric position information for correctly answering spatial awareness questions, and demonstrate the superiority of the PGPL
framework.
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1 Introduction

Multimodal large language models (MLLMs) [1-4] have become a focal point of research. They harness powerful
large language models (LLMs) [5-9] as the cognitive engines and possess the abilities in understanding and interpret-
ing multimodal data. This showcases their vast potential across diverse applications [10-15] such as visual question
answering (VQA), autonomous driving, smart healthcare, intelligent manufacturing, general-purpose robots, and
virtual reality.

However, among these applications, there are many scenarios that require very powerful spatial awareness abilities.
For instance, in VQA [16-18], accurately positioning and identifying spatial relationships between objects are critical
for answering user queries. Especially in autonomous driving [19,20], precise localization of objects such as vehicles,
pedestrians, traffic signs, road markings, and parking spaces is crucial to ensure safe driving and prevent accidents.
Smart healthcare [21,22] also needs to accurately localize the pathological areas and identify the spatial relationships
between anatomical structures for enhancing diagnostic accuracy, formulating effective treatment plans, and guiding
surgical procedures. Despite their potential, existing MLLMs [2, 3, 23] exhibit significant limitations in capturing
and interpreting complex spatial relationships. Recent studies have systematically evaluated the spatial reasoning
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Figure 1 (Color online) Examples of existing MLLMs (left) and our proposed framework (right) in VQA.

capabilities of popular vision-language models, revealing that even the best-performing models achieve only 56%
accuracy on basic spatial reasoning tasks, compared to nearly 99% human-level performance [24]. This deficiency
severely impacts the accuracy of VQA, the safety of autonomous driving, and the reliability of smart healthcare.
As illustrated by the two examples on the left side of Figure 1, the existing MLLMs [2, 3] have significant challenges
in accurately identifying the spatial relationships between target objects within the VQA application, often giving
Wrong answers.

Current approaches to improving MLLMs’ spatial awareness heavily rely on resource-intensive pre-training or
fine-tuning [3,23,25,26], which demand substantial computational resources and extensive data preparation. For hu-
mans, an effective method to solve the aforementioned problem is to use precision measuring tools to obtain precise
spatial position information. Inspired by human intelligence, which leverages precision tools for spatial reasoning,
we propose PGPL (precise geometric position learning), a novel framework that enhances the spatial awareness
of MLLMs by integrating absolute and relative geometric positional information without requiring additional data
or retraining. Specifically, the PGPL framework employs the spatial position generation model to identify the
categories and corresponding geometric absolute positional coordinates of entities in the visual input. Simultane-
ously, it utilizes the scene graph generation model to extract the geometric relative positional relationships among
entities. These two types of positional information—absolute and relative—are seamlessly integrated through a
multidimensional information fusion strategy, enhancing the ability of MLLMs to reason more effectively about
spatial relationships. The examples on the right in Figure 1 demonstrate our framework’s accurate identification of
object spatial relationships.

Our contributions can be summarized as follows.

e We propose the novel PGPL framework, designed to enhance the spatial awareness abilities of MLLMs. This
framework leverages spatial positional information to provide auxiliary information about absolute geometric po-
sitions and utilizes scene graph information to supply auxiliary insights into relative geometric positions. It also
incorporates a multidimensional fusion strategy to guide MLLMs to generate more accurate results, offering a com-
prehensive solution ranging from basic spatial positioning to understanding complex object relationships within a
scene.

e We systematically investigate the impact of various pre-trained models on overall performance and concurrently
clarify the criteria for selecting spatial position generation models, precisely identifying the optimal selection of
corresponding parameters.
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e We conduct extensive experiments on six popular datasets and twelve base models. The experimental results
robustly demonstrate that our framework significantly enhances the performance of MLLM in spatial awareness
and related task aspects.

2 Related work

Multimodal large language model (MLLM). The MLLM [4,27-29] is capable of understanding and processing
diverse information from different modalities, playing a crucial role in advancing multimodal research and applica-
tion. The MLLM is divided into two main types. The first type involves combinations of LLM and visual encoders
aiming to achieve multimodal understanding at minimal training costs. Examples include LLaVA [2], BLIP [3],
mPLUG-Owl [30], GPT4Rol [31], and Kosmos [32]. The second type involves the integration of LLM with various
smaller multimodal models. These models use the LLM as a central hub, invoking different small models to perform
various multimodal tasks, and ultimately consolidating into user responses. Examples include HuggingGPT [33],
CompeGPT [34], and Visual ChatGPT [35]. Our study, however, focuses its research on the first type of MLLM.

Spatial awareness multimodal large language models. The current methods to enhance the spatial per-
ception capabilities of multimodal large language models can be divided into two main categories. The first category
involves constructing large-scale real image-text pair datasets to pre-train or fine-tune baseline multimodal large
language models [32,36]. These datasets include images and text pairs with precise location information, enabling
the models to better learn fine-grained spatial relationships and localization capabilities. The second category fo-
cuses on making the models learn the specific spatial location information corresponding to the text during the
pre-training or fine-tuning process, thereby enhancing their spatial perception abilities [31,37]. Both methods incur
significant costs in terms of data construction and computational resources. To address these challenges, we propose
the PGPL framework, which aims to bolster the spatial awareness abilities of MLLMs without requiring additional
training of the MLLM.

Spatial position generation (SPG). Spatial position generation models refer to a set of models that can extract
an entity’s geometric absolute spatial position information from visual inputs. These models excel at extracting
detailed geometric information, including the boundaries, coordinates, and depth of objects within a visual scene.
The suite of models in this domain is diverse, extending to but not restricted to, object detection models [38-40],
image segmentation models [41-43], video segmentation models [44,45], and depth estimation models [46,47].

Scene graph generation (SGG). Scene graph generation models [48-51] are designed to automatically convert
an image into a structured semantic graph. These models identify and label objects within the image, discern the
spatial position relationships between these objects, and organize this information into a graph structure where
nodes represent the objects and edges denote the relationships. These models can accurately capture the semantic
information of complex scenes in images, including the geometric relative positional relationships between entities.

