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Abstract Video saliency detection models have been achieving steady, significant improvements thanks to rapid advances in deep

learning and the wide availability of large-scale training sets. However, deep learning-based visual-audio fixation prediction is still in

its infancy. At present, only a few visual-audio sequences have been furnished, with real fixations being recorded in real visual-audio

environments. Hence, it would neither be efficient nor necessary to recollect real fixations under the same visual-audio circumstances.

To address this problem, this paper promotes a novel weakly supervised approach that alleviates the demand for large-scale training

sets for visual-audio model training. By using only the video category tags, we propose the selective class activation mapping (SCAM)

and its upgrade (SCAM+). In the spatial-temporal-audio circumstance, the former follows a coarse-to-fine strategy to select the most

discriminative regions, which are usually capable of exhibiting high consistency with real human-eye fixations. The latter equips the

SCAM with an additional multigranularity perception mechanism, making the whole process more consistent with that of the real

human visual-audio system. Moreover, we distill knowledge from these regions to obtain completely new spatial-temporal-audio (STA)

fixation prediction (FP) networks, enabling broad applications when video tags are unavailable. Without resorting to any real human-eye

fixation, the performances of these STAFP networks are comparable to those of fully supervised networks. The code and results are

publicly available at https://github.com/guotaowang/STANet.
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1 Introduction

In the deep learning era, we have witnessed a growing development in video saliency detection techniques [1, 2],
where the primary task is to locate the most distinctive regions in a series of video sequences. At present, this
research field consists of two parallel research directions, i.e., the video salient object detection (VSOD) and the video
fixation prediction (VFP). In practice, the former [3–5] aims to segment the most salient objects with clear object
boundaries (e.g., Figure 1(b)). The latter [6–10], the main topic of this paper, attempts to predict human-eye-like
fixations—scattered coordinates spreading over the entire scene without any clear boundaries (e.g., Figure 1(a)).

Different from previous work on video saliency detection [1, 11], this paper focuses on two main aspects: i.e.,
(1) exploiting weakly-supervised techniques to generate pseudo-fixations under the visual-audio circumstances, and
(2) using these pseudo-fixations to generate a saliency prediction model. The main focus of this paper is on the
generation of pseudo-fixations. It is worth noting that this topic is still in its early exploration stage.

Visual-audio fixation prediction is a critical task for various video-related applications to help alleviate compu-
tation costs. For example, in the typical video compression application [12], if the compression method has been
chosen, we can use the predicted visual-audio fixations to further beat the trade-off between the compression rate
and the video quality after compression. That is, as shown in Figure 2(a), we shall compress those meaningful video
contents—which are more likely to be highlighted by the predicted fixations—at a relatively low compression rate

*Corresponding author (email: cclz123@163.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4744-5&domain=pdf&date_stamp=2026-1-16
https://doi.org/10.1007/s11432-024-4744-5
info.scichina.com
link.springer.com
https://github.com/ guotaowang/STANet
https://doi.org/10.1007/s11432-024-4744-5
https://doi.org/10.1007/s11432-024-4744-5


Wang G T, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122101:2

Figure 1 (Color online) Overview of our weakly supervised framework for spatial-temporal-audio (STA) fixation prediction. We convert se-

mantic category tags into pseudo-fixations using the proposed selective class activation mapping (SCAM; Section 3) and its enhanced variant

SCAM+ (Section 4), which is additionally equipped with a multigranularity perception module. The resulting pseudo-fixations serve as supervi-

sion for knowledge distillation, training two fixation prediction networks (STA and STA+; Section 5) to enable generic video fixation prediction

without requiring video tags.

Figure 2 (Color online) (a) Applications of visual-audio fixation prediction: video compression [12], surveillance [13], and game auxiliary [14].

(b) Details of class activation mapping (CAM). FC: fully connected layer; GAP: global average pooling. The numbers shown in the classifier

indicate class confidence scores.

to retain their overall visual quality. And, for those less important video contents, e.g., with fewer fixations, we
can compress them with a high compression rate. In this way, we can ensure good overall video quality with less
storage demand. By the way, there are also a bunch of other applications where the visual-audio fixation prediction
is critical, e.g., surveillance [13] and game auxiliary [14].

At present, almost all state-of-the-art (SOTA) visual-audio fixation prediction approaches [1,2,15–17] are devel-
oped with the help of deep learning techniques, using the vanilla encoder-decoder structure, facilitated with various
attention mechanisms, and trained in a fully supervised manner. Despite achieving progress, these fully supervised
approaches are plagued by one critical limitation.

It is well known that a deep model’s performance is heavily dependent on the adopted training set, and cur-
rently, large-scale visual-related training sets are accessible in our research community. However, the visual-audio
circumstance-related training data are rather short since collecting real human-eye fixations in such multimodality
circumstances is a time-consuming and laborious process. To the best of our knowledge, only a few visual-audio
sequences equipped with real fixation data are available for the visual-audio fixation prediction task, where only a
small part of them is recommended for network training, making the data shortage dilemma even worse.

To solve this problem, we seek to realize visual-audio fixation prediction using a weakly supervised strategy.
Instead of using the labor-intensive framewise visual-audio ground truths (GTs), we devise a novel scheme to
produce GT-like visual-audio pseudo fixations by using only video category tags as supervision. Actually, a plethora
of visual-audio sequences with well-labeled semantic category tags already exist (e.g., the AVE set [18]), where most
of them were originally collected for the visual-audio classification task. Note that, from a cost perspective, manually
assigning semantic tags to videos is clearly more favorable than collecting real human-eye fixations. Thus, the key
is how to convert video tags to real-fixation-like data.

Our approach is inspired by the class activation mapping (CAM [19]) that has been used in various object
localization and object detection tasks [13, 20–23]. Our rationale relies on the fact that image regions with the
strongest discriminative power regarding the classification task should be the most salient ones, where these regions
usually tend to have larger classification confidences than others.

As seen in Figure 1(a), considering that we aim at fixation prediction in visual-audio circumstances, we present
two practical innovations in formulating high-quality fixation maps: (1) selective class activation mapping (SCAM)
and (2) SCAM+—an upgraded version of the SCAM. The key rationale of SCAM relies on the “data source” aspect,
which performs a coarse-to-fine strategy to reveal the most discriminative regions from multiple sources (i.e., spatial,
temporal, audio, and their combinations), where these regions exhibit high consistency with the real human-eye
fixations. This coarse-to-fine methodology ensures that the aforementioned less discriminative scattered regions
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are filtered completely, and the selection operation between different sources helps reveal the most discriminative
regions, enabling the pseudo-fixations to be closer to real fixations.

Furthermore, since the human visual-audio system is clearly not independent of our brain, real human eye fixations
are usually influenced by multiple physiological activities, e.g., short-term memory, long-term memory, associative
memory, and semantic reasoning, making our attention mechanism a ‘global’ process in essence [5,24,25]. However,
the proposed SCAM follows a typical ‘local’ mechanism that only considers 3 frames and a 1-second audio signal
at most each time. Thus, we devise the upgraded version of SCAM, named SCAM+, which equips SCAM with
an additional multigranularity perception mechanism to further boost the consistency degree between the derived
pseudo-fixations and real fixations. By using both SCAM and SCAM+, we can automatically convert video tags to
high-quality pseudofixation maps, and thus, theoretically, we can easily expand the existing video fixation training
sets to unlimited sizes. To better highlight the novelty, we pictorially clarify the rationale of our approach in
Figure 1(c).

In addition, to ensure a broad application, we shall use the pseudo-fixations derived by both SCAM and SCAM+
to train end-to-end fixation prediction networks, and this process could be regarded as a variant of knowledge
distillation, where the end-to-end fixation prediction networks are clearly the students. As seen in Figure 1(d), the
whole testing process does not require assigning semantic video tags to the input testing sequence, which enables
the proposed approach to have wide applicability in real work.

This paper builds upon our conference version [26], which has been extended in two distinct aspects. The major
innovations include “a completely new paradigm” to fully mimic real human visual fixations in the visual-audio
environment and a series of novel technical ingredients to achieve this new paradigm. First, a new paradigm
for fully mimicking real human visual fixations in the visual-audio environment. As shown in Figures 1(e) and
(f), we have provided a demonstration regarding the concept difference between our conference version and the
“new version”. In short, our conference version has mainly focused on converting video tags to fixations that
could be somewhat consistent with our visual-audio system, but our new version has additionally combined several
brain-related activities that could influence human-eye fixations in the visual-audio environment, i.e., visual inertia
and associative memory [27]. Our conference version has overlooked the brain-related activities when generating
fixations. This is, of course, not an easy task to be mimicked by computers. Second, from the technical perspective,
our new version has also presented multiple critical innovations that are indispensable for mimicking the real human
visual-audio system. These technical innovations (e.g., C-GCN, a series of reasoning subnetworks, and the multi-
modality decouple and recombine solution) are the plainest ones for achieving our new paradigm mentioned above.
Compared with the previous conference version, our new version can also bring significant performance gains.

