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Abstract Self-supervised graph representation learning has received significant attention by virtue of tackling the label scarcity issue
in graph data. However, prior methods underutilize graph structures with multiple forms and subgraph structures at different scales,
thus failing to deeply explore the diversity and complexity of graph data. In this paper, we present a novel multi-topology contrastive
graph representation learning (MCGRL) framework, which aims to improve the effectiveness of node representation learning by captur-
ing multi-granularity information in different topologies. Specifically, we generate multiple topologies from different viewpoints and then
contrast the learned multi-granularity node representations in different topologies to preserve the rich multi-topology interactions and
complementary information. Drawing upon an in-depth scrutiny of the classical Intersection over Union, we propose a subgraph-level sim-
ilarity constraint (SIoU) to explore the semantic consistency among multiple topologies and dynamically characterize different-granularity
subgraph information. Empirical experiments on real-world datasets demonstrate the effectiveness of our proposed method compared
with current state-of-the-art methods.
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1 Introduction

Recently, graph neural networks (GNNs) [1-3] have been widely adopted in efficiently modeling graph-structured
data and play a paramount role in practical application scenarios, such as finding interpersonal relations in a
social network [4], calculating drug similarities in drug discovery [5], and predicting congestion in a transport
network [6,7]. Most existing GNNs adopt a supervised or semi-supervised learning paradigm that leverages labeled
information within graph data to complete specific downstream tasks [8]. However, labeled graph data are not only
expensive and labor-intensive to collect in the real world, but also require high-quality annotation. For example,
manual annotations of user relationships in social networks and protein-protein interactions in biological networks
require substantial labor and time [9,10]. As a result, supervised or semi-supervised approaches exhibit significant
limitations in practical applications.

To alleviate these problems, self-supervised graph representation learning, particularly graph contrastive learning,
has attracted widespread attention because of its remarkable performance on a spectrum of graph tasks [11]. Deep
graph infomax (DGI) [12] is a pioneering approach in graph contrastive learning that relies on maximizing the
mutual information [13] between node representations and corresponding graph-level representations. GRACE [14]
focuses on contrasting views at the node level and promotes consistency between node representations in two
augmented views. Motivated by BYOL (bootstrap your own latent) [15], bootstrapped graph representation learning
(BGRL) [16] introduces a self-supervised graph representation learning approach that eliminates the necessity
for negative pairs. Based on DGI and multi-view graph representation learning (MVGRL) [17], Graph group
discrimination (GGD) [18] presents a novel learning paradigm that can directly discriminate between different
groups of node samples instead of maximizing the mutual information between similar instances, as in the above
methods.

Despite significant advances in graph-contrastive learning, the following drawbacks exist. During the data col-
lection process, acquisition devices, environmental conditions and so on may introduce noise, deformations, and
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other impacts into the obtained data, leading to partial information loss. Although numerous contrastive learning
methods employ data augmentation to mitigate information loss and enhance model generalization capabilities, aug-
mented graphs do not guarantee semantic consistency with the original graphs. Meanwhile, the lack of consideration
of associations between graph topologies from different perspectives hampers the mining of potential information
within multiple topologies, resulting in an inadequate characterization of graph data, making it challenging to
deeply explore the diversity and complexity present in graph data.

To address these issues, we introduce a novel multi-topology contrastive graph representation learning (MCGRL)
method. The main idea is to contrast the multi-granularity information that exists in diverse topologies to achieve
efficient representation learning for unlabeled graph data. First, we generate different types of topologies represent-
ing different views of the graph. By synthesizing insights from diverse perspectives, it not only compensates for
deficiencies within each viewpoint but also comprehensively captures the diversity of the graph structure. Then,
a global node representation learning module consisting of an online encoder and a target encoder is developed
for each view to capture the global structure information in multiple topologies. To further explore the semantic
consistency among multiple topologies, a subgraph-level similarity constraint (SIoU) is proposed that leverages
pseudo-labels assigned through a classical clustering method to dynamically regulate intra-class compactness and
inter-class separation. By adjusting the structural relationships among nodes, SIoU facilitates the adaptive forma-
tion and continuous optimization of subgraph structures, thereby enhancing the quality of learned representations.
Subsequently, the refined subgraph connectivity is fed into a shared graph neural network that learns local node
representations by aggregating neighborhood information within the adjusted subgraph structure and ensures that
fine-grained local dependencies are effectively preserved. Finally, we construct a multi-topology contrastive graph
representation learning loss to learn the final node representations with semantic coherence from diverse views.
Contrastive loss enforces semantic coherence across multiple views, ensuring that nodes with similar semantics re-
main close while maintaining sufficient discrimination between distinct clusters. MCGRL effectively captures both
local and global structural information across multiple topologies and yields discriminative node representations.

