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Abstract Over the past decades, network systems have surged in significance, driven by merging technological advancements. These

systems play pivotal roles in diverse applications ranging from autonomous driving to smart grids, yet they confront complexities arising

from network imperfections and intricate interconnections, which challenge system identification, controller design, as well as stability and

performance analysis. This survey provides an in-depth exploration of network systems from the most recent data-driven perspective,

across four key issues: communication delay, aperiodic sampling, network security, and distributed configurations. By doing so, this

survey enhances our comprehension of the challenges and theoretical innovations within the realm of network systems.
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1 Introduction

The last two decades have borne witness to an unprecedented surge of interest in network systems, driven by the
rapid evolution and merger of computing, communication, networking, and data-centric learning technologies. This
heightened enthusiasm finds its roots in the pivotal role that network systems now occupy within contemporary
engineering systems. These systems span a vast spectrum of engineering applications, including autonomous driv-
ing, intelligent manufacturing, smart grids, and remote healthcare [1–6]. Concurrently, industries are intensifying
their call for systematic methodologies capable of adeptly modeling, analyzing, designing, and enhancing network
systems in a robust, resilient, and sample-efficient manner, where sensor and control data traverse intricate digi-
tal communication channels. This escalating demand underscores the pressing need for innovative solutions and
continued research in the ever-evolving domain of network systems.

Yet, amidst this technological fervor, it is paramount to acknowledge that this type of system is not immune
to several network-induced challenges, including communication imperfections, safety, security, and scalability.
Numerous efforts have been made addressing these challenges when an explicit system model is available; see [7–11].
However, as the scale of the modern networked systems growing, e.g., robotics [12], biology [13], or human-in-the-loop
systems [14], modeling using first principle or identifying an exact system model from data becomes difficult [15],
which highly restricts the practical implementation of the aforementioned control patterns.

Very recently, a convergence of a hundred researchers from diverse backgrounds within the IEEE Control Systems
Society gathered to collectively contemplate a scientific roadmap for the future of our control discipline [15], to quote
from Section 4 of the “Control for Societal-Scale Challenges Roadmap 2030” [16] and Introduction of [15] report:
“One of the major developments in control over the past decade—and one of the most important moving forward—is
the interaction of machine learning and control systems”. Since the key feature of machine learning is to learn a
control law directly from data, this statement indicates the increasing importance of data-centric methods in control
theory, referred to as data-driven control [17, 18].
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Most recently, the fundamental lemma in [19] has attracted reviving interest in this literature due to its advantage
in designing data-driven controllers with rigorous theoretical guarantees. To be specific, this lemma provides a non-
parametric representation of a linear time-invariant (LTI) system using a trajectory of the system. Inspired by this
work, a number of applications and generalizations have been developed, including model predictive control (MPC)
[20–26], optimal control [27–31], robust control [32, 33], dissipativity analysis [34, 35], nonlinear control [36, 37],
among others.

In the remainder of this review, we focus on the fundamental lemma-based data-driven method, which we will
refer to simply as the data-driven control method, and embark on an expedition through the multifaceted landscape
of network systems. Our exploration is categorized into four themes of concern: communication delay, aperiodic
transmission, network security, and distributed configuration. These themes are arguably the most representative
issues of network systems and have been considered in, e.g., [38, 39].

1.1 Communication delay

Communication delay is a prevalent factor in almost all practical engineering systems, including power systems,
vehicle suspension systems, and communication networks. This temporal discrepancy can lead to performance
degradation and even instability. The primary challenge revolves around stability analysis, specifically determining
the maximal allowable upper bound (MAUB) for the delay.

Model-based approaches. When the exact system model is known, several methodologies have been developed,
among which the Lyapunov-Krasovskii stability theorem plays an important role due to its adaptability to time-
varying delay. Guided by this theorem, extensive efforts have been made to reduce the conservatism of stability
conditions by enlarging the MAUB. To this aim, two aspects are often taken into account. One is to develop a
tighter estimation method of the derivative of the Lyapunov functional, while the other lies in designing a suitable
Lyapunov functional. More references can be found in [40–46].

Data-driven approaches. So far, data-driven solutions to this problem have only been considered in [47,48], where
the delays are assumed to be known constants during offline data collection. Under this assumption, data-based
stability conditions under noise-free, measurement noise-corrupted, and process noise-corrupted data were derived.
Although the assumption of exact time delay removes most of the difficulties, their results can be seen as a starting
point in this area, leading to several possible research directions.

1.2 Aperiodic transmission

Central to the investigation of network systems is the challenge of determining the optimal execution frequency
for sensors, controllers, and/or actuators. Striking the right balance between communication cost and overall
system performance is the crux of this matter. Conventional periodic or time-triggered schemes, characterized by
fixed transmission rates, often result in inefficient utilization of communication resources. To tackle this issue, a
resource-efficient scheduling approach for data transmissions, known as event-based control, has been widely studied.
There are two effective event-based approaches, namely, event-triggered control (ETC) and self-triggered control
(STC) [7, 11, 49].

Model-based approaches. An ETC periodically or continuously assesses the system’s state/output to determine
if predefined conditions warrant data transmission [50, 51]. In contrast, an STC determines the next transmission
time by sequentially comparing the predicted future state/output with the most recent triggered state/output.
Consequently, under STCs, sensors can be completely deactivated between sampling times, thereby conserving
energy and extending the sensors lifespan [52–54].

Data-driven approaches. In the literature of data-driven aperiodic transmission, numerous efforts have been
made, including both data-driven ETCs and STCs. Specifically, various data-driven ETCs have been proposed with
respect to noise-free and noisy data, different types of systems, and different ETSs [48, 55–60]. On the other hand,
since designing a data-driven STC requires predicting future trajectories from noisy data, making this problem
rather challenging, only a few results have been derived. Data-driven MPC-based STCs were proposed in [61, 62]
under measurement noise-corrupted data. In the presence of process noise, leveraging a switched system approach,
a self-triggered strategy (STS) was designed in [63] by solving data-based LMIs.

1.3 Network security

In the realm of security for network systems, cyberattacks are categorized based on their objectives: disrupting
availability or compromising data integrity, as discussed in the taxonomy in [64]. Attacks aimed at disrupting
availability manifest as communication interruptions orchestrated by malicious attackers or compromised network
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components, employing techniques like denial-of-service (DoS) [65]. Conversely, attacks targeting data integrity
involve eavesdropping on authentic data and injecting into transmitted data packets false information through false
data injection (FDI) attacks [66]. These attacks not only result in financial losses but also pose substantial risks to
real-world infrastructure, e.g., the smart power grid. Therefore, effective mechanisms should be designed to defend
against attacks and/or to mitigate the associated damages on physical entities. To this aim, a possible remedy is
to design control strategies such that satisfied performance can be maintained regardless of attack strategies, which
is referred to as resilient control.

Model-based approaches. Model-based resilient controllers against DoS attacks have been developed since at least
2015, see [67]. Contributions in this domain are comprehensively detailed in [68–70], along with their associated ref-
erences. For instance, Ref. [71] proposed an asynchronous sampling-and-holding countermeasure that can effectively
realize attack detection even under stealthy attacks. However, achieving a balance between enhanced sensitivity
to cyberattacks and minimized false alarms during normal system operation remains a formidable challenge, as
highlighted in [72]. As cyberattack strategies become increasingly sophisticated and intelligent, the risk of unde-
tectable attacks escalates, potentially leading to catastrophic performance degradation and even system collapse.
Consequently, the latest research in this domain has shifted its focus from addressing individual attack instances to
enhancing the system’s overall robustness against attacks, e.g., [73, 74].