We summarize the key contributions as follows.

(1) From the source-wise perspective, we have presented a novel way (SCAM) to convert video tags to fixation
maps, which could be consistent with real human-eye fixations.

(2) Inspired by the physiological mechanism of human attention, we devised an upgraded SCAM version, named
SCAM+, which equips the SCAM with multigranularity perception ability, boosting the derived fixation maps’
quality further.

(3) We provide one of the first attempts to predict visual-audio fixation in a weakly supervised manner, which is
expected to contribute to visual-audio information integration and relevant CV-related applications, paving a new
way to mimic human attention in a multimodality environment.

2 Related work

Video object localization. In video object location [19, 22, 28–30], each training sequence is tagged to a specific
category, representing key objects or events, similar to how human fixations focus on significant areas in videos.
Hence, generating pseudo-fixations from these category tags is theoretically plausible.

From a qualitative perspective, the CAM [19], which has been visualized in the part of Figure 2(b), usually shows
a large feature response to frame regions (i.e., the ‘Deer ’) that has contributed most regarding the classification
task, and these regions usually correlate to the most salient regions. More commonly, the CAM could be quite
different from the real human-eye fixations. Actually, when performing the video classification task, the image
regions with the most substantial contribution to the given category are capable of highlighting the salient object
(i.e., the deer). Following this rationale, several previous studies [28,31] resorted to the CAM for the salient object
localization task. However, the CAM results derived by these methods are different from real human-eye fixations,
and the main reasons comprise the following 3 aspects.

First, since both local and nonlocal deep features contribute to the classification task, the CAMs tend to be
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Figure 3 (Color online) Illustration of the importance of multigranularity perception. We have conducted additional experiments to support

our claim, which can be found in Appendixes C and D.

large scattered regions. For example, as shown in Figure 2(b), the main body of the deer can help the classifier to
separate this image from other nonanimal cases, while only the “deer head” can tell the classifier that the animal
in this scene is a “deer”. Instead of gazing at the “main body”, our human visual-audio system tends to focus more
attention on the most discriminative image regions (e.g., the “deer head”).

Second, most of the existing studies [7, 21, 32] have only considered the spatial information when computing
CAM. However, real human eye fixations are affected by multiple sources, including spatial, temporal, and audio
sources. In fact, this multisource nature has long been omitted by our research community because compared with
the spatial information—a stable source, the other 2 sources (temporal and audio) are still considered to be rather
unstable sources thus far, and this unstable attribute makes them difficult to use for computing CAM. However, in
many practical scenarios, these two sources are often the most beneficial for the classification task.

Third, real human fixation is not completely derived via the physiological reflex, but it is also subtly influenced
by brain, which includes multiple physiological activities, implying that all instant visual stimuli, visual inertia,
associative memory, and semantic reasoning [27] should be considered when performing CAM. For example, as seen
in Figure 3(a), the “road sign” attracts massive eye fixations if only Clip 1 had been shown. However, the “silver
car” could replace the “road sign” as the most salient region if either associative information (Clip X, Figure 3(b))
or long-term information (the early frames in Clip 1, Figure 3(c)) has been given in advance, where the associative
information can be obtained by aligning a video frame from other video sequences sharing an identical video tag
with the target sequence (Clip 1). Therefore, multigranularity perception is called for when resorting to the CAM
to produce high-quality fixations.

3 Selective class activation mapping

In spatial-temporal-audio contexts, encoder-generated feature maps are multiscale, multilevel, and multisource,
contributing jointly to classification. However, naively combining these sources without considering their comple-
mentary interplay can lead to false alarms and redundant responses.

To solve this problem, we propose to decouple the spatial-temporal-audio circumstance into 3 independent sources,
i.e., spatial (S), temporal (T), and audio (A), and these sources will be individually fed into 3 classification nets
(i.e., S, ST, and SA). By performing CAM over these classification nets, we can eventually obtain the source-wise
CAMs. Clearly, this divide-and-conquer strategy can alleviate the redundancy problem effectively; however, to
mimic the real human attention mechanism in spatiotemporal-audio circumstances, we shall “selectively fuse” them
to localize the most discriminative regions. Thus, the key issue here is how to simultaneously achieve a source-wise
complementary status and avoid accumulating redundant feature responses. Therefore, we present the selective
class activation mapping (SCAM) fusion mechanism, whose technical details can be formulated by

SCAM = Z

(∥∥UC⊙UR
∥∥
1
+ λ∥∥UC

∥∥
1
+ λ

)
,

UR :
[
ΦS{i},ΦST{i},ΦSA{i}

]
,UC :

[∮ (
CS{i}

)
,

∮ (
CST{i}

)
,

∮ (
CSA{i}

)]
,

(1)

where ⊙ is the elementwise multiplicative operation; ‖·‖1 denotes the L1-norm; λ is a small constant to avoid any
division by zero; ΦS, ΦST, and ΦSA represent the CAM results derived from S, ST, and SA classification nets,
respectively; Z(·) is the min-max normalization operation. In addition, suppose the pre-given category tag for the
classification network S is the i-th category among c classes, where c = 28. Then we use CS{i} to represent this
confidence, where CS ∈ (0, 1)1×c.

∮
(·) is a soft filter (Eq. (2)) aiming to compress those features of low classification

confidences to be considered when computing the SCAM. The detailed definition of
∮
(·) is as follows:

∮ (
CS{i}

)
=

{
CS{i}, if CS{i} > CS{u}|i6=u,16u6c,

0, otherwise.
(2)
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Figure 4 (Color online) Qualitative illustration of CAMs derived from different sources. ‘Darbuka’: a type of drum that is widely used

in Middle Eastern and North African music. ‘STA (S/SA/ST)-CAM’: CAM obtained from the spatial-temporal-audio (spatial-/spatial-audio-

/spatiotemporal) circumstances. ‘SCAM’ represents pseudo-fixations obtained by (1), where we can easily observe that the results in this column

are highly consistent with the GTs.

Figure 5 (Color online) Our selective class activation mapping (SCAM) follows the coarse-to-fine methodology, where COARSE stage localizes

the regions of interest, and then FINE stage reveals those image regions with the strongest local responses. S: spatial; ST: spatiotemporal; SA:

spatial-audio. The structures of S/ST/SA nets can be found in Figures 7(a)–(c).

3.1 SCAM rationales

Generally, either spatial, temporal, or audio sources could influence our visual attention; however, compared with
the last two, the spatial source is usually more important and stable in practice.

Thus, in our classification nets, the spatial information should be treated as the main force, while the other two
can only be its subordinates. This is the reason why we recombine S, T, and A sources to S (no change), ST, and
SA, respectively.

However, the CAMs derived from these nets are still rather different in essence because their inputs are different,
and we have demonstrated some of the most representative qualitative results in Figure 4.

3.2 Multistage SCAM

To enhance performance, SCAM is applied twice in a coarse-to-fine manner, where the coarse stage narrows the
problem domain, allowing the fine stage to generate pseudo-fixations that better capture discriminative regions. As
shown in Figure 5, the coarse stage localizes pseudo-fixations using a thresholded rectangular box (coarse location)
and crops video sequences into patches. In the fine stage, these patches replace the original sequences as input for
classification networks, where SCAM is reapplied to generate source-wise pseudo-fixations.

3.3 Fusion modules in SCAM

Following the previous studies [16, 33], we have converted audio signals to 2D spectrum histograms Ui in advance,
which are then fed into an off-the-shelf VGGSound FVGGSound to obtain the corresponding deep features (ai =
FVGGSound (Ui)), and similarly, the spatial deep features (si = FVGGNet (Ii)) can be obtained by feeding each video
frame (Ii) to the off-the-shelf VGGNet FVGGNet.

SA fuse module. The primary target of the SA fuse module is to integrate spatial information with audio
signals. We use a series of deconvolutions to convert ai’s size to be identical to that of si. The detailed SA fusion
can be detailed as sai = Relu(σ(DeConv(φ(ai))) ⊙ si + si) ⊗ si, where ⊗ is the feature concatenation operation;
DeConv(·) is the deconvolution operation; ⊙ represents the elementwise multiplicative operation; σ(·) is the sigmoid
function; and Relu is the ReLU function. φ(·) is a “binary switch” (i.e., the proposed audio switch, which will be
detailed later) to eliminate those irrelevant audio signals.

ST fuse module. The methodology of the ST fuse module is quite similar to that of the SA fuse module,
and the major difference is that the ST fuse module omits the audio switch. The main reason is that temporal
information could be more likely to benefit its spatial counterpart, yet the audio signal could completely conflict
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Figure 6 (Color online) Architectures of fusion modules adopted in Figure 7.

with the spatial clue, resulting in learning ambiguity. The technical details of ST fusion (see Figure 6(b)) can be
formulated as sti = Relu(σ(vi) ⊙ si + si) ⊗ si, where vi represents the temporal information after using the 3D
convolution and other symbols and operations are completely identical to those of SA fusion (Subsection 3.3).