In summary, we make three contributions.

e We propose a multi-topology contrastive graph representation learning method that aims to effectively extract
global and local information from multiple views.

e A subgraph-level similarity constraint named SIoU is designed to systematically explore the intrinsic interaction
information among diverse topologies and extract the semantic consistency preserved node representations.

e We demonstrate the superiority of MCGRL by theoretical analysis. Furthermore, extensive experiments con-
ducted on a series of benchmark datasets show that our method achieves superior or comparable results to state-
of-the-art self-supervised graph representation learning methods.

The remainder of this paper is organized as follows. In Section 2, we review related work. In Section 3, the
technical details of our proposed framework are introduced, and we provide a theoretical analysis of the expressive
power of MCGRL in Appendix B. Section 4 presents the experimental results, and Section 5 concludes the paper.

2 Related work

2.1 Multi-topology learning on graphs

In the real world, graph structures with varying topologies exhibit distinct relationships among nodes. Generating
node representations within a multi-topology learning framework allows us to capture more comprehensive graph
information, which is crucial for various graph-related machine-learning tasks. Recently, multi-dimensional graph
convolutional networks (mGCN) [19] delve into the varying interactions among nodes across dimensions and the
intrinsic connections for the same node in different dimensions. Adaptive multi-channel graph convolutional net-
works (AM-GCN) [20] note that the capacity of graph neural networks to fuse topological structures and node
features falls short of an optimal or satisfactory level and propose an adaptive fusion mechanism to improve the
model’s ability to learn effective graph representations and boost performance on node-level tasks. GPS [21] au-
tomatically generates multi-scale positive views using graph-pooling modules, capturing hierarchical information
at different granularities. By incorporating the generated views into a joint contrastive learning framework, GPS
improves the model’s ability to generalize and learn more robust graph representations. Multi-GCN [22] empirically
demonstrates that incorporating multi-view information into the learning process can achieve promising perfor-
mance, demonstrating the advantage of using multiple perspectives of the graph over a single view. Additionally,
MAGCN [23] theoretically further elucidates why multi-view methods surpass single-view methods. Although the
aforementioned methods have undergone rigorous empirical verification or theoretical analysis in multi-topology
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Figure 1 (Color online) Overview of our proposed MCGRL. The graph-level GNNs (GGNN) consisting of GNNg and GNN¢ are designed to
obtain the global node representations from multiple topologies. Then, the local node representations are learned by the subgraph-level GNNs
(SGNN) module, as illustrated in Figure 2. Finally, the entire network undergoes joint optimization via the overall multi-topology contrastive
graph representation learning loss. Here, the number of topologies is set to 3 in this paper for brevity, MLP denotes the projection layer, red
and black arrows represent positive and negative sample pairs, respectively.

learning, most of these approaches are anchored in semi-supervised settings. Under current circumstances, there
remains a dearth of consideration on how to introduce the multi-topology learning paradigm into the domain of
self-supervised graph representation learning.

