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Appendix A Notation definition

Table A1 Notations for MCGRL.

Notations Descriptions

G An undirected graph G = {V,E,A,X}
G Multi-topology graphs G = {G1, G2, ..., GK}
K The number of topologies

V The set of nodes in G

vi A node vi ∈ V

E The set of edges in G

eij An edge eij ∈ E between vi and vj

A ∈ RN×N The adjacency matrix of a graph

Xi Original feature vector of node vi

D The degree matrix of A

I The identity matrix of A

Hk ∈ RN×d The global node representations for the k-th topology

H̃k ∈ RN×d The local node representations for the k-th topology

Zk ∈ RN×d The multi-granularity node representations for the k-th topology

zk
vi

∈ Rd×1 The multi-granularity node representations for node vi in the k-th topology

sij The similarity score between nodes vi and vj

S The node similarity matrix

C The number of clusters for each topology

clusterki The i-th cluster for the k-th topology

Appendix B Theoretical analysis

Theorem 1. Let fMCGRL represent our proposed method with multi-topology interaction and semantic consistency among

topolpgies. Let fGCN denote graph contrastive learning methods based on GCN. From the information theory perspective,

fMCGRL can capture more information of G than fGCN , leading to H(fMCGRL(G)) > H(fGCN (G)), where H(·) denotes

the entropy function.

Proof. Information theory provides a natural avenue to state the assumption for multi-topology contrastive learning. In

particular, for discrete random variables VA, VB , and VC , the conditional mutual information I(VA;VB |VC) measures the

degree of shared information between VA and VB given VC . In multi-topology graph representation learning, considering a

set of topological graphs G, we generate a new topology G from the latent complete space X and incorporate it into G. For

instance, in a scenario where G already contains the topologies Gk1
and Gk2

, the newly generated topology Gk3
introduces

additional complementary information and the magnitude of its informative value can be measured as follows

I(X;Gk3

∣∣Gk2
, Gk1

) ⩾ εinfo, (B1)
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where εinfo is a variable larger than zero. Moreover, considering the generation of K topologies G1, ..., GK from the latent

space X, the information obtained from X can be expressed as follows

I(X;G1, ..., GK) =

K∑
k=1

I(X;Gk|Gk−1, ..., G1). (B2)

Similarly, we can have

I(X; clusterk1
1 , clusterk1

2 , ..., cluster
kK
|C|) =

K∑
k=1

I(X; clusterkK
|C| |cluster

kK
|C−1|, ..., cluster

k1
1 ). (B3)

While a single topology may inadequately depict X, exploiting the complementary among topologies enables the acqui-

sition of enriched information to effectively characterize the latent complete space X. MCGRL not only considers multiple

topologies generated from different perspectives but also utilizes the information by clustering to generate new topologies

for each topology, which enables the capture of richer and different-granularity information. Hence, fMCGRL can capture

more information about X than fGCN , so we can obtain that

H(G) > H(fMCGRL(G)) > H(fGCN (G)). (B4)

Theorem 2. After sufficient training, fMCGRL can acquire node representations that preserve more information

associated with Y through multi-topology contrastive learning, i.e. I(fMCGRL(G);Y ) > I(fGCN (G);Y ), where Y ∈ Rn×1

is the label matrix of nodes in G.

Proof. According to Theorem 1, we can obtain H(fMCGRL(G)) > H(fGCN (G)), so

I(fMCGRL(G);G) > I(fGCN (G);G), (B5)

I(fMCGRL(G);G) = I(fMCGRL(G);Gk1
) + I(fMCGRL(G);G|Gk1

). (B6)

The objective function L incorporates both the multi-topology contrastive loss and the semantic consistency loss, in which

the multi-topology contrastive loss attempts to maximize the consistency for positive pairs of node-level representations

between any two topologies, and the semantic consistency loss aims at maximizing that of subgraph-level representations

between any two topologies. Additionally, GraphCL [1] theoretically demonstrates that minimizing the InfoNCE based graph

contrastive loss is equivalent to maximizing the lower bound of the mutual information between latent representations of two

topologies, which can be regarded as a form of maximizing mutual information between latent representations. Therefore,

optimizing the objective function L is equivalent to respectively maximizing the mutual information I(f(Gk1
); f(Gk2

)) for

the node-level representations and subgraph-level representations between any two topologies.