Data-driven approaches. Although considering network security in the context of data-driven design is still an area
of exploration, several noteworthy endeavors deserve mention, e.g., FDI detection in [75], resilient control against
FDI attacks in [76, 77], and resilient control against DoS attacks in [21]. To be specific, the work [75] designed a
data-driven FDI detector, which has demonstrated performance levels comparable to its model-based counterparts.
Moreover, Ref. [21] developed a data-driven predictive controller achieving maximum resilience against DoS attacks.
Furthermore, when noise-free input-state data are available, data-driven resilient control under FDI attacks was
investigated in [76], and this was extended to consider noisy data in [77]. These pioneering efforts highlight the
potential of data-driven techniques in enhancing the cybersecurity of network systems.

1.4 Distributed configuration

Distributed network systems represent a specific configuration within the realm of network systems, characterized by
two key features [78]. Firstly, information exchange between subsystems or individual agents is facilitated through
a shared communication network, linking components like sensors, controllers, and actuators. Secondly, the plant
itself consists of numerous simple interacting units, often distributed physically and interconnected to collaboratively
perform complex tasks. Within this context, each controller has the capability to share its local information with
neighboring controllers, providing additional insights into the plant’s dynamics. This distributed configuration
offers significant advantages, including modularity, scalability, and robustness, all of which are essential in practical
engineering systems, such as transportation networks, electrical power grids, smart manufacturing systems, and
flocking systems.

On the other hand, multi-agent systems (MASs) are commonly used to model distributed network systems, where
local information gathered from neighboring agents is utilized to control the system’s global behavior. Consensus
control is a fundamental challenge in MASs, attracting substantial attention from both academia and industry over
the past two decades. This is due to the widespread applications of MASs in diverse domains, including satellite
attitude alignment, formation control of multiple robots, estimation over sensor networks, and power management
in electrical grids.

Model-based approaches. The core idea behind consensus in MASs is to design a networked control protocol that
ensures all agents converge to a common point or state value. The theoretical foundations for posing and solving
consensus problems in MASs were established by earlier studies such as [79–81]. Subsequently, a plethora of research
has been conducted, contributing to different aspects of the consensus problem, including leader-following consensus,
formation control, output synchronization, event-triggered consensus, and distributed optimization. Notable studies
in this area include [82–90].

Data-driven approaches. The aforementioned advancements in data-driven control have led to the development
of various distributed data-driven control techniques to address a wide range of control problems. Notable research
in this domain includes studies such as [91–97], which delve into distributed controller design and stability analysis.
To be specific, Refs. [91, 92, 98] explored distributed data-driven ETC/STC by leveraging agent-wise data-driven
reformulations of input-state parametrizations. Further, distributed data-driven controllers tailored for heteroge-
neous MASs were developed in [94], assuming perfect knowledge of process noise during offline data collection. To
remove this strict assumption, the study in [95] proposed a distributed data-driven polytopic approach for output
synchronization in heterogeneous MASs. Most recently, leveraging the internal model principle, Ref. [99] proposed
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Table 1 Notations.

Variable Definition

N (N+) Set of non-negative (positive) integers

N[a,b] N ∩ [a, b], a, b ∈ N

Na Set of all integers greater than or equal to a, with a ∈ N

R Set of all real numbers

R>a (R>a) Set of all real numbers greater than (greater than or equal to) a, with a ∈ R

R
n Set of all n-dimensional vectors

R
n×m Set of all n × m-dimensional matrices

a! 0! = 1 and a! := a(a − 1) · · · 1 where a ∈ N+

Ci
m Ci

m := m!/i!(m − i)! with m, i ∈ N and m > i

P ≻ 0 (P � 0) P is a symmetric positive (semi)definite matrix

diag{· · · } A block-diagonal matrix

Sym{P} The sum of P⊤ and P

[·] If symmetry elements in the matrix

0 (I) Zero (identity) matrices of appropriate dimensions

∗ The symmetric term in block matrices

λP (λP ) The smallest (largest) eigenvalue of a square matrix P

M† The left pseudo-inverse of matrix M

‖x‖1, ‖x‖, ‖x‖∞ The ℓ1-, ℓ2- (a.k.a., Euclidean), and ℓ∞-norm, respectively

‖x‖P The weighted norm
√
x⊤Px with P = P⊤ ≻ 0

‖M‖ The spectral norm of matrix M

Bδ {x ∈ R
n | ‖x‖ 6 δ}

Tr(M) The trace of matrix M

x[t1,t1+T−1] [x⊤(t1) · · · x⊤(t1 + T − 1)]⊤

xpre Pre-collected data xpre := x[0,T−1]

L2[0, ∞] The space of square-summable vector sequences over [0, ∞]

x(t) ∈ L2[0, ∞] ‖x(t)‖L2 = (
∑∞

t=0 x⊤(t)x(t))1/2

data-driven methods for both linear and nonlinear systems, and achieved zero tracking error for LTI systems.

1.5 Paper structure

In this paper, our primary objective is to offer a comprehensive overview of data-driven control and stabilization
analysis methodologies as applied in recent studies investigating unknown network systems. We delve into key
aspects, including time delay, variable sampling/transmission intervals, security concerns, and distributed control
problems. Our study unfolds across four structured sections, guiding readers through this multifaceted exploration.

2 Preliminaries on data-driven control

In the context of data-driven control, it is often assumed that noisy data can be collected beforehand, resulting
in a multitude of systems consistent with these data. Therefore, rather than designing a stabilizing controller for
a single system as in the model-based approach, the task typically involves designing a stabilizing controller for a
set of systems. One of the important factors deciding whether such a control law is feasible is the size of the set,
which depends on the noise assumption. In this section, we review two data-based system representations under
two commonly used noise assumptions.

2.1 Notations

Throughout the paper, we adhere to a standard set of notations, which are detailed in Table 1 for clarity and
reference.

In addition, an important definition indicating the richness of the collected data is given below.

Definition 1 (Persistency of excitation). Given any L ∈ N+, a signal x[0,T−1] ∈ R
n with T ∈ N(n+1)L−1 is

called persistently exciting of order L if rank(HL(x[0,T−1])) = nL where HL(x[0,T−1]) is the Hankel matrix of signal
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x[0,T−1] defined by

HL(x[0,T−1]) :=




x(0) x(1) ··· x(N−L)
x(1) x(2) ··· x(N−L+1)

...
...

. . .
...

x(L−1) x(L) ··· x(N−1)


 .

2.2 QMI-formed data-driven representation

Consider the following perturbed dynamic system:

x(t+ 1) = Ax(t) +Bu(t) +Bww(t), (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input and w(t) ∈ R
nw is the unknown noise accounting

for various factors, e.g., process noise or unmodeled system dynamics. Matrices A, B are unknown matrices but
assumed to be controllable, and matrix Bw ∈ R

n×nw is a known matrix with full column rank. For a given T ∈ N+,
suppose input-state data (u[0,T−1], x[0,T ]) can be obtained from offline experiments. Define data matrices U , X ,
X+, and W as

U := [u(0) u(1) · · · u(T − 1)], (2a)

X := [x(0) x(1) · · · x(T − 1)], (2b)

X+ := [x(1) x(2) · · · x(T )], (2c)

W := [w(0) w(1) · · · w(T − 1)], (2d)

where W represents the unknown noise sequence {w(t)}T−1
t=0 . It becomes evident from (1) that

X+ = AX +BU +BwW. (3)

Although exact knowledge of the matrix W is unavailable, in practical scenarios, it is often reasonable to assume
that this noise remains bounded.