2.2 Self-supervised graph contrastive learning

As a self-supervised deep learning paradigm for graphs, graph contrastive learning aims to maximize the simi-
larity between positive samples while increasing the dissimilarity among negative samples in graphs. Through
self-supervised graph contrastive learning, we can find a reasonable latent space for all nodes in a graph, which is
similar to subspace clustering [24-27]. Early methods, exemplified by DGI [12], extend the principles of Deep Info-
Max [28] to the graph domain by maximizing the mutual information between local node features and global graph
features, whereas InfoGraph [29] further refines this approach to maximize the mutual information of representations
between the graph-level and different substructure-levels. MVGRL [17] maximizes the mutual information between
cross-view representations of nodes and graphs, further promoting graph representation learning. Most recently,
BGRL [16] has eliminated the need for negative samples by using an exponential moving average (EMA) [15].
Multi-level graph contrastive prototypical clustering (MLG-CPC) [30] introduces an end-to-end clustering frame-
work to alleviate the semantic bias, thereby enabling more effective representation learning. Multi-scale subgraph
contrastive learning (MSSGCL) [31] generates global and local views at different scales using subgraph sampling,
and constructs multiple contrastive relationships based on semantic associations. However, the aforementioned
methods exhibit shortcomings in characterizing the interrelationships and semantic consistency between different
views. Based on the above foundations, we explore in depth the interaction information among topologies and the
correlation between different topologies from the perspective that the same nodes should have the same semantic
characteristics under different topologies.

3 Methodology

3.1 Notations and problem definition

Suppose an undirected graph G = {V, E, A, X }, where V = {v1,...,un} represents the set of nodes in which N is
the number of nodes, & C V x V represents the set of edges where e;; = 1 indicates an edge exists between nodes v;
and vj, otherwise, e;; = 0. A implies the adjacency matrix and X denotes the node feature matrix. Multi-topology
graphs are defined as G = {G1,Ga,...,Gk} where Gy = {V,E* A¥ X*)} and K is the number of topologies.
In this paper, we attempt to learn multi-topology and multi-granularity information-preserving node representa-

tions Z for downstream tasks, such as node classification. The notations used in this paper are illustrated in
Appendix A.
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3.2 Overall framework

As shown in Figure 1, our proposed MCGRL method consists mainly of three components: generation of multiple
topologies, node representation learning, and multi-topology contrastive learning. To characterize the rich topo-
logical structural information in a graph, we first generate multiple adjacency matrices. Subsequently, for each
topology, we design GGNN with an EMA and SGNN to learn the global and local node representations, respec-
tively. To explore the interaction information among multiple topologies, we devise a novel similarity constraint
in SGNN to dynamically characterize semantic consistency. Finally, we introduce the multi-topology contrastive
graph representation learning loss for learning informative and discriminative node representations.

3.3 Generation of multiple topologies

In this subsection, we explore distinct methodologies for generating adjacency matrices from different perspectives,
such as cosine similarity calculation of node attributes, graph diffusion, and edge perturbation. For computational
efficiency, we adopt a strategy in which a node index is randomly chosen from the adjacency matrix, functioning as
the splitting point for cropping the original graph into a standardized subgraph size for batch training. Concurrently,
attribute masking is implemented to improve model generalization.

3.3.1 Cosine similarity of node attributes

By calculating the cosine similarity between node attributes, we derive a similarity matrix S € RV*¥:

XT.x.

S =cos(X,X), sij=oiT (1)
11X

where s;; denotes the similarity score between nodes v; and v;. To generate the topology, the edges for each node
are established by selecting the top m nodes with the highest similarity, where X; denotes the feature vector of
node v;.

3.3.2  Graph diffusion

Graph diffusion is adopted to morph the original graph structure and generate a new topology without compromising
global information and inherent semantics. The general graph diffusion process is defined as [32]:

T = Z i M, (2)
=0

where p is the weighting coefficient controlling the local and global signal distributions subject to Z;’io Wi = 1,
and M € RVXN represents a generalized transition matrix derived from the adjacency matrix A. Here, we employ
personalized pagerank (PPR) as an illustrative example of graph diffusion, articulated as follows:

Topr(A) = A1 — (1 = A)D™Y2AD~1/2)=1, (3)

where X\ serves as a parameter governing the teleport probability in a random walk, and D and I represent the
degree and identity matrices of A, respectively.

We refrain from providing an exhaustive discussion of other topics such as edge perturbation, subgraph sampling,
and attribute masking. Interested readers are encouraged to explore the relevant literature and its references for a
detailed understanding of topology generation techniques [33-35].