Visual question answering, referring expression comprehension, and image captioning. This paper
uses the VQA application [52-54] as an example to specifically analyze how to enhance the spatial awareness ability
of MLLM. VQA involves analyzing images to answer text questions related to their content. To provide relevant
answers, the VQA model requires a deep understanding of the image content and the question text, encompassing
awareness of objects, scenes, and spatial relationships within images, as well as comprehension of natural language
questions. To more broadly validate the effectiveness of our PGPL framework, we also conducted performance
validation on referring expression comprehension and image captioning applications. Referring expression compre-
hension (REC) [55] involves identifying and locating specific objects mentioned in the text within an image based
on the text description. Image captioning [56] involves using a computer to automatically generate a complete,
smooth, and suitable caption for a given image, thereby realizing the multimodal conversion from image to text.

3 Method

In this section, we first provide an overview of the proposed framework, PGPL, followed by a detailed description
of its core components: target entity extraction, geometric absolute position learning, geometric relative position
learning, and multidimensional information fusion.

3.1 Overview

Existing studies [3, 23,25, 26] suggest that enhancing the MLLM’s capabilities through targeted training methods
incurs a high cost in terms of both data construction and computational resources. Therefore, we propose the
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Figure 2 (Color online) Overview of our PGPL framework in VQA. The input QUESTION consists of two components: question image and
question text. The target entity extraction model processes the question text to obtain the target entities. The spatial position generation model
processes the question image to obtain corresponding candidate categories and coordinates, and matches them with the target entities to obtain
geometric absolute position. The scene graph generation model processes the question image to obtain corresponding candidate triplets, and
matches them with the target entities to obtain geometric relative position. The MLLM integrates the initial QUESTION, geometric absolute
position information and geometric relative position information of the target entities to obtain the final output ANSWER.

PGPL framework to bolster the spatial awareness abilities of MLLMs:
ANSWER = PGPL(QUESTION), (1)

where QUESTION is the user’s input request, and ANSWER is the response obtained through the PGPL framework.
The framework attempts to enhance the spatial awareness ability of an MLLM by integrating precise geometric
position information between target entities without the need for additional training of the MLLM.

The PGPL framework mainly includes four parts: target entity extraction (Part 1: Subsection 3.2), geometric
absolute position learning (Part 2: Subsection 3.3), geometric relative position learning (Part 3: Subsection 3.4),
and multidimensional information fusion (Part 4: Subsection 3.5). As shown in Figure 2, for a given multimodal
QUESTION, the PGPL framework utilizes pre-trained models to acquire geometric absolute position and geometric
relative position of entities pertinent to spatial awareness questions. It then guides the MLLM to respond to
QUESTION based on this information, thereby enhancing the MLLM’s abilities in spatial awareness tasks. In
detail, the framework first utilizes the target entity extraction model to extract the target entities involved in
determining spatial relationships from the Q7 in the multimodal QUESTION (Part 1). Subsequently, it employs
the spatial position generation model and scene graph generation model to obtain the spatial positional information
(candidate categories and coordinates) and scene graph information (candidate triplets) of entities within the Q; of
the QUESTION, and then uses the entity matching model to extract the geometric absolute position and geometric
relative position of the target entities (Parts 2 and 3). Finally, the PGPL framework guides the MLLM to leverage
the geometric absolute position information and geometric relative position information of the target entities to
address spatial awareness-related QUESTION, resulting in the ultimate ANSWER (Part 4). It should be noted
that the MLLM within the PGPL framework can be replaced as needed.

3.2 Target entity extraction

In VQA, the QUESTION primarily comprises two components: the user-input question text data (Qr) and multi-
modal visual data (Q). This paper employs the target entity extraction (TEE) model to extract the target entities
among which the spatial relationships are required by the user-input @7, as demonstrated in

(E1, ..., Ex) = (TEE)(Qr), (2)
where (E1, ..., Ex) represents the target entities requiring spatial relationship determination within the Qr, with
k indicating the number of target entities. (F1, ..., E)) represents the target entities requiring spatial relationship

determination within the Qr, with k£ indicating the number of target entities.

The TEE model in this paper uses the pre-trained BERT model [57] for named entity recognition and combines
it with a rule-based method. The reason for choosing the BERT model is its bidirectionality and strong context
understanding ability. The BERT model is fine-tuned on the CoNLL-03 dataset [58] and is suitable for named entity
recognition tasks. After all the named entities in the Q7 are identified, the target entity is determined using the
rule-based method. Specifically, entities that contain relational words (such as “on the lower right side” in Figure 2)
within the Q7 are identified as target entities (such as “sports ball” and “person” in Figure 2). Notably, when no
relational words exist between entities in the @7, all named entities are considered target entities.
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3.3 Geometric absolute position learning

Geometric absolute position information refers to the geometric absolute coordinate details among entities within
visual inputs. This information can be obtained through various spatial position generation models, such as object
detection models [59, 60], image segmentation models [61,62], video segmentation models [63,64], and depth esti-
mation models [65,66]. This subsection provides a detailed explanation of the methodology using object detection
models as an example. The subsequent experimental process thoroughly investigates the effects of different types
of models (Subsection 4.5).

To be more specific, we initially utilize a SPG model [67] to obtain the candidate entities’ categories (E;) and
geometric coordinates (z7,y;, xI, yZT ) in the input image @7, as illustrated in

E{ . (5517917551&1[)7- . 7E§\4 : ($M7yM7$j\47y}r\4) = SPG(QI)u (3)

where Ff : (21,7, xi,y{), e By (xM,yM,x}Lw,y}Lw) represents the set of detected candidate entities, each char-
acterized by its respective category and geometric coordinates. Here, M denotes the total number of detected
entities, and z;, y,, xI, and yj denote the coordinates of the entity ¢ in the corresponding space. The symbols %
and { represent the coordinates of the top-left and bottom-right corners of the bounding box in detection results,
respectively. The results of the categories, geometric coordinates, and number of entities depend on the capabilities
of the SPG model.