Assumption 1 (Quadratic noise). The noise sequence {w(t)}T−1
t=0 assembled within the matrix W satisfiesW ∈ W

with

W =

{
W̄ ∈ R

nw×T
∣∣∣
[

W̄⊤

Inw

]⊤
Pd

[
W̄⊤

Inw

]
� 0

}
, (4)

where Pd is a predetermined symmetric matrix satisfying the condition
[

I
0

]⊤
Pd

[
I
0

]
≺ 0.

Remark 1. Assumption 1, dubbed as the quadratic noise assumption, provides a versatile framework for char-
acterizing bounded additive noise. This framework has been instrumental and has found applications in related
studies, e.g., [28, 100, 101]. For instance, Assumption 1 can be specialized to represent quadratic full-block noise
bounds by [

W̄⊤

I

]⊤ [
Qd Sd

∗ Rd

] [
W̄⊤

I

]
� 0, (5)

for some known matrices Qd ≺ 0 ∈ R
T×T , Sd ∈ R

T×nw , and Rd = R⊤
d ∈ R

nw×nw . Considering pointwise bounded
disturbances of the form ‖w(t)‖2 6 w̄ for all t ∈ N, the multiplier Pd of the constraint (4) is chosen as

Pd =

[
−ǫI 0

∗ ǫT w̄2I

]
, ǫ > 0, (6)

which is a special case of (5) with Qd = −ǫI, Rd = ǫT w̄2I, and Sd = 0, where ǫ > 0 is a free scalar to be designed.
Alternatively, considering the noise bound of each data separately, Pd can be given as

Pd =

[
−diag{ǫi}T−1

i=0 0

∗ ∑T−1
i=0 ǫiw̄

2I

]
, ǫi > 0. (7)

Choosing Pd in (7) is less conservative compared to the form in (6), since T free scalars {ǫi}T−1
i=0 are used to enhance

the flexibility of the multiplier.



Wang G, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 121201:6

Under Assumption 1, although an equivalent data-driven representation of the actual system matrices [A B]
cannot be established, a set of systems that contains [A B] can be constructed from data, presented in the following
lemma.

Lemma 1 (QMI-formed data-based representation). If the matrix [ UX ] has full row rank, the set ΣAB = {[Ā B̄] ∈
R

n×(n+m)|
[

[Ā B̄]⊤

I

]⊤
ΘAB[·]⊤ � 0} where ΘAB :=

[ −X 0
−U 0
X+ Bw

]
Pd[·]⊤ characterizes all matrices (Ā, B̄) consistent

with the data (U,X,X+).

Noting that the actual system [A B] ∈ ΣAB, if a controller is designed to stabilize all systems within this set,
the actual system [A B] can be stabilized. This is accomplished using robust control methods, such as the S-lemma
in [100] and Petersen’s lemma in [102].

In this setting, it has been shown that reducing the size of the system set can improve the feasibility of the
controller. Noting that the system representation in Lemma 1 is constructed based on an ellipsoid noise bound,
one possible way to reduce the size of this set is to consider a more accurate noise model, such as using a polytope.
This will be introduced in Subsection 2.3.

2.3 Data-driven polytopic representation

In this subsection, we consider distributed systems and review a data-driven polytopic representation, as presented
in [95]. Compared with the QMI formulation above, this representation not only reduces the size of the system set,
but also provides a flexible way to account for uncertainty in system behavior.

Assume that we can gather a finite set of state-input-output data {xi(t), ui(t), yi(t)}Tt=0 for each agent i ∈ N[1,N ].
These data points are collected offline by imposing a sequence of persistently exciting control inputs to the following
perturbed system:

xi(t+ 1) = Aixi(t) +Biui(t) + wi(t),

yi(t) = Cixi(t) + vi(t).
(8)

Here, xi(t) ∈ R
n, ui(t) ∈ R

m, wi(t) ∈ R
nwi and vi(t) ∈ R

nvi represent the state, control input, unknown process
noise, and unknown measurement noise of the ith agent, respectively. The unknown noises wi(t), vi(t) satisfy the
following assumption.

Assumption 2 (Polytopic noise). For every time step t and agent i ∈ N[1,N ], the process noise wi(t) and
measurement noise vi(t) are bounded by well-defined polytopic sets. These sets are defined as

Pwi =
{
w̄i|w̄i =

γwi∑

k=1

β
(k)
w,iŵ

(k)
i , β

(k)
w,i > 0,

γwi∑

k=1

β
(k)
w,i = 1

}
,

Pv̄i =
{
v̄i|v̄i =

γvi∑

k=1

β
(k)
v,i v̂

(k)
i , β

(k)
v,i > 0,

γvi∑

k=1

β
(k)
v,i = 1

}
,

where ŵ
(k)
i and v̂

(k)
i represent the k-th vertices of polytopes Pwi and Pvi , respectively, and γwi and γvi denote the

number of vertices.

The unknown process noise of length T is defined as {wi(t)}T−1
t=0 . Consequently, for each agent i, the stacked

matrix Wi = [wi(0) wi(1) · · · wi(T − 1)] belongs to a set denoted as MWi , formally expressed as Wi ∈ MWi . It is
worth noting that MWi is a matrix polytope, described by the following formulation:

MWi =

{
W̄i

∣∣∣W̄i =

γwi
T∑

k=1

β
(k)
W,iŴ

(k)
i , β

(k)
W,i > 0,

γwi
T∑

k=1

β
(k)
W,i = 1

}
. (9)

This matrix polytope MWi results from the concatenation of multiple disturbance polytopes Pwi and is constructed
by

Ŵ
(1+(k−1)T )
i =

[
ŵ

(k)
i 0ni×(T−1)

]
,

Ŵ
(l+(k−1)T )
i =

[
0nwi

×(l−1) ŵ
(k)
i 0nwi

×(T−l)

]
,

Ŵ
(T+(k−1)T )
i =

[
0nwi

×(T−1) ŵ
(k)
i

]
,
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for all k ∈ N[1,γwi
], l ∈ N[2,T−1], and i ∈ N[1,N ]. It should be emphasized that the noise is represented using a

predefined polytope at each instant, and then these polytopes are concatenated to form a comprehensive matrix
polytope MWi across time length T . In this way, the noise can be adequately characterized at each instant rather
than over a period of time T .

Similarly, the sequence of measurement noise {vi(t)}T−1
t=0 is collected in the matrix Vi = [vi(0) vi(1) · · · vi(T −1)],

which also belongs to a matrix polytope MVi , defined as

MVi =

{
V̄i

∣∣V̄i =

γvi
T∑

k=1

β
(k)
V,i V̂

(k)
i , β

(k)
V,i > 0,

γvi
T∑

k=1

β
(k)
V,i = 1

}
. (10)

Upon introducing this notation, a data-based polytopic representation of MASs is given as follows.

Lemma 2 (Data-based polytopic representation [95]). Consider input-state-output data generated per agent from
(8) gathered in matrices

Ui := [ui(0) ui(1) . . . ui(T − 1)] ,

Xi := [xi(0) xi(1) . . . xi(T − 1)] ,

Xi+ := [xi(1) xi(2) . . . xi(T )] ,

Yi := [yi(0) yi(1) . . . yi(T − 1)] .

The set of system matrices (Āi, B̄i, C̄i) that can explain the data (Ui, Xi, Xi+, Yi) is given as follows:

Σi :=
{
(Āi, B̄i, C̄i)|Xi+ = ĀiXi + B̄iUi + W̄i, Yi = C̄iXi + V̄i, W̄i ∈ MWi , V̄i ∈ MVi

}
. (11)

Suppose Assumption 2 holds. If the data matrices
[
Ui

Xi

]
and Xi for i ∈ N[1,N ] have full row rank, the matrix

polytope

Mi =
{
(MZi ,MCi)

∣∣MZi = (Xi+ −MWi)
[
Ui

Xi

]†
,MCi = (Yi −MVi)X

†
i

}
(12)

characterizes all matrices (Āi, B̄i, C̄i) consistent with the data (Ui, Xi, Xi+, Yi), i.e., Mi ⊇ Σi.

