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Appendix A Notation definition

Table A1 Notations for MCGRL.

Notations Descriptions

G An undirected graph G = {V, E, A, X}

g Multi-topology graphs G = {G1,G2,...,Gk}
K The number of topologies

14 The set of nodes in G

V4 A nodev; € V

E The set of edges in G

eij An edge e;; € E between v; and v;

A € RNXN The adjacency matrix of a graph

X Original feature vector of node v;
D The degree matrix of A
I The identity matrix of A

H* e RNX?  The global node representations for the k-th topology
H*® € RVX4  The local node representations for the k-th topology
zk ¢ RN*4  The multi-granularity node representations for the k-th topology

z’,ji € RIx! The multi-granularity node representations for node v; in the k-th topology
Sij The similarity score between nodes v; and v;

S The node similarity matrix

C The number of clusters for each topology

clusteré€ The i-th cluster for the k-th topology

Appendix B Theoretical analysis

Theorem 1. Let fa;caRrr represent our proposed method with multi-topology interaction and semantic consistency among
topolpgies. Let faon denote graph contrastive learning methods based on GCN. From the information theory perspective,
fmcerL can capture more information of G than fgon, leading to H(fypregrr(G)) > H(faen(G)), where H(+) denotes
the entropy function.

Proof. Information theory provides a natural avenue to state the assumption for multi-topology contrastive learning. In
particular, for discrete random variables V4, Vg, and V¢, the conditional mutual information I(V4; Vp|Vc) measures the
degree of shared information between V4 and Vg given V. In multi-topology graph representation learning, considering a
set of topological graphs G, we generate a new topology G from the latent complete space X and incorporate it into G. For
instance, in a scenario where G already contains the topologies G, and Gy, , the newly generated topology G, introduces
additional complementary information and the magnitude of its informative value can be measured as follows

I(X; Gry |Gryr Gy ) = Einfos (B1)
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where €;,, ¢, is a variable larger than zero. Moreover, considering the generation of K topologies G1, ..., Gx from the latent
space X, the information obtained from X can be expressed as follows

K
I(X;G1, .., Gr) = > I(X;Gr|Gr1, -, G1). (B2)
k=1
Similarly, we can have
K
I(X; clusterfl , cluster;Cl s eees clusterlkclfl) = Z I(X; clusterlkcffl |clusterfc{ill, e clusterfl ). (B3)
k=1

While a single topology may inadequately depict X, exploiting the complementary among topologies enables the acqui-
sition of enriched information to effectively characterize the latent complete space X. MCGRL not only considers multiple
topologies generated from different perspectives but also utilizes the information by clustering to generate new topologies
for each topology, which enables the capture of richer and different-granularity information. Hence, fyscqrr can capture
more information about X than fgcon, so we can obtain that

H(G) > H(fmoerre(G)) > H(faen(G)). (B4)

Theorem 2. After sufficient training, fascarr can acquire node representations that preserve more information
associated with Y through multi-topology contrastive learning, i.e. I(farcorrn(G);Y) > I(faon(G);Y), where Y € R*X1
is the label matrix of nodes in G.

Proof. According to Theorem 1, we can obtain H(fyprccorr(G)) > H(faen(G)), so

I(fmcerr(G);G) > I(facon(G); G), (B5)

I(fmMmcarro(G); G) = I(fmcarL(G); G, ) + I(fucarL(G); GIGr, ). (B6)

The objective function £ incorporates both the multi-topology contrastive loss and the semantic consistency loss, in which
the multi-topology contrastive loss attempts to maximize the consistency for positive pairs of node-level representations
between any two topologies, and the semantic consistency loss aims at maximizing that of subgraph-level representations
between any two topologies. Additionally, GraphCL [1] theoretically demonstrates that minimizing the InfoNCE based graph
contrastive loss is equivalent to maximizing the lower bound of the mutual information between latent representations of two
topologies, which can be regarded as a form of maximizing mutual information between latent representations. Therefore,
optimizing the objective function £ is equivalent to respectively maximizing the mutual information I(f(Gx, ); f(G,)) for
the node-level representations and subgraph-level representations between any two topologies.

I(f(Gry); Gry) = I(f(Gry); F(Gry)) + I(f(Gry ) Gio | f(Gry))- (B7)

When the objective function £ is optimized, I(f(Gp, ); Gk, |f(Gr,)) approaches its minimum value 0 and I(f(Gy, ); f(Gk,))
also reaches its maximum value i.e. I(f(Gy,);Gg,). This establishes a direct consequence that the maximization of the
objective function £ inherently also results in the maximization of I(f(Gk,); Gg,). This give, I(farcerr(G); G|Gr,) is
infinitely close to its minimum value 0, we have that

I(fmcari(G); G) = I(faoarL(G); Gy ),  I(faon(G);G) = I(faen(G); Gry)- (B8)
By Eq. (B5) and (B8), it is easy to verify that

I(fmcarr(G); Gry) > I(faen(G); Gy ), (B9)
I(fmMoGRrL(G); Gy Gr) > I(faen(G); Grys -5 G, (B10)
I(frmcerL(G); Gry) = I(fmcaorL(G); Gy Y) + I(frmcaro (G); G, |Y) (B11)
=I(fmccre(G);Y) — I(fmcceri(G); Y|Gi,) + I(fmecrL(G); Gk, [Y).
Similarly,
I(fmMcGrL(G); G, IY) = I(frocrL(G); Gy GIY)
< I(fmeari(G); Gy GIY) + I(Gr,; GlY, fmrcarn (G)) (B12)
I(fmMcarL(G); Gy - Gr|Y) < I(Gpy; .- Gr; GY), (B13)

since based on the non-negativity of mutual information, we can have

I(Gr,; GlY, fuccri(G)) 20, (B14)
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I(Gry; -5 Gr; GIY, facero(G)) 2 0. (B15)
By Eq. (B11), (B12),(B13),(B14), and (B15) we deduce

I(frmocri(G); Gr,) = I(fmocrL(G);Y) + I(Gr,; GIY), (B16)

I(fmcari(G); Grys -5 Gr) = I(fmecaro(G);Y) + 1(Gry; - Gk GIY). (B17)

In a similar vein, it can be argued that
I(faen(G); Gry) = I(faen(G);Y) + I(Gry; GIY), (B18)

I(faonN(G); Giys - Gr) ® I(faen (G)Y) + I(Gry; -3 Gr; GIY). (B19)

Based on Egs. (B9), (B10), (B16), (B17), (B18), and (B19), we can verify that
I(fmcerL(G)Y) > I(faen(G);Y). (B20)
We provide a rigorous mathematical analysis of the expressive power of MCGRL by the information theory, which proves

that our method can capture more information. Additionally, we investigate the reasons behind the superior performance
of our proposed method compared to existing graph contrastive learning methods based on GCN.

Appendix C Visualization

[ N -]

Figure C1 t-SNE visualization on Citeseer dataset.

To further validate the performance of MCGRL, we utilize the t-SNE [2] visualization tool to present its node represen-
tation results in 2D layouts. As shown in Figure C1, different colors correspond to distinct class labels within the Citeseer
dataset. It exhibits a clearer classification in the visualization with small intra-class distances and large inter-class distances,
which is attributed to the similarity constraint that brings nodes of the same class closer in different topologies and nodes
of the different classes in the same topology farther. These results further emphasize the advantages of MCGRL in node
classification.
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