Audio switch. The main function of this module is to alleviate the potential side effects from the audio signal
when performing visual-audio fusion. In fact, the nature of the proposed “audio switch” is a plug-in tool, which can
be achieved via an individual network with an identical structure to the ‘SA’ classification net. For a visual-audio
fragment (1 frame and 1 second audio), we assign its binary label to ‘1’ if the audio category predicted by the audio
classification tool is identical to the pre-given video category; otherwise, we assign its binary label to ‘0’.

Classifiers. All classifiers adopted in the abovementioned networks are plain classifiers, which consist of only
2 steps. First, we use a 1 × 1 convolution to refine the channel size of the input feature tensor (i.e., si, sai, and
sti) to c. Next, we perform the global average pooling (GAP) operation to transform the tensor to a vector, whose
dimension is identical to the video category number c.

Classification loss. All classification networks in SCAM have adopted an identical loss function, i.e., the
standard multilabel soft margin (MSM) loss [34]. For better clarification, we take the “ST net” (e.g., Figure 7(c))
as an example here, and its classification loss can be seen as follows:

LMSM(sti,VC) = −
1

c

c∑

i=1

VCi × log

(
1

1 + e−sti

)
+ (1−VCi)× log

(
e−sti

1 + e−sti

)
, (3)

where ‘sti’ is the input of the ‘classifier’ which can be obtained via ST fusion, VC represents the exact class towards
the given input, and c is the total video category number.

3.4 SCAM vs. real fixation

The proposed SCAM is mainly based on performing selective fusion over discriminative regions revealed by the
source-wise classification nets, i.e., S, ST, and SA nets. Although the pseudofixation maps generated by SCAM
basically correlate to the most discriminative regions in the given visual-audio fragment, they might occasionally
be different from real human-eye fixations (GTs), as demonstrated in Figure 8, i.e., SCAM vs. GTs.

From the data perspective, the total input of SCAM computation only comprises 3 neighboring video frames and
a 1-second audio signal at most, which makes the proposed SCAM a typical local method. However, the real human
visual-audio system follows a global manner, where the real fixations are jointly influenced by multiple factors (e.g.,
visual inertia and associative memory [27]). Thus, the challenge for using SCAM to produce high-quality pseudo-
fixations relies on including the source-wise selection process (Eq. (1)) with global information, i.e., multigranularity
information. We shall provide an in-depth explanation here.

First, the human visual-audio system tends to omit those image regions that are less salient from the source-wise
perspective [31,35], e.g., that occurred repeatedly in the given video sequence, even the most discriminative regions
in the current visual-audio fragment. For example, as seen in the 1st column of Figure 8, the real fixations have
avoided the ‘dog’ since this ‘dog’ has occurred multiple times before, making it less salient than the ‘hawk ’. However,
the SCAM has only considered the current local visual-audio fragment, and thus its pseudofixation map still treats
the ‘dog’ as the salient one because, from the local perspective, the ‘dog’ could also contribute greatly to the current
classification task. Therefore, we incorporate both short-term and long-term information into the SCAM.

Second, the real fixation is influenced by the high-level semantic information that has been embedded in our
brain. In fact, the human visual-audio system never works alone [36, 37], where the human brain plays a critical
role; i.e., the real human fixation tends to vary between subjects with different ages, agendas, careers, etc. The main
reason is that the high-level semantic knowledge that we have learned in our daily lives can directly determine where
we really look at [38]. Despite the existence of this phenomenon, the principle regards the positive relationship
between being discriminative and being salient still holds, and to further refine the pseudo-fixations derived by
SCAM, we shall introduce the high-level semantic information into the SCAM. Therefore, we propose to consider
the cross-term information, which could be obtained by introducing multiple visual-audio fragments cropped from
other video sequences sharing an identical tag with the given sequence.
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Figure 7 (Color online) Detailed network architectures used in this paper. (a)–(c) show the classification networks used in the proposed SCAM.

(e)–(g) show the upgraded classification networks used in SCAM+, which couple the raw variants to form the SCAM+ model. Both SCAM and

SCAM+ convert video tags into pseudo-fixations (pGTs), and SCAM+ consistently outperforms SCAM. C-GCN denotes the proposed m-step

reasoning module; see Figure 10 and Subsection 4.3 for details. (d) illustrates the visual-audio fixation prediction network, which is trained

using the pseudo-fixations as supervision, enabling generic fixation prediction without using video tags. (h) augments (d) with the proposed

multigranularity perception module. Details of the “SA/ST Fuse” module are provided in Figure 6.

Figure 8 (Color online) Visual comparison of local and global information-based fusion. It can be observed that benefiting from the relational

constraints between frames of global information, the global information-based method is capable of handling various challenging factors, such

as location bias, color bias, and multiple objects.

4 Selective class activation mapping+

4.1 SCAM+ overview and technical pipeline

As seen in Figure 7, the major difference between SCAM and SCAM+ relies on the adopted classification nets, where
only 3 classification nets, i.e., S, ST, and SA (Figures 7(a)–(c)), have been adopted by SCAM, while based on SCAM,
the SCAM+ has additionally adopted 3 ‘types’ of classification nets, i.e., S+, SA+, and ST+ (Figures 7(e)–(g)).
Note that the combinations of short-/long-/cross-term information are used as the input of these new classification
nets, leading to 8 additional classification nets with 8 classification confidences (C) and CAM maps (Φ), including

{C,Φ}ShortS+ , {C,Φ}LongS+ , {C,Φ}Cross
S+ , {C,Φ}ShortST+ , {C,Φ}LongST+ , {C,Φ}Cross

ST+ , {C,Φ}LongSA+ , and {C,Φ}Cross
SA+ . The first

3 of them can be derived from the S+ net, the middle 3 can be obtained from the ST+ net, and the last 2 are
formulated via the SA+ net. We have omitted {C,Φ}ShortSA+ because the audio signal itself has already covered the
short-term information. The SCAM+-based pseudo-fixations can be obtained via the following equation:

SCAM+ =

∥∥UC⊙UR+ SC⊙ SR + LC⊙ LR+ CC⊙ CR
∥∥
1
+ λ∥∥UC + SC+ LC + CC

∥∥
1
+ λ

,

SR :
[
ΦShort

S+ {i},ΦShort
ST+ {i}

]
,LR :

[
ΦLong

S+ {i},ΦLong
ST+ {i},Φ

Long
SA+{i}

]
,

CR :
[
ΦCross

S+ {i},ΦCross
ST+ {i},Φ

Cross
SA+ {i}

]
,

SC :

[∮ (
CShort

S+ {i}
)
,

∮ (
CShort

ST+ {i}
)]
, LC :

[∮ (
CLong

S+ {i}
)
,

∮ (
CLong

ST+ {i}
)
,

∮ (
CLong

SA+{i}
)]
,

CC :

[∮ (
CCross

S+ {i}
)
,

∮ (
CCross

ST+ {i}
)
,

∮ (
CCross

SA+ {i}
)]
,

(4)

where the meanings of UC, UR, ‖·‖1, λ, Φ,
∮
, and ⊙ can be found in (1).

Clearly, the proposed SCAM+ has included more granularity when producing pseudo-fixations. To facilitate
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a better reading, 2 technical details should still be provided: (1) the exact definition and implementation of the
abovementioned multigranularity information (Subsection 4.2) and (2) the exact network architectures, especially
the fusion parts, of adopted classification nets (Subsection 4.3).

4.2 Multigranularity information definition

SCAM+ extends beyond the local information used in SCAM, which considers only three consecutive frames and
a one-second audio signal (target data). Instead, it integrates multigranularity perception, incorporating spatial,
temporal, and auditory cues to enhance fixation prediction. Inspired by human attention mechanisms, SCAM+
simulates short-term memory to process immediate stimuli, long-term memory to maintain fixation consistency
over time, and cross-modal reasoning to dynamically integrate multimodal cues. This enables SCAM+ to adapt
fixation predictions to dynamic environments, overcoming the limitations of conventional CAM-based approaches
that focus only on static salient regions. We shall define these multigranularity components in the following.

Short-term information. In our approach, the short-term information acts as the instant visual stimuli to
automatically suppress those less important scene contents and focus our attention on the remaining conspicuous
ones. As seen in Figure 9, suppose the t-th video frame is the target frame marked by 1©; its short-term spatial-
temporal information ST+Short can be detailed as the neighboring 8 video frames marked by 9©, and all 9 frames
together can be divided into 3 groups to be fed into a three-stream classification net, i.e., the ST+ net detailed
in Figure 7(g). Specifically, from the sole spatial source perspective (i.e., the S+ net, Figure 7(e)), the short-term
information S+Short is the 2 neighboring frames of the target frame, i.e., the mark 2©, which could be completely
identical to the input of the ST net (Figure 7(c)) adopted in the SCAM, yet the underlying rationale is different in
essence. The ST net resorts to a 3D convolution to acquire spatial-temporal information, yet in sharp contrast, the
S+ net has aimed to learn the frame-level similarity relationship measurement to mimic the perceptual mechanism
of the human association mechanism. Thus, both S+ net and ST net are complementary to each other.