Remark 2 (QMI-formed vs. polytopic representations). Ellipsoids (confer (cf.) Assumption 1) and polytopes
(cf. Assumption 2) are two standard approaches to modeling unknown yet bounded noise. According to [103], the
shape of polytopes is, in some sense, more flexible than that of ellipsoids (i.e., typically in terms of a quadratic
full-block bound). Specifically, a polytope can adjust its facets independently in each direction, whereas an ellipsoid
is described by a single quadratic form and must remain centrally symmetric. As such, a polytopic noise set can
match the data more closely and yield less conservative data-driven stability conditions, albeit at the price of higher
computational effort. Conversely, the QMI-formed representation generally requires fewer computational resources,
particularly when dealing with large-scale systems or extensive data, where its advantages are more pronounced.

3 Communication delay

This section briefly reviews the main results in [47, 48], i.e., data-driven design for time-delay systems under mea-
surement noise corrupted data in [47] and under process noise corrupted data in [48].

3.1 Data-based design under measurement noise

Consider a discrete-time LTI system with unknown time-varying delays described by

x(t+ 1) = Ax(t) +Bu(t− d(t)), (13a)

u(t) = Kx(t), (13b)

where d(t) represents input delays with an upper bound of d̄. The objective is twofold: (i) for a given d̄, find a
stabilizing matrix K, and (ii) enlarge the given bound d̄ to find a maximum tolerable upper bound of the delay,
i.e., an MAUB, and its corresponding gain K.

To derive stability conditions in the absence of the system model, a data-based system representation as in
Lemma 1, should be derived. This is challenging due to the presence of an unknown time-varying time delay d(t).



Wang G, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 121201:8

To address this problem, the work in [47] considered a simplified situation by assuming that offline-collected data
are generated from system (13) with a known constant delay.

Specifically, for a time horizon [0, T ], suppose the input-state data (xpre, upre) := {x(t), u(t−d0)}Tt=0 is generated
from the system x(t+ 1) = Ax(t) +Bu(t− d0), where d0 ∈ N+ is known. Assume that a sequence of measurement
noise-corrupted input-state data is available and collected in the matrix Φd := Φnom

d + Φnoise
d , where Φnom

d =
[U⊤

d X⊤]⊤ represents the noise-free input-state data, and Φnoise
d represents the noise matrix. Let U ∈ R

(m+n)×(m+n)

and V ∈ R
T×T be orthonormal matrices such that U and Φd share the same row space, and V and Φ⊤

d share the
same row space, i.e., Range(U) = Range(Φd) and Range(V) = Range(Φ⊤

d ). Decompose matrices Φd and Φnom
d

by Φd = U [Φ11
d 0]V⊤ and Φnom

d = U [Φnom,11
d Φnom,12

d ]V⊤. To implement the data-driven design, the following
assumption is imposed.

Assumption 3 ( [47, Assumption V.1]). Matrices Φd and Φnom
d satisfy

(1) rank(Φd) = rank(Φnom
d ) = m+ n,

(2) ‖Φnom,11
d ‖2‖Φ†

d‖2 = ‖Φnom,11
d ‖2‖(Φ11

d )−1‖2 < 1.

Under this assumption, a stabilizing gain K can be designed following [47, Theorem V.3]. However, it can be
observed that Assumption 3 relies on the unknown noise-free data matrix Φnom

d . This renders the condition rather
challenging to verify, and hence limits the practical use of the design method. To address this concern, two possible
research directions include verifying these conditions using data and finding other data-driven methods that relax
these conditions.

3.2 Data-based design under process noise

Due to strict conditions in Assumption 3, in the context of data-driven design using input-state data, it is often
assumed that offline collected data are corrupted by process noise rather than measurement noise. In the following,
we review the method in [48], which extends Lemma 1 to constant time-delay systems and presents a data-based
control method.

Upon collecting input-state data from the perturbed time-delay system

x(t+ 1) = Ax(t) +Bu(t− d0) +Bww(t), (14)

we get data matrices X+, Ud, and X , satisfying X+= AX +BUd +BwW with W obeying Assumption 1.
Similar to Lemma 1, a set Σd

AB containing all the systems consistent with collected data can be formulated by

Σd
AB =

{
[Ā B̄] ∈ R

n×(n+m)
∣∣∣
[
[Ā B̄]⊤

I

]⊤
Θd

AB

[
[Ā B̄]⊤

I

]
� 0

}
,

where

Θd
AB :=




−X 0

−Ud 0

X+ Bw




[
Qd Sd

∗ Rd

]



−X 0

−Ud 0

X+ Bw




⊤

.

Subsequently, by applying the Lyapunov function V (t) in [40] in conjunction with Jensen-type inequality and
reciprocally convex approaches, a data-based stability condition with time delays is derived as follows.

Theorem 1. For a given scalar d̄ > 0, the system (13) remains stable for any [Ā B̄] ∈ Σd
AB with d(t) ∈ [0, d̄],

provided there exists a scalar ε > 0, along with matrices P ≻ 0, Q ≻ 0, R ≻ 0, S, and F , such that the following
LMI is satisfied:

[
G3 G2 + F⊤

∗ G1 + Ξ + Ψ̂

]
≺ 0, (15)

where

Ψ̂ := −FL4 − (FL4)
⊤,

G1 := εY⊤
1 Θ̄d

ABY1,G2 := εY⊤
2 Θ̄d

ABY1,G3 := εY⊤
2 Θ̄d

ABY2,
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Θ̄d
AB :=

[
−R̄d S̄⊤

d

∗ −Q̄d

]
,

[
Q̄d S̄d

∗ R̄d

]
:=

[
Qd Sd

∗ Rd

]−1

,

Y1 :=
[
0 L⊤

1 (KL2)
⊤
]⊤

, Y2 :=
[
I 0 0

]
.

Furthermore, to achieve better performance under different time delays, the following theorem provides a data-
based LMI for designing the controller gain K.

Theorem 2. For a given scalar d̄ > 0, there exists a controller gain K that ensures the stability of system (13)
for any [Ā B̄] ∈ Σd

AB with d(t) ∈ [0, d̄]. This is achievable when the following conditions are met: a scalar ε > 0,
matrices P ≻ 0, Q ≻ 0, R ≻ 0, S, G, and Kc, satisfying the subsequent LMI:

[
B1 B2 + [GL⊤

1 KcL
⊤
2 ]

⊤

∗ B3 + Ξ+ Ψ̄

]
≺ 0. (16)

Here, the terms are defined as follows:

Ψ̄ := −(L⊤
1 + L⊤

4 )GL4 − ((L⊤
1 + L⊤

4 )GL4)
⊤,

B1 := εV1Θ
d
ABV⊤

1 , B2 := εV1Θ
d
ABV⊤

2 , B3 := εV2Θ
d
ABV⊤

2 ,

V1 :=
[

I 0 0
0 1 0

]
, V2 :=

[
0 0 (L⊤

1 + ǫL⊤
2 )
]
.

Moreover, the controller gain K is designed as K = KcG
−1.