Next, the entity matching (EM) model is employed to associate the categories of candidate entities (Ef, ..., E},)
extracted from the visual input with the categories of target entities (F1,..., Fg). This process generates a dictio-

nary containing the geometric absolute position information of the target entities in the input image:
Ei,...,Ex = EM((Ev, ..., Ep)i (B}, E}y)). (4)

Here, B : (24,9, :Z:J{, yI), oo B (2, v, a:,i,y;i) denotes the obtained geometric absolute position information of
the target entities (e.g.,“sports ball” and “person” in Figure 2).

Specifically, we utilize the pre-trained BERT model to transform the candidate entities (E7,..., E},) and the
target entities (F1,...,F)) into their respective word vectors. Subsequently, we calculate the cosine similarity
between these word vectors:

o Eiy - By
cosine similarity B TE ] (5)
Here, F;y denotes the word vector corresponding to the i-th target entity, while E;-V denotes the word vector
corresponding to the j-th candidate entity, cosine similarity represents the calculated cosine similarity result. When
the cosine similarity exceeds a predefined threshold, the two entities are considered synonyms. In this case, the
coordinate information corresponding to the candidate entity is used as the geometric absolute position information
for the target entity.

3.4 Geometric relative position learning

Geometric absolute position information primarily focuses on identifying and locating the geometric absolute coordi-
nates of entities. However, in certain application scenarios, spatial awareness requires more than just understanding
the geometric absolute coordinates. It also necessitates a comprehension of higher-level geometric relative position
information among entities, such as the relative position relationships between entities and between entities and the
scene. Geometric absolute position information refers to the 2D coordinates between target entities, while geometric
relative position information encompasses higher-level relationships such as actions, orientation, and interactions.
Although absolute coordinates can imply some relative positions, many complex relationships, such as “walking
on”, “in front of”, and “hugging”, cannot be captured solely by absolute coordinates. Therefore, we propose com-
bining geometric absolute and relative position information to form a comprehensive framework. This study utilizes
scene graph generation models to obtain the geometric relative position information. By combining geometric
absolute and relative position information from multimodal visual inputs, we achieve a more comprehensive and
accurate understanding of images. This method not only identifies the positions of objects but also understands
their interactions within the scene, which is particularly beneficial for image understanding with complex scenes.

Specifically, we begin by utilizing an SGG model [68] to generate the scene graph candidate triples of the
multimodal visual input, as illustrated in

(621”’1,6;1)7---7(6;11\/77"?\7,61/:]\/) = SGG(Qr), (6)
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Figure 3 (Color online) Visualization of the prompt and its corresponding GAP and GRP illustrations in the PGPL framework.

where Q7 refers to the input multimodal visual data, and {(e},;,77,€}1), .., (€}, n, x> €in )} represents the collection
of candidate triples of scene graph obtained from the image. Here, e}, represents the head entity, " represents the
relationship, and e} represents the tail entity, with N indicating the number of triples. Simultaneously, based on the
collection of image scene graph candidate triples {(e},,,71,€51),-- ., (€, n:TN-€in) ]}, We extract all triples relevant
to the target entities mentioned in the question text Q@7 using the EM model:

(ehlv'rla etl)) ey (ehzv'rz; etz) - EM((Eh ey Ek)a (e;Lla Tllaef‘,l)v ey (ethv'r;\Za ef‘,N))a (7)

where (en1,71,€11), ..., (€nz, T2, €1-) represents the resulting set of target triplets, and z indicates the total num-
ber of target triplets identified. Specifically, we utilize the pre-trained BERT model to transform the entities
(€)1, €41, €pns ) in the scene graph candidate triplet set {(e};,77,€}1),..., (e}, N, Ty, €in)} and the target en-
tities (F1, ..., F}) into their respective word vectors. Subsequently, we calculate the cosine similarity between these
word vectors:

E;yv e
vV Gy (8)

cosine similarity = ————.
|Eiv|-lejy |

Here, E;v denotes the word vector corresponding to the i-th target entity, while e},, denotes the word vector
corresponding to the ¢-th entity in the scene graph candidate triplet set, cosine similarity represents the calculated
cosine similarity result. When the cosine similarity exceeds a predefined threshold, the two entities are considered
synonyms. The matching criterion is as follows: if there is an entity in the scene graph candidate triplet set
{(€}1,71,€41),- - (€hn, Ty, € )} that matches with target entities (E1, ..., Ex) (such as “sports ball” and “person”
in Figure 2), then this triplet is retained.

3.5 Multidimensional information fusion

After learning the geometric absolute and relative position information of entities related to the spatial relationship
question, the critical task becomes how to effectively leverage this information to guide MLLM to accurately
answer user questions related to spatial awareness. Based on the existing studies [69,70], this study proposes a
multidimensional information fusion method based on zero-shot learning, detailed in (9) and Figure 3. This zero-
shot strategy uniquely enables the MLLM to utilize spatial awareness information from pre-trained models without
the need for additional fine-tuning, significantly enhancing its ability to accurately interpret and respond to user
questions about spatial relationships.

ANSWER = MLLM(QUESTION, GAP, GRP), 9)

where QUESTION refers to the input comprising multimodal visual data @ and textual data Qr, while GAP and
GRP denote the generated geometric absolute position and geometric relative position information of the target
entity, respectively.

4 Experiments

This section provides a comprehensive analysis of our proposed PGPL framework through a series of experiments.
We begin by introducing the implementation details (Subsection 4.1), which offer crucial information for replicating
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the experiments and understanding the results. Next, we present the main results (Subsection 4.2), comparing
the performance of our proposed method with existing MLLMs. We also conduct ablation studies to validate the
effectiveness of each component of our PGPL framework (Subsection 4.3). Additionally, we examine the impact of
different types of pre-trained models on the overall performance (Subsections 4.4, and 4.5). Finally, we explore the
scalability of the PGPL framework (Subsection 4.6).