Long-term information. As a complement part to the short-term information, the long-term information also
serves the human visual-audio system as visual inertia to focus our attention on the most conspicuous scene regions
in the entire video sequence. Long-term information refers to video frames and audio signals that are a long distance
away from the current target frame (t). Suppose the t-th frame is the current target frame; the scope of long-term
information could be any frame in the same video sequence with the target frame’s neighbor frames excluded (i.e.,
8 frames). From the spatial perspective, the long-term information S+Long of the t-th frame is 2 other frames
that are temporally long distance away from the t-th frame and can be randomly selected (e.g., the mark 3© in
Figure 9(a)), and these 3 frames (1 target frame and 2 long-term frames) will be fed into the S+ net, as shown
in Figure 7(e). Similarly, from the spatial-temporal perspective, the long-term information ST+Long becomes 2
groups of 3 consecutive frames (e.g., the mark 10© in Figure 9(a)), which are also randomly selected. Thus, a total
of 9 frames (3 of them are the target consecutive frames, and the other 6 frames are the long-term frames) will be
fed into the ST+ net, as shown in Figure 7(g). With regard to the visual-audio perspective SA+Long, the only
difference is that the audio signals have been additionally considered (e.g., the mark 6© in Figure 9(a)); thus, a
total of 3 frames and 3 seconds audio signals are fed into the SA+ net, as demonstrated in Figure 7(f).

Cross-term information. The human visual-audio system is influenced by associative memory, which ac-
cumulates basic impressions of different object categories. For example, when presented with multiple cars in a
video sequence, our attention may be drawn to the one with the most distinctive appearance, relying on additional
information about the current video category (cf. Figure 3). This phenomenon motivates us to consider cross-
term information, where frames from other video sequences sharing the same video tag as the current sequence
can serve as cross-term information. As seen in Figure 9(a), from the sole spatial domain perspective S+Cross,
the cross-term information of the t-th frame in sequence 1 (with video category 2) can be any 2 frames randomly
selected from other video sequences k that are also assigned with tag 2, e.g., the mark 4©. Similarly, from either the
spatial-temporal ST+Cross or visual-audio SA+Cross perspective, the cross-term information can be formulated
accordingly as either mark 11© or mark 7©.

4.3 Multigranularity perception

Compared with the SCAM, the upgraded version SCAM+ has adopted several new classification nets, i.e., S+,
SA+, and ST+. As seen in Figure 7(g), all these classification networks have directly adopted part of the SCAM’s
classification nets (i.e., S, SA, and ST) as backbones, i.e., S-/SA-/ST-Branches. Since these feature backbones are
almost unaltered, we focus on the subsequent fusion parts. In view of the human attention mechanism, the most
valuable short-/long-/cross-term information could be the high-level semantic part, which motivates us to model the
semantic relationship between target data and its short-/long-/cross-term companion. To achieve this, we devise
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Figure 9 (Color online) Input data formulations and definitions of SCAM+. The numbers of k, m, n, p, and q are randomly selected.

Figure 10 (Color online) Network architectures of classic GCN and the proposed C-GCN. C-GCN mainly consists of 2 parts, i.e., (1) semantic

reasoning (Subsection 4.3.1), and (2) fixation refine layer (FRL, Subsection 4.3.2).

a variant of graph convolution network (GCN) [39] to combine the multigranularity information with source-wise
information, named conservative-GCN (C-GCN), whose major highlights include (1) a completely new methodology
for performing m-step semantic reasoning over multisource and multigranularity nodes and (2) a completely new
fixation refine layer to ensure that the whole process is conservative enough to eliminate redundant feature responses.

4.3.1 Semantic reasoning

The proposed C-GCN effectively infers complex dependencies and contextual representations in high-level visual-
audio semantic information. It achieves this by associating low-level visual-audio cues with high-level semantic
information. By abstracting and propagating these cues, C-GCN aligns semantic representations with human
interests, fully mimicking the intricate reasoning process of the human brain.

The C-GCN (Figure 10) consists of multiple nodes and edges G = (V , E), in which the V represents the node-set
{TA,MG1, . . . ,MGn}, where TA denotes the target node (i.e., the current input visual-audio fragment), and MGs
include n nodes correlating to short/long/cross information. We use E to represent the edge set {ei,j}, i 6= j; and
eTA,MGi ∈ E is the edge between nodes TA and MGi.

As seen in Figures 7(e)–(g), the input of the C-GCN consists of 3 branches, i.e., the output of the S/SA/ST
branch (si, sai, sti) containing rich semantic information, and for simplicity, we uniformly define them as h0

i , where
the subscript i denotes that this feature belongs to the i-th node, the superscript 0 denotes the beginning of semantic
reasoning. In the t-th reasoning stage, we use the interattention (Fiatt, Eq. (6)) to model the semantic relation of
each 2 of the input nodes, i.e., the edge ei,j , which can be formulated as follows:

e
t
TA,MGi

= Softmax
(
Fiatt(h

t
TA, h

t
MGi

)⊤
)
, etMGi,TA = Softmax

(
Fiatt(h

t
MG, h

t
TAi

)⊤
)
, (5)

where e
t
TA,MGi

∈ R
1024×1024, ⊤ is the matrix transpose operation, Fiatt(·, ·) measures the consistency between its

input and can be detailed as follows:

Fiatt(h
t
TA, h

t
MGi

) =
[
R28×1024

(
Conv1×1(h

t
TA)
)]⊤

⊛

[
R28×1024

(
Conv1×1(h

t
MGi

)
)]
. (6)

Here ⊛ denotes matrix multiplication, h ∈ R
28×32×32, 32 is the size of the feature map, 28 is the total video
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Figure 11 (Color online) Visualization of fixation predictions with different model variations, comparing fixation heatmaps generated by

different models. The results show progressive improvements in attention localization as short-term, long-term, and cross-term information are

incorporated, with SCAM+ producing the most human-like fixation maps.

category number (c), R28×1024(·) reshapes its input to a matrix with size 28× 1024, and Conv1×1 is a typical 1× 1
convolution.

Actually, the rationale of edge e
t
TA,MGi

is the feature similarity between two neighboring nodes. Since the
primary function of the reasoning process is to exchange/share information between nodes and formulate a series
of implicit principles toward the given learning objective, we update all nodes’ statuses after each reasoning stage.
We formulate the updating process towards the target node (TA) using the following equation:

ht+1
TA ←R28×322

(
ht
TA ⊙ σ

( ∑

i∈NTA

R28×1024(h
t
MGi

)⊛ e
t
TA,MGi

))
, (7)

where σ(·) is a typical sigmoid function; ⊛ denotes matrix multiplication; ⊙ represents elementwise multiplicative
operation; × is the standard multiplication; NTA includes all nodes neighboring the TA; and R28×322(·) reshapes
its input to a tensor with size 28 × 322. Similarly, the updating process towards the multigranularity nodes (e.g.,
MGi) can be formulated as follows:

ht+1
MGi
←R28×322

(
ht
MGi
⊙ σ

( ∑

j∈NMGi

R28×1024(h
t
MGj

)⊛ e
t
MGi,MGj

+R28×1024(h
t
TA)⊛ e

t
MGi,TA

))
. (8)

By using the node-wise reasoning process, the high-level semantic information between the target input and its
multigranularity information can be obtained. The final status of the target node hm

TA (m is reasoning steps) is fed
into a classifier. The reasoning steps, the number of MG nodes, and the replacement of C-GCN with Transformer
are discussed in Appendixes C–E.

4.3.2 Fixation refine layer

In most cases, the C-GCN-based reasoning process can appropriately fuse both multisource and multigranularity
information. However, there still exists one issue regarding the reasoning process to be handled. Although the
reasoning steps can implicitly incorporate the multigranularity information, the addition operation-based updating
process (e.g., Eq. (7)) could lead to the target node’s feature response map being redundant, resulting in pseudo-
fixations that differ from the real fixations (e.g., Figure 11). Thus, for each reasoning stage, we have additionally
assigned one fixation refine layer (FRL, Figure 10) to eliminate redundant feature responses. The technical details
of the proposed FRL are as follows.

First, we establish a binary matrix rMASK ∈ {0, 1}32×32 to indicate which elements in the fused feature ten-
sor have relatively large feature responses, and these qualified elements are more likely to belong to the most
discriminative frame regions. The computation of rMASK is as follows:

rMASK =
[
max

(
cMean

(
ht
i

))
× Td − cMean

(
ht
i

)]
+
, (9)

where × is the standard multiplication, cMean(·) is a channelwise average operation, which converts a tensor to a
matrix, and max(·) is a typical max operation returning the largest value in its input matrix; ht

i is a tensor feature,
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which can be obtained by either (7) or (8); [·]+ converts all its negative elements to 0 and converts the remaining
positive elements to 1; and Td is a predefined hard threshold.