I(f(Gk1
);Gk2

) = I(f(Gk1
); f(Gk2

)) + I(f(Gk1
);Gk2

|f(Gk2
)). (B7)

When the objective function L is optimized, I(f(Gk1
);Gk2

|f(Gk2
)) approaches its minimum value 0 and I(f(Gk1

); f(Gk2
))

also reaches its maximum value i.e. I(f(Gk1
);Gk2

). This establishes a direct consequence that the maximization of the

objective function L inherently also results in the maximization of I(f(Gk1
);Gk2

). This give, I(fMCGRL(G);G|Gk1
) is

infinitely close to its minimum value 0, we have that

I(fMCGRL(G);G) ≈ I(fMCGRL(G);Gk1
), I(fGCN (G);G) ≈ I(fGCN (G);Gk1

). (B8)

By Eq. (B5) and (B8), it is easy to verify that

I(fMCGRL(G);Gk1
) > I(fGCN (G);Gk1

), (B9)

I(fMCGRL(G);Gk1
; ...;GK) > I(fGCN (G);Gk1

; ...;GK), (B10)

I(fMCGRL(G);Gk1
) = I(fMCGRL(G);Gk1

;Y ) + I(fMCGRL(G);Gk1
|Y )

= I(fMCGRL(G);Y )− I(fMCGRL(G);Y |Gk1
) + I(fMCGRL(G);Gk1

|Y ).
(B11)

Similarly,
I(fMCGRL(G);Gk1

|Y ) = I(fMCGRL(G);Gk1
;G|Y )

⩽ I(fMCGRL(G);Gk1
;G|Y ) + I(Gk1

;G|Y, fMCGRL(G))

= I(Gk1
;G|Y ),

(B12)

I(fMCGRL(G);Gk1
; ...;GK |Y ) ⩽ I(Gk1

; ...;GK ;G|Y ), (B13)

since based on the non-negativity of mutual information, we can have

I(Gk1
;G|Y, fMCGRL(G)) ⩾ 0, (B14)
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I(Gk1
; ...;GK ;G|Y, fMCGRL(G)) ⩾ 0. (B15)

By Eq. (B11), (B12),(B13),(B14), and (B15) we deduce

I(fMCGRL(G);Gk1
) ≈ I(fMCGRL(G);Y ) + I(Gk1

;G|Y ), (B16)

I(fMCGRL(G);Gk1
; ...;GK) ≈ I(fMCGRL(G);Y ) + I(Gk1

; ...;GK ;G|Y ). (B17)

In a similar vein, it can be argued that

I(fGCN (G);Gk1
) ≈ I(fGCN (G);Y ) + I(Gk1

;G|Y ), (B18)

I(fGCN (G);Gk1
; ...;GK) ≈ I(fGCN (G);Y ) + I(Gk1

; ...;GK ;G|Y ). (B19)

Based on Eqs. (B9), (B10), (B16), (B17), (B18), and (B19), we can verify that

I(fMCGRL(G);Y ) > I(fGCN (G);Y ). (B20)

We provide a rigorous mathematical analysis of the expressive power of MCGRL by the information theory, which proves

that our method can capture more information. Additionally, we investigate the reasons behind the superior performance

of our proposed method compared to existing graph contrastive learning methods based on GCN.

Appendix C Visualization

Figure C1 t-SNE visualization on Citeseer dataset.

To further validate the performance of MCGRL, we utilize the t-SNE [2] visualization tool to present its node represen-

tation results in 2D layouts. As shown in Figure C1, different colors correspond to distinct class labels within the Citeseer

dataset. It exhibits a clearer classification in the visualization with small intra-class distances and large inter-class distances,

which is attributed to the similarity constraint that brings nodes of the same class closer in different topologies and nodes

of the different classes in the same topology farther. These results further emphasize the advantages of MCGRL in node

classification.
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