4.1 Implementation details

This subsection offers a detailed description of the datasets used in the experiments, the evaluation metrics adopted
to assess model performance, the baseline models for comparison, and the hyperparameter settings applied in our
experiments.

Datasets. We conducted extensive experiments on six popular datasets to validate the effectiveness of our
framework in spatial awareness tasks and more general tasks. Among these, MME [71] and MM-Vet [72] are widely
used to evaluate the general abilities of MLLMs. The MME dataset encompasses ten perceptual tasks: existence,
count, position, color, poster, celebrity, scene, landmark, artwork, and OCR, with the position task specifically
designed to assess the model’s abilities in spatial awareness. This dataset includes 957 images and 1914 question-
answer pairs, with each image associated with two corresponding questions and answers. The MM-Vet dataset
includes six core tasks in computer vision and natural language processing: recognition, knowledge, OCR, spatial
awareness, language generation, and mathematics. Within MM-Vet, the spatial awareness tasks are particularly
aimed at evaluating the model’s spatial awareness abilities. This dataset contains 200 images and 218 questions.
The RefCOCO [73], RefCOCO+ [73], and RefCOCOg [74] datasets are utilized to evaluate our model’s performance
in referring expression comprehension. Both RefCOCO and RefCOCO+ were created through a two-player game.
RefCOCO+ is specifically tailored to exclude spatial relations. In contrast, RefCOCOg includes spatial relations
and features longer expressions on average. Our model’s performance in image captioning is evaluated on the
Flickr30k [75] dataset, which consists of 31000 images. Each image is accompanied by five textual captions provided
by human annotators. These descriptions detail the scenes, objects, and activities depicted in the images.

Evaluation metrics. This paper evaluates the performance of our method using the evaluation metrics proposed
in each dataset. Specifically, for the MME dataset, the model’s output is limited to two types (yes or no), making
it convenient to measure accuracy (based on each question) and accuracy+ (based on each image where both of
the two questions need to be answered correctly) metrics. We choose to use the sum of accuracy and accuracy+ to
calculate the task score. In the case of the MM-Vet dataset, GPT-4 provides specific scores to evaluate the model’s
performance based on existing scoring instances and the model’s output under the input question and real answer
conditions for each sample. The evaluation metric for RefCOCO, RefCOCO+, and RefCOCOg is accuracy, while
for Flicker30K, it is CIDEr [76].

Baselines. We conducted extensive experiments to validate the effectiveness of our proposed method. The
selected baseline models include LLaMA-AdapterV2-7B [77], InstructBLIP-14B [78], MiniGPT-4-14B [23], Otter-
9B [79], GPT-4 Vision [80], Ferret [81], and GPT-4o0 [82]. Further, a series of experiments were conducted focusing on
five baseline models—BLIP-2-12B [3], LLaVA-13B [2] (LLaVA-1.5), Kosmos-2 [32], GPT4Rol [31], and Shikra [36]—
to specifically assess the PGPL framework’s efficacy. These models were chosen for their widespread use in prior
research and their status as representative benchmarks [83-85], allowing us to test our method against these well-
regarded models and thus demonstrate the effectiveness and universality of our approach.

Hyperparameter settings. The hyperparameters used in this paper are identical to those of each baseline
model. The key distinction lies in integrating the geometric absolute and relative position information from spatial
location and scene graph generation models into the PGPL framework, following the prompt format designed to
execute relevant tasks. The spatial position generation model employs the classic and user-friendly Faster R-CNN
101 [67]. The scene graph generation model is implemented using PSG [68]. The threshold of cosine similarity in
the entity matching model was set to 0.8.

4.2 Main results

We systematically evaluated the performance of our proposed PGPL framework in enhancing spatial awareness
abilities on specialized tasks of the MME and MM-Vet datasets. The experimental results for general (LLaMA-
AdapterV2-7B, InstructBLIP-14B, BLIP-2-7B, BLIP-2-12B, LLaVA-7B, LLaVA-13B, GPT-4 Vision, Ferret, GPT-
40) and spatially aware (Kosmos-2, GPT4Rol, and Shikra) MLLMs are summarized in Table 1 [2,3,23,31,32,36,77—
82]. The results show that PGPL consistently outperforms existing methods, with significant improvements across
all baseline models.
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Table 1 Experimental results on the MME (position task) and MM-Vet (spatial awareness task) datasets. Blod highlights the performance of
our method compared to various baseline MLLMs. 1 denotes the relative improvement percentage over the baseline.

Ours (Shikra)

84.33 (13.3%)

Model Position Spatial
MiniGPT-4-14B [23] 81.67 22.2
Otter-9B [79] 86.67 19.3
LLaMA-AdapterV2-7B [77] 56.67 16.6
Ours (LLaMA-AdapterV2-7B) 60.00 (15.9%) 17.8 (17.2%)
InstructBLIP-14B [78] 66.67 21.1
Ours (InstructBLIP-14B) 73.33 (110.0%) 22.9 (18.5%)
BLIP-2-7B [3] 55.00 14.8
Ours (BLIP-2-7B) 61.67 (112.1%) 16.5 (111.5%)
BLIP-2-12B [3] 73.33 16.2
Ours (BLIP-2-12B) 87.54 (119.4%) 20.1 (124.1%)
LLaVA-7B [2] 53.33 24.3
Ours (LLaVA-7B) 81.67 (153.1%) 27.1 (111.5%)
LLaVA-13B [2] 133.33 24.3
Ours (LLaVA-13B) 153.33 (115.0%) 26.5 (18.6%)
GPT-4 Vision [80] 95.00 12.4
Ours (GPT-4 Vision) 133.33 (140.3%) 14.8 (119.4%)
Ferret [81] 96.67 13.8
Ours (Ferret) 128.33 (132.8%) 15.1 (19.4%)
GPT-4o [82] 180.00 58.2
Ours (GPT-40) 183.33(11.8%) 59.1 (11.5%)
Kosmos-2 [32] 81.67 21.65
Ours (Kosmos-2) 84.33 (13.3%) 22.42 (13.6%)
GPT4Rol [31] 84.33 22.15
Ours (GPT4Rol) 86.67 (12.8%) 23.23 (14.9%)
Shikra [36] 81.67 21.40