Next, we use rMASK to filter redundant information in ht
i, and this process can be formulated as

ht′

i =
1

2
×
[
ht
i ⊙
(
Tr × σ

(
cMean(ht

i)
)
⊙ rMASK + σ

(
cMean(ht

i)
)
⊙ (1− rMASK)

)
+ ht

i

]
, (10)

where ⊙ is the elementwise multiplicative operation and Tr is the refinement rate assigned by a predefined value.
The rationale of (10) can be explained as: since the rMASK can indicate those spatial regions with large feature
responses, we use it as an attention filter (Tr controls the compression rate) for those less trustworthy (i.e., with
relatively low responses) regions—those regions are more likely to be redundant. The exact choices of Td and Tr
will be discussed in Appendix F.2.

5 Generic fixation prediction networks

SCAM+ (Eq. (4)) generates extensive pseudo-visual-audio fixation maps, which generally align with real fixations.
However, its reliance on human-provided video tags limits its applicability. To address this, we use SCAM+-based
maps as learning objectives for knowledge distillation, enabling end-to-end fixation prediction without human-
provided tags.

5.1 Source-wise fixation prediction network

As seen in Figure 7(d), the implementation of spatial-temporal-audio (STA) fixation prediction network is very
intuitive, where the spatial features si are fused with either temporal features vi or audio features ai in advance and
later combined via the simplest feature concatenation operation. Then, a typical decoder with 3 deconvolutional
layers is used to convert the feature maps derived from the “STA Fuse” module to fixation maps. The data flow in
the “STA Fuse” module can be formulated as

stai = Relu
[
Cov

((
σ
(
φ(ai)

)
⊙ si + si

)
⊗
(
σ
(
vi
)
⊙ si + si

))]
, (11)

where ⊗ is the typical concatenation operation; φ(·) is the proposed audio switch (Subsection 3.3); Cov(·) denotes
1× 1 convolution; all other symbols are identical to those in SA fusion (Subsection 3.3).

The stai will be fed into the decoder, whose output (ŝtai) can be formulated as

ŝtai =↑ (Ref(Ref(F3)⊗ ↑ (Ref(Ref(F4)⊗ ↑ (Ref(Ref(F5)⊗ stai)))))), (12)

where ↑ (·) is the upsampling operation, Ref(·) refines all its input to a fixed channel number (32), ⊗ is the feature
concatenation operation, and F3, F4, and F5 are the side outputs of the encoder (ENC) correlated to the target
frame.

For the training process, we choose 2 typical loss functions, i.e., the binary cross-entropy loss LBCE [40] and the
Kullback-Leibler divergence loss LKL [34], and thus the overall loss function LSTA can be formulated simply as

LSTA = LBCE(ŝtai, pGT) + LKL(ŝtai, pGT). (13)

Clearly, the training process of the proposed STA fixation prediction network relies on pseudo-fixations (pGTs)
only; thus, it is able to perform end-to-end fixation prediction for unseen visual-audio sequences without any
category tag.

5.2 Multigranularity fixation prediction network

As shown in Figure 7(h), the STA fixation prediction network can also be upgraded by combining it with the
multigranularity perception mechanism. We name the upgraded version STA+, whose input also consists of 3
parts, which are the output of the STA net with different input data.

In the STA+ net, we shall only additionally consider both short-term and long-term information, where the cross-
term information has been omitted to ensure its versatility. Similar to the classification nets mentioned before, we
continue using the proposed C-GCN as the blender. Thus, we independently train 2 STA+ nets, where the input
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data (3 parts) are {1 target + 2 short} or {1 target + 2 long}, and the dataflow of the fusion part in these 2 STA+
nets (e.g., Figure 7(h)) can be expressed uniformly as the following equation:

sta+
Short/Long
i =

{
hm
TA, h

m
MG1

, hm
MG2

}
=Ω
[
stai, staShorti (1), staShorti (2)

]

or Ω
[
stai, sta

Long
i (1), sta

Long
i (2)

]
,

(14)

where sta+
Short/Long
i is the output of the m step reasoning, which includes 3 tensors (i.e., hm

TA, h
m
MG1

, hm
MG2

) with
size 28× 32× 32, and these tensors correlate to 3 different nodes (i.e., 1 TA node and 2 MG nodes, respectively, see
(7) and (8)); Ω[·] denotes the proposed C-GCN mentioned in Subsection 4.3; staShorti (1) and staShorti (2) denote 2

individual outputs of the ‘STA-Branch’ using different short-term fragments as input, and, staLongi (1) and sta
Long
i (2)

are 2 outputs correlated to 2 different long-term input fragments.

The ‘ReadOut’ module takes sta+
Short/Long
i as input individually and then outputs 9 fixation maps. Taking the

target node for instance, we abbreviate sta+
Short/Long
i as hm

TA, where m is the total reasoning steps, and the output
of the ‘ReadOut’ can be formulated as

ĥTA = RO(hm
TA) = Ref1

(
↑
(
Ref32(h

m
TA ⊗ S)

))
, (15)

where S denotes the spatial feature correlated to the middle frame of the target fragment, e.g., the si in Figure 7(d);
RO represents the ‘ReadOut’ in Figure 7(h); Refp(·) is a refinement operation which uses 1×1 convolution to reduce

input’s channel number to p; ↑ (·) upsamples its input to 356× 356. The output could become ĥMG1
and ĥMG2

by
alternately feeding hm

MG1
and hm

MG2
to the ‘ReadOut’ module of STA+.

We assign an individual loss function for each fixation prediction net, and the loss function adopted by these 2
fixation prediction nets (STA+Short, and STA+Long, 14) can be uniformly expressed as

LSTA+ =LBCE(ĥTA, pGTTA) + LKL(ĥTA, pGTTA) + LBCE(ĥMG1
, pGTMG1

)

+ LKL(ĥMG1
, pGTMG1

) + LBCE(ĥMG2
, pGTMG2

) + LKL(ĥMG2
, pGTMG2

),
(16)

where pGTTA/MG1/MG2
denotes the correlated pseudofixation maps of different nodes, the input ĥTA can be obtained

via (15) directly, and the computation of ĥMG1/MG2
shall replace Eq. (15)’s input to hm

MG1
and hm

MG2
accordingly.

5.3 Predicted visual-audio fixations

Thus far, we can obtain 3 individual fixation prediction networks mentioned in Subsections 5.1 and 5.2; i.e., from
the source-wise perspective, we can obtain an STA net, and from the multigranularity aspect, we can additionally
obtain 2 STA+ nets, which correlate to short-term or long-term versions, respectively (Eq. (14)). These 3 fixation
prediction nets complement each other in essence, and we shall combine their predictions to derive the final fixation
maps that could outperform each of them.

We define the predicted fixation map of the 3 prediction nets (STA, STA+Short, and STA+Long) as PFsta, PF
Short
sta+ ,

and PFLong
sta+. The final predicted visual-audio fixation map (PFfinal) can be formulated as follows:

PFfinal =
1

2
×Z

(
Z(PFsta)⊙Z(PF

Short
sta+ )⊙Z(PFLong

sta+)
)
+

1

2
×Z

(
PFsta + PFShort

sta+ + PFLong
sta+

)
, (17)

where Z(·) is the typical min-max normalization function, × represents the standard multiplicative operation. and
⊙ denotes the element multiplicative operation. Eq. (17) mainly consists of 2 parts, where the left part obtains
the common consistency, while the right part serves as the complementary fixation map to ensure good robustness.
We verify the advantages of this fusion scheme over conventional plain schemes from a quantitative perspective in
Appendix F.6.

6 Experiments and validations

6.1 Implementation details

Training dataset. We use the Audio-Visual Event (AVE) dataset [18], a subset of Google’s AudioSet, containing
4143 sequences across 28 categories, as the classification training set for S, ST, SA, S+, ST+, and SA+ networks
(Sections 3 and 4).
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Training processes. SCAM and SCAM+ are trained using a multistage scheme to generate pseudo-GTs for S,
ST, SA, S+, ST+, and SA+ branches. In the coarse stage, SCAM processes video frames resized to 256 × 256 with
a batch size of 20. In the fine stage, three classification networks are trained separately with 356 × 356 patches and
a batch size of 3. SCAM+ follows a similar setup with a batch size of 16. STA and STA+ use pseudo-fixations as
GTs, trained with 356 × 356 frames, a batch size of 3, and SGD at a 0.00005 learning rate.

Testing data sets. To test the performance of the proposed approach, we adopted 6 testing datasets, including
AVAD [41], Coutrot1 [42], Coutrot2 [43], DIEM [44], SumMe [45], and ETMD [46].