By iteratively enlarging d̄ until LMI (16) no longer holds, one can derive an MAUB. Theorems 1 and 2 are
extensions of [48, Theorems 3 and 4] in the discrete-time domain. The proofs of these theorems can be deduced
from those of [48, Theorems 3 and 4]. It is known that the matrix set Σd

AB for Theorems 1 and 2 is consistent with
the noise bound in Assumption 1, as established in Lemma 1. Compared to [47], Theorems 1 and 2 deal with
process noise under a more general assumption (cf. Assumption 1), which is easier to verify. However, the data-
driven design presented above also relies on the assumption that the collected data are generated from a system with
a known constant time delay, which limits its practical application. Incorporating time-varying delays in control
design, where the exact delays within bounded intervals remain uncertain, better aligns with practical engineering
requirements. However, such delays fundamentally intensify the complexity of data-driven control systems. Under
the Willems’ fundamental lemma framework, the time-varying causality between inputs and outputs compromises
the data’s capability to accurately characterize system dynamics. This motivates a robust control methodology
that models delayed states as bounded uncertainties with known boundary information (i.e., delay upper/lower
limits), thereby reformulating the problem into convex-constrained control synthesis. The computational complexity
escalates geometrically since each delayed state must be represented as a vertex of the convex hull. This limitation
underscores the necessity for refined delay characterization techniques to achieve practically feasible solutions. A
critical open challenge persists: how to systematically extract effective control strategies from temporally ordered
data under incomplete delay information, which serves as a direction for our future research.

4 Aperiodic transmission

As discussed in Subsection 1.2, ETC and STC are two effective event-based approaches to reducing transmission
frequency. Hence, in the following sections, we start by reviewing a data-driven ETC presented in [58], followed by
data-driven STCs under measurement noise in [61, 62] and process corrupted noise in [63].

4.1 Data-based event-triggered control

To start with, we introduce a standard problem setup in the context of event-based control under a periodic dynamic
ETS. Consider the following discrete-time linear state-feedback aperiodically sampled system:

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0 ∈ R
n, (17a)

u(t) = Kx(tk), t ∈ N[tk,tk+1−1], (17b)

where tk ∈ N is the sampling time generated by a periodic dynamic ETS introduced as follows:

tk+1 = tk + hmin
{
j ∈ N+

∣∣∣η(τkj ) + θρ(τkj ) < 0
}
. (18)
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Here h ∈ N+ is the sampling interval obeying 1 6 h 6 h 6 h̄ for given lower and upper bounds h, h̄ ∈ N+; θ > 0 is
to be designed; τkj := tk + jh, j ∈ N+; and ρ(τkj ) is given by

ρ(τkj ) := σ1x
⊤(τkj )Ωx(τ

k
j ) + σ2x

⊤(tk)Ωx(tk)− e⊤(τkj )Ωe(τ
k
j ).

Here Ω ≻ 0 is some weight matrix; σ1 > 0 and σ2 > 0 are triggering parameters to be designed; e(τkj ) :=

x(τkj )− x(tk) denotes the error between the sampled signals x(τkj ) at the current sampling instant and x(tk) at the

latest transmission instant; and, η(t) is a dynamic variable, satisfying η(t) = η(τkj ) for t ∈ N[τk
j ,τk

j+1−1] and

η(τkj+1)− η(τkj ) = −λη(τkj ) + ρ(τkj ), (19)

where η(0) > 0 and λ > 0 are given.
The objective of designing a data-driven ETC is that given noisy input-state data (upre, xpre) generated from

system (1), design a matrix K and the matrix Ω in the ETS (18) guaranteeing the stability of the system (17). This
can be achieved by the following theorem.

Theorem 3 ([58, Theorem 2]). For a given set of scalars h̄ > h > 1, σ1 > 0, σ2 > 0, ǫ, λ > 0, and θ > 0 satisfying
1 − λ − 1

θ > 0, the existence of a controller gain K is guaranteed, leading to asymptotic stability for the system
(17) under the triggering condition (18) for any [Ā B̄] ∈ ΣAB. Additionally, it is shown that η(τkj ) converges to the
origin, provided there exists a scalar ε > 0, and matrices P ≻ 0, R1 ≻ 0, R2 ≻ 0, Ωz ≻ 0, S, N1, N2, G, and Kc,
such that the following LMIs hold for all h ∈ [h, h̄]:




T1 T2 + F 0

∗ T3 + Ξ0 + hΞς + Ψ̄ + Ō hNς

∗ ∗ −hRς


 ≺ 0, (20)

where

ς = 1, 2, Ψ̄ := Sym
{
−DGL2

}
,

Ō := σ1L
⊤
3 ΩzL3 + σ2L

⊤
7 ΩzL7 − (L3 − L7)

⊤Ωz(L3 − L7),

D := (L1 + ǫL2)
⊤, F :=

[
L⊤
1 G

⊤, L⊤
7 K

⊤
c

]⊤
,

T1 := εV1ΘABV⊤
1 , T2 := εV1ΘABV⊤

2 , T3 := εV2ΘABV⊤
2 ,

V1 :=
[
I 0

]
, V2 :=

[
0 D

]
,

and other matrices are outlined in [58, Theorem 2]. Furthermore, the controller gainK is determined asK = KcG
−1,

and the triggering matrix Ω is characterized as G−1⊤ΩzG
−1.

The theorem is built on the looped-function approach [58], which provides less conservative stability conditions
compared with other Lyapunov functions. Theorem 3 follows the co-design methodology established in [104, 105],
with its core contribution being the joint optimization framework for the control gain under the proposed event-
triggered mechanism in (18). This framework inherently generates a unified convex-constrained synthesis problem
that simultaneously addresses stability and resource efficiency. The proposed formulation achieves superior engi-
neering applicability through structural parsimony and systematic constraint handling.

The data-driven inequalities in Theorem 3 are derived via S-procedure [106] through a systematic integration of
Lyapunov stability theory and the QMI-formed data-driven representation. We now outline the key steps of this
derivation. Chose the functional V (z, t) where x(t) = Gz(t) and G ∈ R

n×n is nonsingular. The forward difference
of V (z, t) satisfies

∆V (z, t) 6 ξ⊤z (t)

[
t− τkj

h
Ῡ1(h) +

τkj+1 − t

h
Ῡ2(h)

]
ξz(t),

where the terms Ῡ1(h) and Ῡ2(h) are restructured as follows:

Ῡς(h) :=

[
[DĀ DB̄]⊤

I

]⊤ [
0 F
∗ Ξ0 + hΞς + Ψ̄ + Ō + hNςR−1

ς N⊤
ς

]
[·] , ς = 1, 2.
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According to the data-based representation in Lemma 1, it holds for any [Ā B̄] ∈ ΣAB that

[
[Ā B̄]⊤

I

]⊤
ΘAB

[
[Ā B̄]⊤

I

]
� 0.

By the full-block S-procedure [106], we have Ῡ1(h) ≺ 0 and Ῡ2(h) ≺ 0 for any [Ā B̄] ∈ ΣAB if there exists a scalar
ε > 0 such that for ς = 1, 2,

[
0 F
∗ Ξ0 + hΞς + Ψ̄ + Ō + hNςR−1

ς N⊤
ς

]
+ ε

[
V1ΘABV⊤

1 V1ΘABV⊤
2

∗ V2ΘABV⊤
2

]
≺ 0. (21)

Finally, the Schur Complement Lemma ensures that the inequalities in (21) are equivalent to (20). This derivation
systematically bridges classical Lyapunov stability criteria with data-driven formulations through the S-Procedure,
thereby establishing data-driven verifiable conditions for guaranteeing the negative definiteness of the Lyapunov
function difference. Such theoretical integration, achieved by constructing data-driven counterparts to model-based
stability conditions through the S-procedure, serves as the theoretical cornerstone of the mentioned methodologies
in the paper.

4.2 Data-driven self-triggered control

This section briefly reviews the main results in [48,61,62], i.e., data-driven STC under measurement noise corrupted
data in [61, 62], and under process noise corrupted data in [63].