22.65 (15.8%)

PGPL achieved an average improvement of 16.5% across diverse models on the MME dataset. Significant gains
were observed in models such as LLaVA-7B (153.1%), GPT-4 Vision (140.3%), and Ferret (132.8%), with notable
improvements also seen in BLIP-2-12B (119.4%), LLaVA-13B (115.0%), BLIP-2-7B (112.1%), InstructBLIP-14B
(110.0%), LLaMA-AdapterV2-7B (15.9%), and GPT-40 (11.8%). Even models with intrinsic spatial awareness
capabilities, including Kosmos-2 (13.3%), Shikra (13.3%), and GPT4Rol (12.8%), benefited from PGPL. These
results highlight PGPL’s ability to address fundamental limitations in general multimodal models while further
enhancing models already specialized in spatial reasoning.

On MM-Vet, PGPL delivered consistent improvements across all tested architectures. Performance gains were
particularly strong for smaller models like BLIP-2-7B (111.5%), LLaVA-7B (111.5%), and LLaMA-AdapterV2-7B
(17.2%), while larger models such as BLIP-2-12B (124.1%), GPT-4 Vision (119.4%), Ferret (19.4%), LLaVA-13B
(18.6%), InstructBLIP-14B (18.5%), and GPT-4o (11.5%) also showed substantial improvements. Spatially aware
models, including Shikra (15.8%), GPT4Rol (14.9%), and Kosmos-2 (13.6%), demonstrated enhanced spatial reason-
ing capabilities. This underscores PGPL’s generalizability across model scales and architectures, with particularly
pronounced effects on less optimized baselines.

The analysis highlights PGPL’s versatility: it significantly improves spatial awareness in general MLLMs by
incorporating GAP and GRP information without requiring additional model retraining. On the other hand,
its limited but consistent impact on spatially-aware models suggests that PGPL can complement existing spatial
reasoning capabilities, further validating its universal applicability. The pronounced gains in weaker models, such
as LLaVA-7B and BLIP-2-7B, underscore PGPL’s ability to address intrinsic deficiencies in baseline architectures,
making it a valuable enhancement across a spectrum of tasks.

To further validate the practical effectiveness of the PGPL framework, we present an in-depth analysis of repre-
sentative case studies involving spatial reasoning tasks. These cases demonstrate how the integration of GAP and
GRP enables MLLMs to overcome various challenges in spatial understanding. Specifically, GAP provides precise
geometric anchors, while GRP captures relative positional relationships. Their seamless fusion within the large

model empowers it to infer higher-order spatial and semantic reasoning, addressing limitations inherent in baseline
MLLMs.
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Figure 4 (Color online) Illustration of representative cases analyzed in the study. From top to bottom, the figure sequentially represents Cases
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As shown in Figure 4, in Case 1, the question concerned whether the baseball bat was behind the sports ball.
The baseline model failed due to incomplete geometric information and a lack of relational understanding. GRP
extracted relative relationships such as “beside” and “on” between key objects in the scene, while GAP, despite
missing some bounding boxes, anchored the position of the sports ball. By leveraging these complementary inputs,
the large model accurately deduced that the baseball bat was indeed behind the sports ball, demonstrating the
framework’s ability to combine relational reasoning with geometric precision.

Case 2 highlighted PGPL’s ability to resolve ambiguities caused by closely positioned objects, such as a cup and
a laptop. The baseline model struggled to differentiate between nearby objects due to overlapping features. GRP
provided contextual relational cues, identifying the spatial hierarchy (e.g., “beside” relationships among the cup,
laptop, and other nearby objects). GAP reinforced this by supplying bounding box coordinates, enabling the large
model to determine that the cup was correctly located to the right of the laptop.

Case 3 showcased the framework’s robustness in handling noisy or generalized entity labels, such as tree-merged
and grass-merged. GRP effectively captured the relative spatial relationships, such as “beside” and “on”, even when
absolute position data was incomplete or ambiguous. GAP, though limited in providing precise bounding boxes,
still offered geometric anchors for reasoning. By synthesizing these two sources of information, the large model was
able to infer the intended spatial relationships, underscoring the framework’s resilience in scenarios with imprecise
or noisy entity data.

Finally, Case 4 illustrated PGPL’s capability to mitigate optical illusions and scale-based misinterpretations. In
a scenario where a person appeared larger than a vehicle, GRP provided relational context (e.g., “on gravel”), while
GAP revealed that the bounding box sizes were inconsistent with the perceived scale. This discrepancy allowed
the large model to correctly infer that the trunk was not on the right side of the person. This case highlights how
GAP’s geometric data serves as a critical anchor for resolving visual ambiguities, while GRP contextualizes the
scene’s relational structure.

Together, these case studies demonstrate the complementary strengths of GAP and GRP. GAP provides precise
geometric information critical for accurate absolute positioning, while GRP captures essential relational dynam-
ics between entities. When fused within the PGPL framework, these inputs enable the large model to achieve
high-order spatial reasoning, even in complex or deceptive visual scenarios. The ability to handle ambiguous con-
texts, incomplete data, and challenging visual environments makes the PGPL framework a versatile and robust
enhancement for MLLMs. This capability is particularly significant for applications requiring advanced spatial
understanding, such as autonomous driving, robotic navigation, and multimodal question answering. The results
reaffirm the effectiveness of PGPL in elevating spatial reasoning across diverse and challenging tasks.