Quantitative metrics. Following prior research [34, 47], we adopted five standard metrics (AUC-J, s-AUC,
NSS, SIM, and CC) to compare our model’s saliency predictions with actual human eye movements.

6.2 Effectiveness evaluation on different components

6.2.1 Effectiveness of the proposed multistage rationale

In Subsection 3.2, we adopted a coarse-to-fine approach to perform SCAM twice, mimicking the human attention
mechanism. To verify this strategy, we tested CAM results from different sources (S, SA, ST) at various stages
(COARSE vs. FINE). The quantitative evaluation in Table 1 (marked by 1©) shows the consistency between CAM
results and real human-eye fixation data. The FINE stage significantly improves results, with a 40% boost when
using a single source (S, SA, or ST; see lines 1–3 and 6–8) and notable improvements with multiple sources (see
lines 4 and 10). Comparing lines 5 and 11 demonstrates a solid performance gain, highlighting the generic nature
of the multistage strategy.

6.2.2 Effectiveness of the proposed selective fusion

To selectively fuse the multisource CAM results (i.e., ΦS, ΦSA, and ΦST, Eq. (1)), we have adopted the classification
confidences as the fusion weights (CS, CSA, and CST). This is based on the precondition that higher classification
confidence indicates better alignment with real fixations. To verify this issue, we have compared the proposed
selective fusion (i.e., SCAM, Eq. (1)) with the conventional fusion scheme that averages all CAM results: AC =
1
3

(
ΦS+ΦSA+ΦST

)
, where all symbols have the same definitions as those of Eq. (1), and we show the corresponding

quantitative result of this scheme in the ‘G’ column of Table 1. The mark 2© in Table 1 has highlighted the
advantage of the proposed SCAM against the conventional scheme, i.e., SCAM vs. AC, where the overall quantitative
performance can obtain persistent improvement for all considered metrics.

6.2.3 The effectiveness of the proposed audio switch

In Table 1, we have reported the model’s performance without the audio switch (Subsection 3.3), highlighted by
mark 3©. Comparing lines 9 and 11, and lines 22 and 24, shows that the audio switch improves performance by about
1.5% on average by filtering meaningless background audio and reducing learning ambiguity from unsynchronized
spatial and audio information.

6.2.4 Effectiveness of multigranularity selective fusion

To study the influence of the proposed multigranularity information on the proposed SCAM, we tested all CAMs
derived from different sources (i.e., S, SA, and ST) coupled with multigranularity information, i.e., short-term,
long-term and cross-term information (the ‘I’, ‘G’, and ‘K’ columns of Table 1).

As seen in Table 1, marked by 4©, we found the performance gain when using each type of multigranularity
information with the source-wise CAM results. Meanwhile, we have also tested using all types of multigranularity
information simultaneously, where the ‘M’ and ‘N’ columns denote the averaged and selectively fused SC, LC, and
CC, respectively.

Clearly, compared with the CAM result obtained via a single source (line 12), the multigranularity information
(line 13) could bring solid performance gain. However, simply combining the single-source-based CAM result
with one type of multigranularity information might still be inferior to the SCAM, which can be confirmed by
comparing lines 11 and 13. The main reason is that, compared with the source-wise information, the multigranularity
information could be less important to the classification task, motivating us to use it to serve the SCAM as the
subordinates.

As expected, since the ‘M’ column (line 23) has adopted multiple multigranularity information, the overall
performance could be improved compared with the single multigranularity information-based ones (e.g., lines 13–
20). In addition, benefiting from selective fusion, the ‘N’ column (lines 21, 22, and 24) could further improve
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Table 1 Quantitative evidence towards the component studies for STA and STA+. To facilitate the display, we use different colors to dis-

tinguish different components. This experiment is conducted on the AVAD set [41]. Here max J↑, S↑, A↑, C↑, and N↑ indicate maximal

AUC-J, SIM, s-AUC, CC, and NSS, respectively. A: spatial (S); B: spatial + audio (SA); C: spatial + temporal (ST); D: coarse stage; E:

fine stage (Subsection 3.2); F: audio switch (Subsection 3.3); G: average all CAM results (S, ST, SA); H: selective class activation mapping; I:

multigranularity (short-term only); J: multigranularity (long-term only); K: multigranularity (cross-term only); L: fixation refine layer (FRL,

Subsection 4.3.2); M: averaged short, long, and cross; N: selective combine short, long, and cross; O: combine SCAM with multigranular-

ity; ① Subsection 6.2.1: multi-stage SCAM (Subsection 3.2); ② Subsection 6.2.2: SCAM; ③ Subsection 6.2.3: audio switch (Subsection 3.3);

④ Subsection 6.2.4: multigranularity (Subsection 4.2); ⑤ Subsection 6.2.4: SCAM+; ⑥ Subsection 6.2.5: FRL (Subsection 4.3.2).

Major components Metrics & results

A B C D E F G H I J K L M N O J↑ S↑ A↑ C↑ N↑

①⑥ 1 X X 0.774 0.202 0.545 0.261 1.269

S
C
A
M

① 2 X X X 0.785 0.223 0.536 0.269 1.292

① 3 X X 0.780 0.214 0.542 0.277 1.276

①② 4 X X X X X X 0.786 0.219 0.538 0.297 1.312

①② 5 X X X X X X 0.801 0.256 0.554 0.345 1.364

①② 6 X X 0.834 0.291 0.574 0.376 1.528

①② 7 X X X 0.843 0.289 0.571 0.372 1.581

①② 8 X X 0.845 0.304 0.564 0.384 1.622

②③ 9 X X X X X 0.864 0.33 0.571 0.421 1.833

② 10 X X X X X X 0.845 0.303 0.573 0.399 1.797

②③ 11 X X X X X X 0.873 0.334 0.58 0.438 2.018

⑥ 12 X X X 0.807 0.233 0.546 0.304 1.435

+
M

u
lt
i-
g
ra

n
u
la
ri
ty

④ 13 X X X 0.829 0.277 0.554 0.372 1.556

④ 14 X X X 0.839 0.268 0.565 0.379 1.568

④ 15 X X X 0.833 0.28 0.559 0.374 1.55

④ 16 X X X X 0.835 0.271 0.556 0.377 1.574

④ 17 X X X 0.836 0.272 0.55 0.373 1.569

④ 18 X X X 0.841 0.269 0.561 0.368 1.553

④ 19 X X X X 0.838 0.293 0.562 0.381 1.561

④ 20 X X X 0.831 0.284 0.558 0.382 1.585

④⑥ 21 X X X X X X X X 0.856 0.312 0.564 0.436 1.857

③④⑥ 22 X X X X X X X X 0.875 0.329 0.587 0.461 1.893

③④⑥ 23 X X X X X X X X X 0.864 0.319 0.585 0.432 1.903

④⑥ 24 X X X X X X X X X 0.886 0.336 0.596 0.467 2.156

⑤ 25 X X X X X X X X X X 0.887 0.361 0.595 0.49 2.318 SCAM+

the overall performance. After combining full source-wise information and full multigranularity information, the
proposed SCAM+, marked by 5©, achieves the best performance.

6.2.5 Effectiveness of fixation refine layer

To verify the effectiveness of the proposed fixation refine layer (FRL), we conducted a series of evaluations in
Table 1, and the corresponding results are marked by 6©.

First, as seen in line 12, we applied the FRL to the spatial source-based coarse stage feature, where the FRL
is directly applied to Si (Figure 7(a)), then generated the FRL-based CAM result. Comparing line 12 with line
1, a clear performance improvement can be observed easily. Second, we have also tried to remove the FRL from
the multigranularity (the ‘N’ column) to verify the performance gap. By comparing line 21 with line 24 of the ‘L’
column, we can notice a clear performance decrease.

6.3 Quantitative comparisons with SOTA work

6.3.1 Quantitative comparisons with weakly supervised methods

As shown in Table 2, we compare our method with other fully- and weakly-supervised methods, e.g., SSCAM, Sco-
CAM, ISCAM, EGCAM, ECAM, LCAM (related details in [48]); SPG [49], VUNP [22], WSS [29], MWS [28],
WSSA [31], STANet [26]; DeepNet [11], SalGAN [40], DeepVS [50], ACLNet [47], HD2S [10], AVCRL [37],
TMFINet [1], GSGNet [51], MSPI [36], WSVS [52], KDCI [38], CBA [53], EAVOL [54], and BCAM [55] on 6
datasets. STANet and STANet+ consistently outperform weakly supervised baselines across multiple datasets,
with STANet+ achieving a +0.46 NSS increase and a +7.4% AUC-Judd improvement. These performance gains
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Table 2 Quantitative comparison with SOTA methods on six datasets. Bold means the best result, STANet+b denotes the proposed STANet+ trained on the VGGSound dataset [33]. In

addition, we have also provided some representative “qualitative comparisons” between our approach and the SOTA work, which can be found in Appendix E. Here max J↑, S↑, A↑, C↑, and N↑

indicate maximal AUC-J, SIM, s-AUC, CC, and NSS, respectively. Compared with fully supervised methods, our method has adopted a different training protocol; i.e., SOTA fully supervised

methods were trained on the widely-used training set (2857 videos [47]) with real human-eye fixations, yet our method was solely trained on the AVE set, a sub-set of the AudioSet, containing

4143 clips equipped with semantic tags.