4.2.1 Data-driven STC under measurement noise

For the design of an STC, we investigate the same system with the ETC section, i.e., system (17), but replace the
control input by u(t) = Kζ(tk) with

ζ(tk) = x(tk) + v(tk), (22)

where ζ(tk) represents the observed state and v(tk) is the noise in the measurement. For distinction, let vp(t)
represent the noise in the offline collected data and v(t) the noise during online operation. We assume that v(tk)
belongs to a known bounded set Bv̄ where v̄ > 0 is a constant, such that ‖vp(t)‖∞ 6 v̄ for all t ∈ N[0,T−1] and
‖v(t)‖∞ 6 v̄ for all t ∈ N. The triggering time tk is generated by

tk := tk−1 + sk−1, t0 := 0, k ∈ N+, (23)

where sk is the inter-triggering time between two consecutive transmissions. The objective here is that, given a
sequence of measurement noise corrupted input-state data {u(t), ζ(t)}Tt=0, design a matrix K and an STS generating
sk such that system (17a) in closed-loop with the controller u(t) = Kζ(tk) achieves input-to-state stability (ISS).
Different from Theorem 3, the following method designs matrix K and inter-triggering time sk separately.

To be specific, a matrix K rendering A+BK Schur-stable is first designed from {u(t), ζ(t)}Tt=0 using any data-
driven method, and then sk is generated by an MPC-based method below. For a given prediction horizon L ∈ N+,
at each triggering time tk, the self-triggering module solves the following optimization problem based on ζ(tk), to
predict the states for the subsequent L time instances:

J∗
L(ζ(tk)) := min

g(tk),h(tk)

x̄i(tk)

L−1∑

i=0

‖x̄i(tk)‖Q + (λh/v̄)‖h(tk)‖2 + λg v̄‖g(tk)‖2 (24a)

s.t.

[
u(tk)

x̄(tk) + h(tk)

]
=

[
HL(u

pre)

HL(ζ
pre)

]
g(tk), (24b)

x̄0(tk) = ζ(tk), (24c)

where u(tk) is replicated L times as ū(tk), and x̄(tk), h(tk), g(tk) are the optimization variables; x̄(tk) predicts
the future L − 1 states from tk; g(tk) is defined as in the fundamental lemma in [19]; and h(tk) is a slack vector
compensating for the influence of measurement noise.

The self-triggering time in (23) is determined based on the optimal solution (x̄∗(tk), g∗(tk), h∗(tk)) of Problem
(24), i.e.,

tk+1 := tk +min{L− 1, sk}, t0 := 0 (25)
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with

sk := sup
{

sk ∈ N+ |‖x̄∗

τ (tk)− ζ(tk)‖∞ + ‖h∗

sk
(tk)‖∞

+ ρ
sk
(

v̄ + v̄‖g∗(tk)‖1 + ‖h∗

0(tk)‖∞
)

+ v̄‖g∗(tk)‖1 6 σ‖ζ(tk)‖∞
}

, (26)

where the constant σ ∈ (0, 1) balances between the system performance and the inter-triggering time, and ρsk :=
‖Ask‖∞ is the system divergence rate when u(t) = 0; see [61, Algorithm 1] for details on a data-driven over-
approximation method for ρsk . Recursive feasibility of problem (24) and the stability analysis of the closed-loop
system can be found in [61, Theorem 3.1].

When only noisy input-output data are available, the aforementioned MPC-based STC can be extended in two
ways. First, one can construct an output feedback controller as in [107,108] and extend both Problem (24) and the
STS in (25) directly. Alternatively, noting that MPCs are capable of providing a sequence of optimal inputs at each
time, instead of applying the output feedback controller, one can design a data-driven MPC and use its optimal
solution for both system control and STS design. In the following, we briefly review the latter approach, which was
extended from [62] by considering noise also in the offline collected data.

Consider the following dynamics:

x(t+ 1) = Ax(t) +Bu(t), t ∈ N, (27a)

y(t) = Cx(t) +Du(t) + v(t), (27b)

where u(t) and y(t) are available. The equilibrium point is defined as (ue, ye). Assume that the pair (A,C) is
observable with a known observability index η. Unlike the state feedback case presented above, we only consider
triggering on the output side; i.e., the input u(t) is transmitted to the plant at each time t, while the output y(t)
is transmitted only at the triggering times tk. The objective here is that given noisy input-output data (upre, ypre)
generated from (27), design u(t) and an STS generating sk rendering the closed-loop system (27) ISS.

Before proceeding, some notations are introduced. For t ∈ Nη, define the extended state ξ(t) by

ξ(t) :=

[
u[t−η,t−1]

y[t−η,t−1]

]
∈ R

nξ , (28)

where nξ := (m+ p)η. It follows iteratively from (27) that

y(t) = CAηx(t− η) + CAη−1Bu(t− η) + · · ·
+ CBu(t− 1) +Du(t) + Ev[t−η,t],

where E is related to matrices A, B, C, and D. Since the pair (A,C) is observable, there exist some matrices Υ,
Υ1, Υ2, and Υv such that x(t− η) = Υ1u[t−η,t−1] +Υ2y[t−η,t−1] +Υvv[t−η,t−1] := Υξ(t) +Υvv[t−η,t−1]. Building on
this result, system (27) can be transformed into

ξ(t+ 1) = Ãξ(t) + B̃u(t) + Ẽv[t−η,t], t ∈ Nη, (29a)

y(t) = C̃ξ(t) + D̃u(t) + v(t), (29b)

for suitable matrices (Ã, B̃, C̃, D̃, Ẽ) depending on (A,B,C,D). For subsequent analysis, let us define the equilib-
rium point of the new system (29) as

ξe :=
[
ue⊤ · · · ue⊤
︸ ︷︷ ︸

η times

ye⊤ · · · ye⊤︸ ︷︷ ︸
η times

]⊤
.

An assumption regarding this extended system is imposed.

Assumption 4. There exist matrices P = P⊤ ≻ 0, R = R⊤ ≻ 0, Q = Q⊤ ≻ 0, K ∈ R
m×nξ , and a set

Ξr := {ξ ∈ R
nξ |‖ξ − ξe‖P 6 r} ⊆ U

η × R
η such that for all ξ ∈ Ξr , u = ue +K(ξ − ξe), and y = (C̃ + D̃K)ξ, the

following statements hold true.
(1) u ∈ U, Ãξ + B̃u ∈ Ξr, and,
(2) the following inequality holds:

‖(Ã+ B̃K)ξ‖2P 6 ‖ξ‖2P − ‖Kξ‖2R − ‖y‖2Q. (30)
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Building upon Assumption 4, a data-driven MPC-based STC is specified as follows. Set ξe = 0 for simplicity. At
each triggering time tk, the STS solves the following optimization problem based on an output packet containing
the past η measurements, i.e., y[tk−η,tk−1], to predict the trajectory for the subsequent L time instants.

J∗
L(utk , ytk) := min

{g(tk),h(tk)

ȳ(tk),ū(tk)}

L−1∑

i=−η

‖ūi(tk)‖2R + ‖ȳi(tk)‖2Q +
λh

v̄
‖h(tk)‖2

+ λg v̄‖g(tk)‖2 + ‖ξ̄L(tk)‖2P (31a)

s.t.

[
ū(tk)

ȳ(tk) + h(tk)

]
=

[
HL+η(u

pre)

HL+η(y
pre)

]
g(tk), (31b)

[
ū[−η,−1](tk)

ȳ[−η,−1](tk)

]
=

[
u[tk−η,tk−1]

y[tk−η,tk−1]

]
, (31c)

ξ̄L(tk) ∈ Ξǫ, (31d)

ūi(tk) ∈ U, i ∈ N[1,L−1]. (31e)

The following theorem outlines the MPC-based STC and the stability conditions, which are extended from [62,
Theorem 1] by considering noisy offline collected data.