3.4 Node representation learning

To obtain multi-granularity node representations, we first extract the global node representations from GGNN with
an exponential moving average for each topology. The node representation matrix learned by GNNy is defined as
H* = GNNy(A*, X*) and that learned by GNN¢ is Z¥ = GNN¢(A*, X*), where k represents the k-th topology and
ke [l,...,K]. GNNg and GNN¢ comprise a GNN layer followed by a linear layer, and the parameters of GNN,
are updated via EMA.

To investigate the interconnectivity and semantic consistency among multiple topologies, we present an SGNN
module aimed at extracting the local information of different topologies, as depicted in Figure 2. The spe-
cific procedure unfolds as follows. We first assign pseudo-labels to each node via a clustering approach to the



Xie Y, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122102:5

m:.p,m G, zH K

%
e
P

m Eun)
SloU
| Delete edge SloU cluster N cluster)
A4 ———
0O 0 e o cluster® U cluster)
m_m} 3
Gk O% D:D._../\glj] cluster;" ﬂclusterj‘Z
1 mm T TEEr—
O Add edge v om clusterj"' U clusterfl
Node Subgraph Subgraph Local nOQe cluster; ® clusterj
assignment generation embedding representations

Figure 2 (Color online) Architecture of SGNN. Pseudo-labels are assigned to nodes via the clustering algorithm and constrained by SIoU,
which drives the construction of a new adjacency matrix that will be input to a shared GNN for learning the fine-grained node representations.
The diagram on the right provides a detailed illustration of the computational procedure for SIoU.

node representations H learned from GNNpy, which can partition the nodes into |C| distinct clusters, denoted as
C = {clustery, clusters, . . . ,cluster|c|}, where each cluster represents a set of nodes with similar feature-based char-
acteristics. Next, we compute the pairwise similarity between nodes as s;; = sim(h;, h;) and use it as a criterion for
performing edge modifications. Specifically, for nodes belonging to the same pseudo-label cluster, the existing edges
are preserved and additional edges are introduced between node pairs with high similarity to enhance the connec-
tivity of the corresponding subgraph. This step ensures that nodes within the same cluster remain well-connected,
thereby strengthening the intra-cluster relationships.

1, A;j =1 and cluster(v;) = cluster(v;),
A;j = 0 and cluster(v;) = cluster(v;) 7

and j = argmax;_;sij,
0, otherwise.

For adjacent nodes v; and v;, where A;; = 1 but with different pseudo-labels, that is, cluster(v;) # cluster(v;),
we apply an edge-pruning operation. In this step, edges are removed if their similarity s;; < €, because such weak
connections may introduce noise. After completing these edge operations, we obtain the final refined adjacency ma-
trix A4, which better reflects the intrinsic cluster structures, while maintaining the essential connectivity properties.
We can then update the node representations for the k-th topology using a shared graph neural network as

= GNN,, (A%, H"). (5)

To ensure semantic consistency during the clustering process for different topologies, we introduce a novel SToU
metric based on the intersection and union operations of their clustering results, which is inspired by the classical
Intersection over Union in object detection [36]. For the i-th cluster in the ki-th topology and the j-th cluster in
the ko-th topology, their SIoU score is defined as

& & cluster ﬂcluster
SloU(cluster;*, cluster?) =

(6)

cluster U cluster

For any cluster, its corresponding cluster in another topology is defined as the cluster that has the highest SIoU
score with it. Then, SIoU is explored to constrain the semantic consistency between different topologies as follows:

i i dist(Z (cluster®), Z (cluster;ﬁC2 )
Lsiou(Z (cluster;"), Z(cluster;?)) = —log el - s (7)
Z | dist(Z (cluster;" ), Z(cluster,?))

IC|
1
Ls1oU = TE D0l Z Z Lstou(Z(clustert), Z(cluster?z)), (8)
ka=1,ko#ky i=1
where clusterf2 is assumed to be the corresponding cluster of clusteri-Cl in the ko-th topology (k2 = [1,..., K] and

ko # ky) for brevity, and the subgraph representation Z(-) € R¥*! for a cluster is calculated by

Z(cluster®) = readout(H* (cluster?)), (9)
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where H* (cluster ) denotes the node representation matrix of the i-th cluster in the k-th topology. d refers to the
dimension of representations, and readout(-) is a pooling function, such as the average pooling [37].