4.3 Ablation studies

4.3.1 Performance analysis

We conducted a comprehensive set of ablation experiments using two different baseline models, BLIP-2-12B and
LLaVA-13B, to validate the effectiveness of GAP, GRP, and their combined application (GAP + GRP, PGPL
framework). The prompt designs and the corresponding ablation experimental results for these tests are detailed
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Table 2 Design details of prompt for multidimensional information fusion in ablation analysis.

Model Prompt design
The targets along with their geometric absolute positions in the image are as follows: Entityq : (t’l‘ R yf,
Baseline model + GAP «f, y{) ,,,,, Entityy, : (=}, v}, z;;, y;;). Please answer the following questions based on the above infor-
mation and the image itself: QUESTION, and directly tell me the answer that you think is correct.
The scene in the image has the following relationships (ep1,71,€¢1)s - - -, (ep > Tz, etz). Please answer
Baseline model + GRP the following questions based on the above information and the image itself: QUESTION, and directly
tell me the answer that you think is correct.
The scene in the image has the following relationships (ef,1, 71, €41), - - -, (¢h=-7=z,ctz), and the targets
Baseline model + GAP along with their geometric positions are as follows: Entityq : (], y], TLoY ) Entityy, : (zz, y;;, zL,

+ GRP (PGPL) ylt) Please answer the following questions based on the above information and the image itself:

QUESTION, and directly tell me the answer that you think is correct.

Table 3 Ablation analysis on the MME and MM-Vet datasets, using BLIP-2-12B and LLaVA-13B as baseline models. Blod indicates the best
performance, while 1 denotes the percentage of performance improvement over the baselines.

Model Position Spatial
BLIP-2-12B [3] 73.33 16.2
BLIP-2-12B + GAP 78.36 (16.9%) 18.8 (116.0%)
BLIP-2-12B + GRP 80.48 (19.6%) 19.6 (121.0%)
BLIP-2-12B 4+ GAP 4 GRP 87.54 (119.4%) 20.1 (124.1%)
LLaVA-13B [2] 133.33 24.3
LLaVA-13B + GAP 143.33 (17.5%) 24.8 (12.1%)
LLaVA-13B + GRP 143.33 (17.5%) 25.4 (14.5%)
LLaVA-13B + GAP + GRP 153.33 (115.0%) 26.5 (18.6%)

in Tables 2 and 3, and Figure 5, respectively.

Focusing on the MME dataset’s position task, integrating GAP with BLIP-2-12B led to a 6.9% improvement in
the score, from 73.33 to 78.36. In comparison, LLaVA-13B showed a 7.5% increase, from 133.33 to 143.33. The
GAP mechanism effectively provides precise location anchors for each object, mitigating the ambiguity in absolute
object positioning and significantly enhancing the model’s ability to discern individual spatial attributes. Further,
the incorporation of GRP with BLIP-2-12B and LLaVA-13B achieved a 9.6% and 7.5% score increase for the
position task, respectively. GRP excels in modeling intricate spatial relationships among objects, particularly in
complex multi-object scenarios. It enhances the model’s ability to infer relative spatial dynamics, complementing
the GAP mechanism. The synergistic effect of combining both GAP and GRP with BLIP-2-12B resulted in a
significant 19.4% improvement, from 73.33 to 87.54. A similar fusion approach with LLaVA-13B yielded a 15.0%
enhancement, from 133.33 to 153.33. These results highlight the complementary nature of GAP and GRP: GAP
provides absolute positional anchors, while GRP focuses on the relational geometry, together enabling a multi-scale
spatial understanding. Trends observed on the MM-Vet dataset were paralleled on the MME dataset, with varying
degrees of improvement, which affirms the adaptability and effectiveness of our PGPL framework across different
spatial awareness tasks.

We further substantiate the efficacy of the GAP and GRP information proposed in our method through qualitative
experimental results, as depicted in Figure 5. In scenario (1), the existing BLIP-2-12B model fails to accurately
discern the spatial relationship between the white mouse and the black keyboard, incorrectly predicting that the
white mouse is to the left of the black keyboard. However, by employing a spatial position generation model, we
accurately capture the detailed categories and geometric absolute positions of all mice and keyboards in the image,
enabling the model to correctly determine that the white mouse is on the right side of the black keyboard. In
scenario (2), the existing BLIP-2-12B model cannot correctly identify the spatial relationship between the sheep
and the tree, suggesting that the sheep is not in front of the tree. In contrast, our scene graph generation model
accurately captures the geometric relative position information related to the sheep and trees in the image, thereby
assisting the model in making the correct inference that the sheep is indeed in front of the tree.

4.3.2 Inference time analysis

To address the potential computational overhead introduced by PGPL, we conducted extensive experiments across
six representative models, including MiniGPT-4-14B, BLIP-2-12B, LLaVA-13B, Kosmos-2, GPT4Rol, and Shikra.
Our analysis reveals that while PGPL avoids incremental training, the additional modules (GAP and GRP) in-
troduce a modest increase in inference time. Specifically, the average total response time increases by 17.2% in
the default serial mode. However, by implementing parallel preprocessing techniques (where TEE, GAP, and GRP
operations are executed concurrently), this overhead is significantly reduced to 8.3%, demonstrating the efficiency
of our approach.

To provide a detailed breakdown, we analyze GPT4Rol as a representative case. The baseline model exhibits a
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Figure 5 (Color online) Visual results from ablation studies highlighting the effectiveness of our model in discerning spatial relationships.

response time of 4289 ms, which increases to 5265 ms when PGPL is integrated in serial mode. The time distribution
across PGPL stages is as follows:

e TEE: 4% (210 ms);

e GAP: 6% (316 ms);

e EM; (first entity matching): 1% (53 ms);

e GRP: 7% (369 ms);

e EM; (second entity matching): 1% (53 ms);

e Model inference: 81% (4264 ms).