Theorem 4. Assume that Eq. (31) is feasible at t0. For appropriate r > 0 and P ≻ 0 satisfying Assumption 4,
there exist constants λ̄g > λg > 0, λ̄h > λh > 0, and v̄0 > 0 such that for all λg 6 λg 6 λ̄g, λh 6 λh 6 λ̄h, and
0 6 v̄ < v̄0, Problem (31) is feasible at all tk ∈ N+, whose optimal solutions are ū∗(tk), ȳ∗(tk), g∗(tk), and h∗(tK).
System (27) applying control inputs u(t) = ū∗

t−tk
(tk) with t ∈ N[tk,tk+1−1] is ISS, if (i) ǫ in (31d) obeys

(
1− λK⊤RK

λ̄P

)
r2 6 ǫ2 6 r2, (32)

and (ii) the inter-triggering time satisfies

sk = min
{
ŝk, šk, L− 1

}
, (33)

with integers ŝk and šk defined by

ŝk := sup

{
sk ∈ N+

∣∣∣(
√
ηn̄+ ‖h∗

[−η,−1](tk)‖)

√√√√
sk+η−1∑

i=τk

ρi

+ ‖h∗
[sk−η,sk−1](tk)‖ 6

r

λ̄P
− ‖ξ̄∗sk(tk)‖

}
, (34)

and

šk := sup

{
sk ∈ N+

∣∣∣2λ̄Q

sk−1∑

i=0

‖h∗
i (tk)‖2+λh

(
ηv̄−‖h∗(tk)‖2

v̄

)

+
√
λ̄P (r + ǫ)

((
v̄‖g∗(tk)‖1 + ‖h∗

sk(tk)‖∞)

sk+η−1∑

i=sk

ρi

+ v̄‖g∗(tk)‖1 + ‖h∗
[sk−η,sk−1](tk)‖∞

)
+ λg v̄

(
‖H‡

uξ‖2(2

+ λ̄P /λR)r
2 − ‖g∗(tk)‖2

)
+λ̄Q

(
2ηv̄2+2‖h∗

[−η,−1](tk)‖2
) sk−1∑

i=0

ρi+η
6 σ

sk−1∑

i=0

‖ξ̄∗i (tk)‖2
}
, (35)

where ρi := ‖CAiΦ†‖ can be over-approximated using the set-based method as in [61, Algorithm 1], Huξ is the right

pseudo-inverse of matrix Huξ, Huξ is defined as Huξ =
[

HL+η(u
pre)

H1(ξ
pre
[η,T−L]

)

]
, and the constant 0 < σ < σ̄ < 1 balances

between the system performance and the inter-triggering time.
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4.2.2 Data-driven STC under process noise

In addition to the measurement noise addressed above, this section reviews a data-driven STS design method using
process noise corrupted data. Specifically, consider system (17) with the triggering time tk generated by (23). The
objective here is that given noisy input-state data (upre, xpre generated from system (1)), design a matrix K and
an STS generating sk in (23) ensuring the stability of system (17). To this aim, we introduce a switched system
approach-based STC method.

We begin by reformulating the system (17) into a switched system. Define for any s ∈ N+,

Bs :=
[
As−1B As−2B · · · B

]
, Ks :=

[
K⊤ K⊤ · · · K⊤
︸ ︷︷ ︸

s times

]⊤
.

Recalling for any k ∈ N that the inter-triggering time sk = tk+1 − tk and satisfying sk ∈ N[1, s̄] for some given
constant s̄ ∈ N2, system (17) can be rewritten as

x(tk + sk) = (Ask +BskKsk)x(tk). (36)

Since matrices A, B are unknown, the system matrices in the switched system Ask , Bsk , Ksk are also unknown. In
addition, for k ∈ N, determine the triggering time by

tk+1 = tk +max
{
sk ∈ N[1,s̄]

∣∣Q(x(tk), sk) > 0
}

(37)

with

Q(x(tk), sk) =

[
(Ask +BskKsk)x(tk)

x(tk)

]⊤ [
(σ1 − 1)Ω Ω

∗ (σ2 − 1)Ω

]
[·] > 0, (38)

where parameters σ1 > 0, σ2 > 0 are given constants and matrix Ω is to be designed.
Instead of U and X+ in Section 3, we formulate the following data matrices for s ∈ N[1,s̄]:

Xs
+ :=

[
x(s) x(s+ 1) . . . x(T + s− 1)

]
,

Us :=




u(0) u(1) · · · u(T − 1)
...

...
. . .

...

u(s− 1) u(s) · · · u(T + s− 2)


 ,

and let

W 1 := W,

W s :=
[
As−1Bw As−2Bw · · · Bw

]
W s,

W s :=




w(0) w(1) · · · w(T − 1)
...

...
. . .

...

w(s − 1) w(s) · · · w(T + s− 2)




for s ∈ N[2,s̄].
Naturally, the noise bound in Assumption 1 is shifted into its switched system counterpart as follows.

Assumption 5 ([101, Assumption 15]). The noise sequence {w(t)}T+s−2
t=0 collected in the matrix W s satisfies

W s ∈ Ws with Ws = {W̄ s ∈ R
ns
w×T |

[
W̄ s⊤

I

]⊤
P s
d

[
W̄ s⊤

I

]
� 0}, where P s

d is a given symmetric matrix obeying
[
I
0

]⊤
P s
d

[
I
0

]
≺0.

For simplicity, we consider a quadratic full-block form of the matrix P s
d as in (5), i.e., P s

d =
[
Qs

d Ss
d

∗ Rs
d

]
, where

matrices Qs
d ≺ 0 ∈ R

T×T , Ss
d ∈ R

T×ns
w , Rs

d = Rs⊤
d ∈ R

ns
w×ns

w , n1
w := nw and ns

w := n for s ∈ N2. Other choices of
matrix P s

d can be found in Remark 1.
Moreover, instead of the full row rank assumption of matrix [X⊤ U⊤], a stricter assumption on the data richness

is imposed below.
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Assumption 6 (Requirement of data). The matrix Θs
AB =

[
Qs

c Ss
c

∗ Rs
c

]
:=

[
−X 0
−Us 0
Xs

+ Bs
w

] [
Qs

d Ss
d

∗ Rs
d

]
[ · ]⊤ has full column

rank.

Based on Assumptions 5 and 6, a data-based representation of system (36) is given by

Σs
AB =

{
[Ās B̄

s
] ∈ R

n×(n+sm)
∣∣∣
[
[Ās B̄

s
]⊤

I

]⊤
Θs

AB

[
[Ās B̄

s
]⊤

I

]
� 0

}
. (39)

Leveraging this representation, the following theorem presents a data-driven STS.

Theorem 5 ([63, Theorem 1]). For a given set of parameters, including non-negative scalars σ1 > 0 and σ2 > 0, a
positive definite matrix Ω ≻ 0, controller gain K, and state vector x(tk) derived from the system presented in (36),
the function Q(x(tk), s), which is defined in (38), conforms to the following condition:

Q(x(tk), s) > 0. (40)

This condition holds for any [Ās B̄
s
] ∈ Σs

AB , provided that a positive scalar γ > 0 can be identified, satisfying the
subsequent LMI for a certain value of s ∈ N+,

Q̃(x(tk))− γG̃s(x(tk)) � 0, (41)

where the matrices Q̃(x(tk)) and G̃s(x(tk)) are defined as

Q̃(x(tk)) :=

[
I 0

0 x⊤(tk)

][
(σ1 − 1)Ω Ω

∗ (σ2 − 1)Ω

]
[·]⊤,

G̃s(x(tk)) :=

[
I 0 0

0 x⊤(tk) x⊤(tk)K
s⊤

]
Θ̃s

AB[·]⊤,

Θ̃s
AB :=

[
−R̃s

c S̃s⊤
c

∗ −Q̃s
c

]
,

[
Q̃s

c S̃s
c

∗ R̃s
c

]
:=

[
Qs

c Ss
c

∗ Rs
c

]−1

.