Method

AVAD DIEM SumMe ETMD Coutrot 1 Coutrot 2

J↑ S↑ A↑ C↑ N↑ J↑ S↑ A↑ C↑ N↑ J↑ S↑ A↑ C↑ N↑ J↑ S↑ A↑ C↑ N↑ J↑ S↑ A↑ C↑ N↑ J↑ S↑ A↑ C↑ N↑

F
u
ll
y
-
s
u
p
e
r
v
is
e
d

DeepNet 0.869 0.256 0.561 0.383 1.850 0.832 0.318 0.622 0.407 1.520 0.848 0.227 0.645 0.332 1.550 0.889 0.225 0.699 0.387 1.900 0.824 0.273 0.559 0.346 1.410 0.896 0.201 0.600 0.301 1.820

SalGAN 0.886 0.360 0.579 0.491 2.550 0.857 0.393 0.660 0.486 1.890 0.875 0.289 0.688 0.397 1.970 0.903 0.311 0.746 0.476 2.460 0.853 0.332 0.579 0.416 1.850 0.933 0.290 0.618 0.439 2.960

DeepVS 0.896 0.391 0.585 0.528 3.010 0.840 0.392 0.625 0.452 1.860 0.842 0.262 0.612 0.317 1.620 0.904 0.349 0.686 0.461 2.480 0.830 0.317 0.561 0.359 1.770 0.925 0.259 0.646 0.449 3.790

ACLNet 0.905 0.446 0.560 0.580 3.170 0.869 0.427 0.622 0.522 2.020 0.868 0.296 0.609 0.379 1.790 0.915 0.329 0.675 0.477 2.360 0.850 0.361 0.542 0.425 1.920 0.926 0.322 0.594 0.448 3.160

HD2S 0.905 0.462 0.607 0.600 3.100 0.880 0.502 0.701 0.604 2.200 0.871 0.349 0.628 0.360 1.880 0.913 0.412 0.700 0.502 2.540 0.852 0.396 0.582 0.467 2.070 0.890 0.331 0.645 0.451 2.830

AVCRL 0.925 0.482 0.620 0.626 3.570 0.894 0.492 0.698 0.592 2.330 0.895 0.343 0.671 0.439 2.250 0.935 0.433 0.741 0.566 3.050 0.880 0.415 0.604 0.499 2.440 0.954 0.527 0.729 0.748 5.450

TMFINet 0.900 0.515 0.618 0.675 3.640 0.895 0.529 0.701 0.648 2.440 0.870 0.378 0.646 0.468 2.140 0.902 0.411 0.702 0.524 2.680 0.870 0.418 0.605 0.522 2.420 0.920 0.425 0.689 0.591 4.360

GSGNet 0.910 0.400 0.605 0.548 2.870 0.865 0.328 0.599 0.417 1.900 0.878 0.319 0.692 0.420 1.940 0.910 0.341 0.754 0.502 2.600 0.865 0.328 0.599 0.417 1.900 0.931 0.300 0.681 0.450 2.930

MSPI 0.932 0.522 0.612 0.688 3.820 0.906 0.527 0.694 0.650 2.590 0.899 0.367 0.682 0.476 2.450 0.935 0.442 0.746 0.592 3.150 0.890 0.432 0.606 0.540 2.580 0.961 0.553 0.715 0.766 6.210

W
e
a
k
ly

-
s
u
p
e
r
v
is
e
d

ISCAM 0.774 0.195 0.545 0.240 1.030 0.774 0.256 0.619 0.282 0.990 0.761 0.183 0.582 0.208 0.900 0.738 0.147 0.585 0.157 0.710 0.704 0.201 0.520 0.171 0.650 0.480 0.135 0.409 0.018 0.120

SSCAM 0.777 0.186 0.531 0.228 0.970 0.750 0.242 0.604 0.248 0.870 0.763 0.179 0.591 0.206 0.830 0.730 0.144 0.595 0.149 0.680 0.686 0.194 0.521 0.154 0.590 0.502 0.141 0.417 0.003 0.020

ScoCAM 0.772 0.196 0.548 0.237 1.020 0.770 0.257 0.614 0.279 0.980 0.753 0.182 0.577 0.202 0.800 0.737 0.148 0.581 0.157 0.700 0.708 0.203 0.518 0.176 0.670 0.538 0.143 0.423 0.018 0.070

EGCAM 0.737 0.222 0.533 0.212 0.910 0.758 0.310 0.618 0.308 1.100 0.741 0.220 0.583 0.215 0.870 0.687 0.156 0.570 0.124 0.580 0.640 0.193 0.509 0.114 0.410 0.575 0.107 0.425 0.031 0.180

ECAM 0.725 0.219 0.526 0.205 0.880 0.740 0.294 0.605 0.273 0.970 0.727 0.211 0.570 0.198 0.790 0.683 0.151 0.555 0.116 0.540 0.647 0.200 0.508 0.130 0.460 0.610 0.104 0.415 0.037 0.220

LCAM 0.776 0.199 0.542 0.241 1.030 0.773 0.259 0.616 0.285 1.010 0.778 0.189 0.593 0.228 0.910 0.749 0.151 0.581 0.168 0.750 0.699 0.201 0.516 0.168 0.620 0.511 0.141 0.400 0.003 0.030

WSS 0.858 0.292 0.592 0.347 1.660 0.803 0.333 0.620 0.344 1.290 0.812 0.245 0.589 0.279 1.100 0.854 0.277 0.661 0.334 1.650 0.772 0.247 0.547 0.233 0.980 0.835 0.208 0.578 0.192 1.180

SPG 0.662 0.176 0.506 0.165 0.730 0.713 0.238 0.579 0.233 0.860 0.714 0.182 0.561 0.209 0.910 0.695 0.138 0.550 0.144 0.690 0.650 0.187 0.505 0.142 0.530 0.511 0.123 0.464 0.017 0.070

MWS 0.834 0.272 0.573 0.309 1.480 0.806 0.336 0.628 0.350 1.310 0.808 0.237 0.607 0.258 1.160 0.833 0.237 0.649 0.293 1.430 0.743 0.231 0.528 0.201 0.800 0.839 0.188 0.581 0.168 1.200

WSSA 0.807 0.261 0.574 0.285 1.340 0.767 0.305 0.608 0.311 1.180 0.755 0.225 0.585 0.231 1.060 0.793 0.201 0.622 0.222 1.080 0.701 0.180 0.535 0.169 0.780 0.797 0.185 0.571 0.180 1.260

VUNP 0.574 0.067 0.500 0.142 0.290 0.558 0.047 0.515 0.172 0.190 0.555 0.013 0.507 0.114 0.050 0.505 0.030 0.103 0.132 0.590 0.589 0.063 0.514 0.152 0.300 0.661 0.101 0.536 0.162 0.490

WSVS 0.873 0.285 0.590 0.409 1.970 0.838 0.333 0.661 0.418 1.610 0.846 0.270 0.640 0.354 1.610 0.882 0.246 0.691 0.383 1.920 0.820 0.263 0.547 0.313 1.440 0.866 0.233 0.607 0.315 1.870

BCAM 0.728 0.234 0.529 0.252 1.210 0.812 0.305 0.601 0.324 1.090 0.800 0.212 0.591 0.315 1.330 0.809 0.212 0.568 0.210 1.050 0.691 0.213 0.501 0.254 1.400 0.767 0.158 0.563 0.142 1.250

EAVOL 0.792 0.266 0.519 0.295 1.320 0.807 0.340 0.613 0.349 1.040 0.801 0.227 0.616 0.307 1.260 0.815 0.231 0.586 0.256 1.230 0.745 0.219 0.517 0.258 1.030 0.766 0.180 0.586 0.182 1.510

KDCI 0.708 0.166 0.517 0.159 0.709 0.693 0.226 0.530 0.196 0.666 0.701 0.162 0.520 0.152 0.589 0.745 0.144 0.553 0.175 0.783 0.672 0.189 0.493 0.149 0.543 0.601 0.139 0.561 0.052 0.249

CBA 0.774 0.215 0.524 0.257 1.080 0.803 0.308 0.603 0.343 1.200 0.809 0.225 0.596 0.280 1.160 0.801 0.187 0.573 0.238 1.070 0.758 0.237 0.524 0.240 0.914 0.758 0.188 0.579 0.172 0.898

STANet 0.873 0.334 0.580 0.438 2.020 0.861 0.391 0.658 0.469 1.720 0.854 0.294 0.627 0.368 1.650 0.908 0.318 0.682 0.448 2.180 0.829 0.306 0.542 0.339 1.380 0.850 0.247 0.597 0.273 1.480

STANet+ 0.887 0.361 0.595 0.490 2.320 0.884 0.436 0.679 0.544 2.040 0.866 0.323 0.634 0.402 1.760 0.910 0.328 0.683 0.452 2.300 0.840 0.315 0.552 0.354 1.430 0.862 0.267 0.612 0.349 1.950

STANet+b
0.892 0.366 0.603 0.508 2.430 0.887 0.433 0.687 0.558 2.130 0.868 0.319 0.642 0.417 1.860 0.915 0.345 0.699 0.493 2.480 0.843 0.315 0.555 0.370 1.540 0.871 0.269 0.609 0.348 1.970
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Table 3 Impact of different “Thresholds” (Th) on the saliency detection results of weakly supervised methods on the AVAD set [41]. “0.0”

means no threshold is applied on the saliency result, and “0.3” means that the saliency value below 0.3 is set to 0.