Notably, the majority of the overhead is attributed to GAP and GRP (13% combined), while entity matching
(EM; and EM3) contributes minimally (2%), indicating that the PGPL pipeline is efficiently implemented. This
8.3% average time increase is a reasonable trade-off given the significant performance improvement, making PGPL
highly practical for real-world applications.

Furthermore, we believe that future optimizations could significantly enhance the module’s efficiency, reduce
response times, and improve system real-time performance and user experience. For instance, replacing GAP and
GRP with lightweight expert models could reduce their time contribution by 30%-50%, while leveraging GPU-
optimized libraries for parallel preprocessing could further reduce computational overhead.

4.4 The impact and selection of pre-trained models in the PGPL framework

Our experimental results demonstrate that the SPG and SGG models in the PGPL framework significantly improve
the spatial awareness capabilities of MLLMs. Building on this evidence, we investigate two critical questions
regarding pre-trained models. (1) Does a more powerful pre-trained model correlate with better overall performance?
(2) Is the performance increase worth compared to the number of parameters introduced by the pre-trained model?

The experimental results examining the relationship between the performance of pre-trained models and overall
effectiveness are presented in Table 4 [3,60,68,86-88]. For spatial position generation models (SPG, rows 3-6), there
is a clear trend observed: from Faster R-CNN 50 to Co-DETR, as the pre-trained model’s strength increases, there
is a corresponding enhancement in overall performance for both position and spatial awareness tasks. Similarly, for
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Table 4 Impact of SPG and SGG models with varying performance on the PGPL framework.

Model Position Spatial
BLIP-2-12B [3] 73.33 16.2
BLIP-2-12B + Faster R-CNN 50 76.67 17.5
BLIP-2-12B + Faster R-CNN 101 78.36 18.8
BLIP-2-12B + Faster R-CNN 152 81.67 19.7
BLIP-2-12B + Co-DETR [60] 81.67 20.8
BLIP-2-12B + VCTree [86] 76.67 17.8
BLIP-2-12B + MOTIFS [87] 76.67 18.3
BLIP-2-12B + GPSNet [88] 76.67 19.1
BLIP-2-12B + PSG [68] 81.67 19.6

Table 5 Comparative results of different types of spatial position generation models (object detection with Faster R-CNN, instance segmen-
tation with ISBNet, FastInst, etc.).

Model Position Spatial

BLIP-2-12B [3] 73.33 16.2
BLIP-2-12B + Faster R-CNN 101 78.36 18.8
BLIP-2-12B + Faster R-CNN 152 81.67 19.7
BLIP-2-12B + ISBNet [93] 75.00 19.1
BLIP-2-12B + FastInst [94] 78.36 18.6
BLIP-2-12B + YOSO [95] 81.67 18.1
BLIP-2-12B + ODISE [62] 81.67 18.4

scene graph generation models (SGG, rows 7-10), ranging from VCTree to PSG, an augmentation in the pre-trained
model’s abilities leads to continuous improvements in overall performance. Hence, the more powerful the pre-trained
model, the more accurate the spatial awareness outcomes and the greater the increase in performance.

We investigate the correlation between the number of parameters and performance improvements in the PGPL
framework, focusing on the SPG model Co-DETR and the SGG model PSG. Co-DETR adds 348 M parameters,
a 2.9% increase from the BLIP-2-12B baseline, and improves performance by 11.4% in position and 28.4% in
spatial awareness tasks. PSG, introducing 603 M parameters (5.0% increase), enhances performance by 11.4%
in position and 21.0% in spatial awareness tasks. These results indicate that performance benefits significantly
outweigh the parameter count increase. Furthermore, the adoption of lightweight pre-trained models [89,90] can
reduce the number of parameters while preserving the accuracy of geometric spatial information. Crucially, our
method enhances spatial awareness without the need for retraining the MLLM, thereby effectively utilizing existing
models to address spatial challenges.

4.5 Space position generation model analysis

We have established selection criteria for space position generation models and verified their impact on overall
performance. Based on overall needs, the selected model must satisfy two essential criteria; (1) the model must
accurately capture the type information of entities within images; (2) the model must precisely generate the detailed
position information of the corresponding entities. Taking image segmentation models as an example, semantic
segmentation models cannot meet these requirements because they generate a label for each pixel, assigning the
same label to entities of the same type, thus being unable to distinguish between different entities. However, instance
segmentation [91] and panoptic segmentation [92] models can meet these requirements.

We validated the performance of different spatial position generation models, including object detection and
instance segmentation. As detailed in Table 5 [3,62,93-95], we compared the results of using instance segmenta-
tion models, which capture a quadrilateral of an object from 4 points, against object detection models that also
obtain quadrilateral spatial positions. The results indicate that both model types can enhance MLLM performance
in spatial awareness. Consequently, researchers are encouraged to explore additional spatial position generation
techniques, such as panoptic segmentation and depth estimation algorithms, to further their research objectives.

We further investigate instance segmentation models. Our objective was to ascertain the optimal number of seg-
mentation points that would facilitate the most accurate segmentation without superfluous computational overhead.
As depicted in Figure 6, we conducted a thorough assessment of several leading instance segmentation models (ISB-
Net [93], FastInst [94], YOSO [95], and ODISE [62]) across the position and spatial awareness tasks in the MME and
MM-Vet datasets, respectively. A methodical examination of these models, utilizing varying segmentation points
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Figure 7 (Color online) Experimental results on six core vision-language tasks in the MM-Vet dataset.

(4, 6, 8, and 10), revealed a consistent trend: optimal performance was achieved with 8 segmentation points. This
finding underscores a point of diminishing returns where additional segmentation points cease to yield proportional

performance improvements. Thus, the 8-point setup is identified as the most efficient, offering a balance between
accuracy and computational efficiency.