Finally, we obtain the multi-granularity node representations by weighting the global and local node representa-
tions for the k-th topology and projecting them through an MLP layer:

ZF = MLP(nH" + (1 —n)H"), (10)

where 7 is a hyperparameter ranging from 0 to 1.

3.5 Multi-topology contrastive learning

To preserve the complex associations and differences in multiple topologies, we conduct multi-topology contrastive
learning, whose loss includes Lyp1 and Lypo.

Lyip1 contrasts the multi-granularity node representations from one topology with the global node representations
obtained by GNN¢ from other topologies.
exp(sim(zF1, 2+2))

v?v1

Lyip (vi) = — log

11
S exp(sim(z8!, 282)) ()

where zF1 € Zk1 Zk2 k2 ¢ Zk2 Because our study involves multiple topologies for graph contrastive learnin , the
v y p polog grap g

’U » v

final formula for Lyp1 is formulated as follows:

K

1
Lyvpl = ————— £k1k2 (12)
K(K B 1)N kl_LZkzikl ; o

Lyipo contrasts the multi-granularity node representations within the same topology or between different topolo-
gies. We start with intra-topological contrastive learning, which designates other nodes within a topology as negative
samples and introduces the same nodes from different topologies as positive samples.

exp(sim(zF1, 252))

v; Y YU

L2 (v;) = —log

intra exp(slm(zm ) Zm 7))+ (b
: (13)
o= 3 explsim(zh, 2k,
J=1,j7#i

where ¢ represents the similarity summation of all negative pairs computed for node v; within the same topology.
Then, similar to Lyp1, inter-topological contrastive learning is defined as

exp(sim(zk1, 2F2))

Ly (v;) = —log N (14)
e Zjv 1 exp(sim(zp?, szf))
By integrating inter- and intra-topological contrastive learning, we can calculate the Lyps loss:
1 K N
kik k1k
Lypz = KE-1N SO Ll ) + Lz (). (15)
k1=1,ko#k; i=1

Finally, the overall objective function for our multi-topology contrastive graph-representation learning can be
expressed as follows:

L = alypr + (1 — o) Lyp2 + BLs10U, (16)

where o and ( are hyperparameters for balancing the multi-topology contrastive loss and semantic consistency loss.
Appendix B provides a rigorous mathematical analysis of the expressive power of MCGRL via information theory
and examines the factors contributing to its superior performance over traditional graph contrastive representation
learning methods.
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Table 1 Statistics of the datasets.

Dataset #Nodes #Edges #Content words #Features #Classes #Label rate #Testing nodes
Cora 2708 5429 3880564 1433 7 0.052 1000

CiteSeer 3327 4732 12274336 3703 6 0.036 1000

PubMed 19717 44338 9858500 500 3 0.003 1000

4 Experiments

This section describes the experimental setups. We then compare the proposed method with ten advanced models
in semi-supervised and self-supervised learning settings to evaluate its performance. Subsequently, we perform a
parameter sensitivity analysis and an ablation study. Finally, the learned representations are visualized to validate
the performance of our method intuitively, as provided in Appendix C.

4.1 Datasets

Three widely used benchmark datasets are adopted: Cora, CiteSeer, and PubMed citation networks [38], where
nodes represent publications and edges correspond to citation relationships. The statistical results for these datasets
are presented in Table 1.

e Cora. Cora contains a number of machine learning publications, in which each publication cites at least one
other paper, or is cited by another publication. This citation network includes seven classes corresponding to case
based, genetic algorithms, neural networks, probabilistic methods, reinforcement learning, rule learning, and theory.
We select about 5.2% of the nodes in this dataset for training.

e CiteSeer. CiteSeer contains scientific publications grouped into six classes: agents, artificial intelligence,
database, information retrieval, machine language, and human-computer interaction. Each publication is repre-
sented by a 0/1-valued vector. We select about 3.6% of the nodes in this dataset for training.

e PubMed. PubMed contains diabetes-related scientific publications in three classes. Each publication is repre-
sented by a term frequency-inverse document frequency vector. We select about 0.3% of the nodes in this dataset
for training.