T h
MWS WSSA WSS

AUC-J↑ CC↑ NSS↑ AUC-J↑ CC↑ NSS↑ AUC-J↑ CC↑ NSS↑

0.0 0.807 0.285 1.339 0.834 0.309 1.477 0.858 0.347 1.655

0.3 0.799 0.285 1.339 0.801 0.296 1.444 0.827 0.337 1.623

0.5 0.801 0.285 1.344 0.772 0.262 1.419 0.813 0.333 1.617

0.7 0.800 0.285 1.347 0.735 0.254 1.279 0.788 0.320 1.574

T h
ScoCAM LCAM SGradCAMpp

AUC-J↑ CC↑ NSS↑ AUC-J↑ CC↑ NSS↑ AUC-J↑ CC↑ NSS↑

0.0 0.772 0.237 1.016 0.776 0.241 1.033 0.809 0.275 1.181

0.3 0.763 0.231 0.989 0.764 0.233 0.992 0.806 0.269 1.151

0.5 0.735 0.224 0.969 0.737 0.227 0.974 0.726 0.181 0.789

0.7 0.687 0.207 0.916 0.698 0.221 0.978 0.630 0.122 0.501

stem from STANet+’s ability to adapt fixation predictions based on context, rather than persistently highlighting
a single object like video-based CAM methods [22, 30]. This dynamic adaptation aligns more closely with human
attention behavior in visual-audio environments.

To make weakly supervised salient object detection models (e.g., MWS [28], WSSA [31], WSS [29], ScoCAM [56],
LCAM [48], and SGradCAMpp [57]) more comparable to real fixation prediction, their outputs were thresholded
to produce smaller, fixation-like regions. However, as shown in Table 3, this thresholding approach is ineffective
because it does not address the fundamental difference between saliency maps and real human fixations. Unlike
these methods, SCAM+ dynamically integrates spatial, temporal, and auditory cues, enabling it to generate fixation
predictions that better align with human attention behavior.

6.3.2 Quantitative comparisons with fully supervised methods

As shown in Table 2, our method achieves comparable results to the fully supervised methods and even outperforms
some of them. Note that the performance of our approach can be boosted further by including more tagged
audiovisual sequences (e.g., STANet+b in Table 2).

Furthermore, for fair comparison, we also tested another experiment (as shown in Table 4). Both our method
and the other three representative fully supervised methods [11,40,47] are trained on an identical training set, i.e.,
the widely-used 168 video clips (70% of the total 241 sequences) obtained from the six visual-audio sets [41–46].
All these clips have been equipped with real fixations. In our training approach, we have omitted the real fixations
and instead assigned each clip an appropriate video tag. The results reported in Table 4 suggest that our approach
cannot perform well on such a small-scale set, and other SOTA methods also get degenerate. As shown in Table 2, we
can achieve some performance gain by using the VGGSound dataset [33] (STANet+b), but this gain is at a relatively
large expense on computation. The main reason is that a large portion of videos in VGGSound is irrelevant to the
adopted testing sets.

6.4 Computational cost analysis

To analyze the computational efficiency of our model, we report the FLOPs, MACs, and parameter count at different
processing stages. Table 5 quantifies the computational cost of SCAM+. The introduction of multigranularity
processing increases model complexity, which we address using knowledge distillation.

Table 5 presents the results after distillation. The distilled STANet+ model achieves a 52% reduction in FLOPs
and an 89% reduction in parameters while maintaining high prediction accuracy. Furthermore, even on resource-
constrained devices such as Snapdragon 8 Gen 3 and RTX 3060, the performance drop remains minimal (only about
1% precision loss), confirming the feasibility of our approach in diverse deployment settings. Overall, while SCAM+
is computationally intensive during training, the distilled STANet+ network reduces inference costs, making it more
suitable for real-world applications.

6.5 Limitation

We evaluated SCAM+ on the real-world surveillance and video tagging dataset, MOTChallenge [58], to assess
its performance across various real-world scenarios, including surveillance and video tagging. The results on the
MOTChallenge dataset are presented in Figure 12(a). SCAM+ effectively predicts fixations in scenarios like parking
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Table 4 Qualitative comparison between our method and the other three representative fully supervised SOTA models (ACLNet [47], Sal-

GAN [40], DeepNet [11]). All methods were trained on an identical set (168 sequences), where the real fixations are used when training fully

supervised SOTA, while, in our training, only the assigned video tags are used. The numeric results are obtained by testing these models on

the AVAD set [41].

Model AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ Model AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

STANet+ Weakly supervised 0.887 0.361 0.595 0.490 2.318 SalGAN Weakly supervised 0.886 0.360 0.579 0.491 2.550

STANet+ Re-Trained on 168 0.856 0.264 0.609 0.378 1.711 SalGAN Re-Trained on 168 0.845 0.327 0.556 0.382 1.854

ACLNet Fully supervised 0.905 0.446 0.560 0.580 3.170 DeepNet Fully supervised 0.869 0.256 0.561 0.383 1.850

ACLNet Re-trained on 168 0.838 0.329 0.579 0.393 1.843 DeepNet Re-trained on 168 0.852 0.247 0.582 0.410 1.750

Table 5 Computational cost comparison before and after knowledge distillation. Distillation reduces FLOPs by 50%–80%, enabling STANet+

to be deployed on lower-end hardware while maintaining accuracy.

Computational cost of SCAM+

S SA ST

Coarse Fine +Short +Long +Cross Coarse Fine +Long +Cross Coarse Fine +Short +Long +Cross

FLOPs 59.00 77.06 92.92 92.92 92.92 58.48 79.32 200.46 200.46 156.23 172.51 590.32 590.32 590.32

MACs 29.41 38.41 46.41 46.41 46.41 29.18 41.23 100.14 100.14 75.31 86.07 294.93 294.93 294.93

Params 58.03 58.03 138.36 138.36 138.36 371.12 371.12 39.47 39.47 200.09 200.09 21.86 21.86 21.86

SUM FLOPs: 3053.24; MACs: 1523.91; Params: 1818.08

Computational cost of STANet+

LOPs MACs Params Device Precision AUC-J

STANet 264.72 131.99 116.54 Snapdragon 8 Gen 3 0.873

STA+Short 593.78 296.65 39.49
RTX 3060/3070/2080 Ti 1%↓ 0.886

STA+Long 593.78 296.65 39.49

STANet+ 1452.28 725.29 195.52 RTX 3090 0.1%↓ 0.887

Percent 52%↓ 52% ↓ 89% ↓

Figure 12 (Color online) Real-world validation of SCAM+ in surveillance settings, evaluated on the MOTChallenge benchmark [58].

(a) Successful cases where SCAM+ captures human-like attention in pedestrian tracking, parking, and traffic monitoring; (b) a challenging

parking-lot scene where human attention relies on external knowledge and situational logic that SCAM+ does not explicitly model.

lots, urban traffic, and pedestrian tracking, with its predictions aligning closely with the bounding boxes. However,
as shown in Figure 12(b), we observed that SCAM+ faces challenges in more complex scenes. For example, in a park-
ing lot environment, even humans need to combine pedestrian and vehicle motion trajectories with logical reasoning
to make accurate predictions. While SCAM+ incorporates semantic reasoning, it still struggles in scenarios that
require a deeper understanding based on life experience and commonsense knowledge. Future improvements could
focus on integrating external knowledge and enhancing reasoning capabilities to better handle complex real-world
environments.

7 Conclusion

In this paper, we have detailed a novel scheme for converting video-audio semantic category tags to pseudo-fixations.
Compared with the widely used CAM mechanism, the proposed SCAM and SCAM+ are able to produce pseudo-
fixations that are more consistent with real human fixations. We have also compared our model, the STANet+
fixation prediction network trained using our pseudo-fixations, with other SOTA methods. The results favor our
new method over unsupervised and weakly supervised methods. Besides, they also show that our method is even
better than some fully supervised methods.
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