4.6 Scalability of the PGPL framework

In addition to evaluating the PGPL framework’s performance on two tasks specifically designed to assess spatial
awareness, we also tested its effectiveness across a significantly broader range of tasks. This evaluation includes
six core visual-language tasks within the MM-Vet dataset (Figure 7), ten perceptual tasks in the MME dataset
(Table 6), as well as traditional tasks such as referring expression comprehension and image captioning (Table 7).

The experiment results on the MM-Vet dataset are illustrated in Figure 7. It is evident from the figure that
our method, using BLIP-2-12B and LLaVA-13B as baseline models, achieves significant improvements in the first
five core visual-language tasks. For instance, in the recognition and OCR tasks, our method shows an increase of
6.9% and 11.9%, respectively, over LLaVA-13B. The lack of improvement in the math task can be attributed to our
method not including enhanced abilities for mathematical computation.

The experiment results on the MME dataset are shown in Table 6. The results indicate significant performance
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Table 6 Performance on ten tasks in the MME dataset. ‘exist’ denotes existence, ‘celeb’ for celebrity, and ‘art’ for artwork. Blod indicates
our method’s performance surpasses the baseline.

Model Exist Count Position Color Poster Celeb Scene Landmark Art OCR
BLIP-2-12B [3] 160.00 135.00 73.33 145.00 141.84 105.59 145.25 137.25 136.50 110.00
Ours (BLIP-2-12B) 168.00 140.00 87.54 148.33 141.84 105.59 147.98 138.00 136.50 125.00
LLaVA-13B [2] 185.00 155.00 133.33 170.00 160.54 152.94 161.25 170.50 117.75 125.00
Ours (LLaVA-13B) 190.00 160.00 153.33 180.00 160.54 152.94 164.50 172.25 117.75 140.00

Table 7 Performance of our PGPL framework on referring expression comprehension and image captioning tasks. The bolded values represent
the results after using the PGPL framework.

RefCOCO RefCOCO+ RefCOCOg X
Model Flickr30k
Val TestA TestB Val TestA TestB Val TestA

BLIP-2-12B [3] 55.8 60.9 49.7 47.6 52.8 44.9 62.3 63.4 79.1

Ours (BLIP-2-12B) 58.1 62.9 51.4 49.8 54.6 46.4 64.6 65.8 80.7
General MLLMs

LLaVA-13B [2] 88.1 92.3 82.0 83.5 88.4 75.2 83.0 84.1 74.5

Ours (LLaVA-13B) 89.5 93.6 83.8 85.1 89.9 76.9 84.7 85.5 76.0

Kosmos-2 [32] 52.3 57.4 47.3 45.5 50.7 42.2 60.6 61.7 77.8

Ours (Kosmos-2) 54.7 59.8 49.3 47.5 52.9 44.2 62.8 63.9 79.2

. GPT4Rol [31] 54.1 59.3 48.8 46.3 51.7 43.5 61.2 62.3 78.4
Specific MLLMs

Ours (GPT4Rol) 56.4 61.5 50.6 48.4 53.8 45.6 63.5 64.7 80.1

Shikra-13B [36] 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2 73.9

Ours (Shikra-13B) 89.2 92.4 83.7 84.5 89.1 76.2 84.0 84.5 75.3

enhancements in tasks (existence, count, position, color, scene, landmark, and OCR) related to recognition and
scene understanding. For instance, in the color and OCR tasks, our method’s performance achieved improvements
of 5.9% and 12.0%, respectively, over LLaVA-13B. Notably, tasks such as poster, celebrity, and artwork did not see
performance gains, due to our method not incorporating recognition abilities specific to these areas. However, even
without improvements, our method does not degrade the performance of these tasks, as it avoids introducing noise
by not attempting to process unrelated entities.

To evaluate the extensive applicability of our method, we also assessed our model’s performance on more tradi-
tional tasks, with results presented in Table 7. The data reveal that our approach yields significant enhancements
across three referring expression comprehension datasets (RefCOCO, RefCOCO+, RefCOCOg) and one image
captioning dataset (Flickr30k). This improvement is consistent whether applied to general MLLMs (BLIP-2-12B,
LLaVA-13B) or MLLMs enhanced with specific spatial awareness abilities (Kosmos-2, GPT4Rol, Shikra-13B). In
summary, our proposed PGPL framework not only enhances the spatial awareness capabilities of MLLM but also sig-
nificantly improves its performance across a broader range of tasks. Consequently, the PGPL framework establishes
itself as a potent instrument for expanding the versatility and augmenting the overall efficacy of MLLM.

5 Conclusion

We present the PGPL (precise geometric position learning) framework, a novel approach designed to enhance the
spatial awareness capabilities of MLLMs. The PGPL framework leverages pre-trained spatial position generation
models and scene graph generation models to provide both absolute and relative geometric position information
between target entities. By integrating multidimensional spatial information, PGPL enables MLLMs to more
accurately address user queries related to spatial awareness. To validate the effectiveness of our framework, we
conducted extensive experiments on six benchmark datasets, comparing PGPL against five state-of-the-art baselines.
The experimental results demonstrate that PGPL significantly improves the performance of MLLMs in spatial
awareness tasks, underscoring its potential as a robust solution for enhancing spatial reasoning in multimodal
systems. Limitations: when existing pre-trained models are unable to accurately identify target entities in specific
domains, the effectiveness of our framework may be impacted. To address this challenge, we plan to explore
universal strategies for target entity recognition in specific domains in future research. One preliminary strategy
we are considering involves retraining smaller models with a limited amount of domain-specific data. Broader
impact: this study highlights the potential of integrating pre-trained smaller models with large-scale MLLMs to
achieve task-specific performance enhancements in a cost-effective manner. By demonstrating the efficacy of this
hybrid approach, we aim to inspire further research into leveraging smaller, domain-specific models to augment
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the capabilities of large multimodal systems. We believe that our work opens new avenues for improving spatial
awareness and related tasks in MLLMs, with potential applications in fields such as robotics, autonomous navigation,
and human-computer interaction.
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