4.2 Experiment setup

In our framework, we set the dimensions of node representations to 512. During the node allocation process, the
K-Means algorithm is employed to cluster the global node representations, with the number of clusters set to the
actual number of classes. Finally, we aggregate the multi-granularity node representations obtained from different
topologies and train a linear classifier in a semi-supervised setting. For the Cora, CiteSeer, and PubMed datasets,
we randomly select 20 nodes from each class to train the linear classifier, while using 1000 nodes to test the results.
During the evaluation phase, each experiment is repeated 20 times and the model’s performance is evaluated based
on the average classification accuracy. For all experiments, we train our framework using the Adam Optimizer [39]
with an initial learning rate of 3e—4.

Running environment. The MCGRL framework is implemented on the PyTorch platform with 3 NVIDIA GeForce
RTX 3090 and conducted on a Linux server with a 24-core Intel CPU, 125.7 GB RAM and 72 GB GPU memory.
The operating system is Ubuntu 18.04.6 LTS.

4.3 Comparison with state-of-the-art baselines

We compare MCGRL with ten state-of-the-art graph representation learning methods, including semi-supervised
methods such as GCN [1] and MAGCN [23], as well as self-supervised methods including DGI [12], GRACE [14],
GMI [40], MVGRL [17], BGRL [16], CCA-SSG [41], GGD [18], and GraphMAE2 [42].

The results, presented in Table 2, demonstrate that our framework achieves either superior or comparable per-
formance across the three node classification benchmarks. Specifically, on CiteSeer and PubMed, MCGRL yields
accuracies of 75.2% and 82.5%, respectively, representing improvements of at least 1.7% and 1.1% over the best-
performing existing methods. The performance of our MCGRL on Cora is similar to that of the state-of-the-art
methods. Overall, these results consistently prove the effectiveness of our MCGRL in node classification, which
can be attributed to the fact that our method comprehensively considers the rich interactions among multiple
topologies and the abundant complementary information between topologies, thereby enabling the learning of more
discriminative representations.
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Table 2 Node classification performance on three benchmarks.

Method Cora CiteSeer PubMed
GCN 81.5 70.3 79.0
MAGCN 84.5 £ 0.2 73.5 £ 0.3 80.6 £ 0.2
DGI 82.3 £ 0.6 71.8 £ 0.7 76.8 £ 0.6
GRACE 81.9 £ 0.4 71.2 £ 0.5 80.6 = 0.4
GMI 82.7 £ 0.2 73.0 £ 0.3 80.1 £ 0.2
MVGRL 83.5 £ 0.4 73.3 £0.5 80.1 £ 0.7
BGRL 82.7 £ 0.6 71.4 £ 0.8 79.6 £ 0.5
CCA-8SG 84.0 £ 0.4 73.1 £ 0.3 81.1 £ 0.4
GGD 83.9 £ 0.4 73.0 £ 0.6 81.3 £ 0.8
GraphMAE2 84.5 + 0.6 73.4 £ 0.3 81.4 £ 0.5
MCGRL 84.6 + 0.1 75.2 £ 0.2 82.5 £ 0.1
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Figure 3 (Color online) Classification accuracy of MCGRL with different o values on three datasets. (a) Cora; (b) CiteSeer;
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4.4 Hyperparameter sensitivity analysis

In this subsection, we delve deeply into the impact of the balancing factors o and 8 on the performance of node
classification tasks utilizing multi-topology contrastive losses. The experimental results, as illustrated in Figures 3
and 4, delineate the trends in accuracy for Cora, CiteSeer, and PubMed datasets as a and 8 vary. Our observations
suggest that appropriately optimizing the ratio between Lyp1 and Lypo losses plays a crucial role in significantly
enhancing the model’s performance. Moreover, controlling 5 within certain bounds significantly enhances the overall
accuracy of the node classification, thus underscoring the importance of maintaining semantic consistency across
multi-topology structures.

We further conduct a careful analysis of the hyperparameter sensitivity for 7, aiming to gain a more compre-
hensive understanding of its critical role in exploring multi-granularity information for multi-topology contrastive
learning. The results in Figure 5 clearly demonstrate that as 7 increases, the model performance gradually im-
proves, reaching an optimal accuracy at n = 0.8. This confirms that balancing the weights between the global and
local node representations contributes to the effective modeling of multi-granularity information, thereby enhancing
the expressive power of our MCGRL. However, our research reveals a significant finding that the introduction of
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Table 3 Ablation study (%) on three datasets.

Method Cora CiteSeer PubMed
MCGRL 84.6 75.2 82.5
MCGRL without SGNN and LsioU 83.5 74.1 81.4
MCGRL without Lsiou 83.8 74.6 81.8
MCGRL without G 83.2 74.2 80.3
MCGRL without G2 84.0 72.6 81.6
MCGRL without G3 81.1 73.8 80.5

excessive global information adversely affects the quality of node representations. This observation emphasizes the
importance of avoiding excessive attention to global information during contrastive multi-topology learning. When
71 is too small, the model performs worse, validating our hypothesis that moderately utilizing local information in
multiple topologies can improve model performance. Overall, by balancing the relationships between global and
local information for multi-granularity node representation learning, the generalization performance of the model
on node classification tasks can be effectively enhanced.

In Figure 6, we observe that as the threshold for deleting edges € increases, the classification accuracy initially
exhibits an ascending trend, followed by a decline. This trend can be attributed to the fact that increasing the
threshold progressively reduces the number of edges between nodes from different categories in the original topology,
leading to the removal of unnecessary edges. As the threshold further increases, some crucial edges are removed,
causing a decrease in the classification accuracy.

4.5 Ablation study

In this subsection, we conduct an ablation study to determine the effectiveness of each component by designing
five variants of MCGRL: without SGNN and Lgi,u, without Lgiou, without the graph after edge perturbation
for the original topology (G1), without the k-nearest neighboring graph (G3), and without the diffusion graph
(G3). The ablation results in Table 3 demonstrate that the removal of any component leads to a decline in model
performance. For instance, the results for CiteSeer reveal that the deletion of Lgj,u decreases performance to
some extent, emphasizing the role of semantic consistency constraints across multiple topologies. When the model
eliminates any topology from different perspectives, a significant performance drop is observed, with classification
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Figure 7 (Color online) Loss curves of our MCGRL with and without Lsiou loss on three datasets, illustrated by the blue and red curves,
respectively. (a) Cora; (b) CiteSeer; (c) PubMed.

accuracy decreasing by approximately —1.0%, —2.6%, and —1.0%, respectively. This underscores the pivotal role of
multiple topologies in graph contrastive learning, and substantiates the effectiveness of multi-topology contrastive
learning in integrating diverse and information-rich topologies to yield discriminative node representations.

Furthermore, we plot the loss curves with and without Lsioy for the three datasets in Figure 7. Compared
to the MCGRL without Lgiou on the lower side, the upper curve exhibits earlier convergence. We attribute this
phenomenon to two primary factors. First, Lg1,u reduces the distance between positive samples by maximizing the
similarity between the representations of same-category subgraphs under different topological structures. Second,
Lsiou further increases the distance between negative samples by maximizing the dissimilarity of different-category
subgraphs under the same topological structure. In summary, Lsiou loss pulls nodes of the same class closer and
pushes nodes of different classes farther apart, facilitating model convergence.

5 Conclusion

In this paper, we devise an innovative multi-topology contrastive graph representation learning framework that
extracts global and local information from diverse topologies to learn multi-granularity node representations. More-
over, the similarity constraint SIoU is designed to systematically explore the intrinsic interaction information among
different topologies. Extensive experiments on real-world datasets demonstrate the superior performance of MCGRL
in node classification.

However, several key issues remain that warrant further investigation. First, the reliance on fixed topology
generation rules may limit its effectiveness in dynamic or complex graph structures. Future work can explore
the incorporation of dynamic graph neural networks or generative adversarial networks to design a more adaptive
dynamic topology generation strategy. Additionally, our study primarily focuses on single-domain graph data
without considering multi-domain or cross-modal graph data. Extending our MCGRL to cross-domain or cross-
modal tasks and using more advanced GNNs as backbones to address more complex scenarios are desirable for
future work.
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