Following this theorem, a data-based version of the function Q(x(tk), sk) in (37) can be derived as

tk+1 = tk +max
{
sk ∈ N+|Q̃(x(tk))− γG̃sk(x(tk)) � 0

}
. (42)

Under the data-based STS in (42), the following theorem presents a data-driven STC method designing the
controller gain matrix K and the triggering matrix Ω in Q̃(x(tk)).

Theorem 6 ([63, Theorem 3]). Given positive scalars σ1 > 0, σ2 > 0, and α, it is possible to find a suitable
controller gain K such that the system described in (17) attains asymptotic stability under the triggering condition
delineated in (42). This holds for any [Ā B̄] ∈ Σ1

AB, contingent upon the existence of a positive scalar ε > 0 and
matrices P ≻ 0, Ωz ≻ 0, G, and Kc. The key requirement for this design is the fulfillment of the subsequent LMI:

[
Y1 Y2 +K
∗ H+ J̄ + Y3

]
≺ 0. (43)

Here, the matrices and expressions involved in this theorem are defined as follows:

H := E⊤
2 PE2 − E⊤

1 PE1,

J̄ := Sym
{
− LGE2

}
+ σ1E

⊤
1 ΩzE1 + σ2E

⊤
3 ΩzE3 − (E1 − E3)

⊤Ωz(E1 − E3),

L := (E1 + αE2)
⊤, K :=

[
E⊤

1 G⊤, E⊤
3 K⊤

c

]⊤
,

Y1 := εZ1Θ
1
ABZ⊤

1 ,Y2 := εZ1Θ
1
ABZ⊤

2 ,

Y3 := εZ2Θ
1
ABZ⊤

2 ,Z1 := [ I 0 ], Z2 := [ 0 L ],

Ei :=
[
0n×(i−1)n, In, 0n×(3−i)n

]
, (i = 1, 2, 3).

Furthermore, the controller gain K and triggering matrix Ω are given by K = KcG
−1 and Ω = G−1⊤ΩzG

−1.
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Remark 3. The proposed data-driven ETC/STC methodologies offer three salient advantages over existing aperi-
odic control strategies. (1) While model-based event-triggered approaches in [109,110] require system identification
that fundamentally limits their theoretical guarantees under noisy conditions, our method eliminates the need for
system identification while systematically addressing noise effects through convex hull uncertainty modeling. (2) In
contrast to the model-free adaptive event-triggered strategies in [111,112] requiring real-time iterative computations
of control inputs and parameters using streaming data, our approach utilizes finite historical data to pre-design
fixed control parameters, significantly reducing online computational overhead. (3) Differing from the time-triggered
data-driven sampling schemes in [101] (which determine transmission sequences by optimizing maximum sampling
intervals), our method employs a signal filtering mechanism where preconfigured triggering rules dynamically adjust
transmission instants based on real-time state trajectories, achieving superior transmission efficiency.

5 Network security

As discussed in Subsection 1.3, DoS attacks and FDI attacks are two of the most notorious attacks. In addition,
resilient control plays an important role in maintaining system performance against these attacks. Hence, we
consider in this section data-driven resilient control against DoS attacks and FDI attacks.

5.1 Data-driven resilient control under DoS

This section reviews a recent data-driven resilient control method against DoS attacks, which is summarized from
[21].

5.1.1 DoS attack modeling

To start with, a general model that characterizes DoS attacks by only constraining their frequency and duration
is introduced. This model, initially introduced by [67] for continuous-time systems, was extended to discrete-time
systems in [69]. To be specific, for each discrete time instant t ∈ N, a binary DoS indicator k(t) is introduced as
follows:

k(t) :=

{
0, no DoS attack happens at t,

1, a DoS attack happens at t.
(44)

The DoS duration during the interval N[t1,t2−1] is defined as Φd(t1, t2) =
∑t2−1

t=t1
k(t). Additionally, another binary

variable d(t) is defined as for each t ∈ N

d(t) :=

{
1, k(t) = 1 and k(t− 1) = 0,

0, otherwise.
(45)

The DoS frequency during the interval N[t1,t2−1] is then expressed as Φf (t1, t2) =
∑t2−1

t=t1
d(t).

Assumptions on DoS frequency and duration adapted from [69, Assumptions 2.1, 2.2] are given as follows.

Assumption 7 (DoS frequency). There exist constants κf ∈ R>0 and νf ∈ R>2, such that the DoS frequency
satisfies

Φf (t1, t2) 6 κf + (t2 − t1)/νf , (46)

over every time interval N[t1,t2−1], where t1 6 t2 ∈ N.

Assumption 8 (DoS duration). There exist constants κd ∈ R>0 and νd ∈ R>1, such that the DoS duration
satisfies

Φd(t1, t2) 6 κd + (t2 − t1)/νd, (47)

over every time interval N[t1,t2−1], where t1 6 t2 ∈ N.

Let {sr}r∈N denote the time instants of successful transmission, i.e., k(sr) = 0. A direct consequence of As-
sumptions 7 and 8 is that the number of time steps between two successful transmissions is upper-bounded. This
property plays an important role in resilient controller design and stability analysis, and is introduced as follows.

Lemma 3 (Maximum resilience [68, Lemma 3]). Suppose the DoS attacks satisfy Assumptions 7 and 8 with

1/νf + 1/νd < 1. (48)

Then it holds that s0 6 T0 − 1, and sr+1 − sr 6 T0 for all r ∈ N with T0 := (κd + κf )(1− 1/νd − 1/νf)
−1 + 1.

Condition (48) is referred to as the maximum resilience against DoS attacks one can achieve for an open-loop
unstable system.
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5.1.2 Data-driven resilient predictive control

Consider system (1) with Bw = I and w(t) ∈ R
n, i.e.,

x(t+ 1) = Ax(t) +Bu(t) + w(t), t ∈ N. (49)

Let w̄ := maxt∈N{‖w(t)‖}. At each time t, sensors located at the plant side measure the state x(t) and transmit it
to the controller, which then computes a control input and transmits it back to the plant. The sensor-to-controller
(S-C) channel is subject to DoS attacks causing transmission failures of the state x(t) while the controller-to-plant
(C-P) channel is ideal such that the plant can receive input u(t) at every time instant t.

The objective here is that, given noisy input-state data (upre, xpre) generated from (49), design u(t) rendering
the closed-loop ISS and achieving maximum resilience against DoS attacks. To this aim, a data-driven resilient
predictive controller is designed below, which is adapted from [21].

For a given prediction horizon L ∈ N+, the following data-driven MPC is solved at each successful transmission
time instant (i.e., t = sr):

J∗
L(u(t), x(t)) := min

g(t),h(t)
ūi(t),x̄i(t)

L−1∑

i=0

c(ūi(t), x̄i(t))+λgw̄‖g(t)‖2+
λh

w̄
‖h(t)‖2

s.t.

[
ū(t)

x̄(t) + h(t)

]
=

[
HL+1(u

pre)

HL+1(x
pre)

]
g(t), (50a)

[
ū−1(t)

x̄−1(t)

]
=

[
u(t)

x(t)

]
, (50b)

[
ūL−1(t)

x̄L−1(t)

]
=

[
0

0

]
, (50c)

ūi ∈ U, i ∈ N[0,L−1]. (50d)

It can be observed that, when no DoS attack is present (i.e., t = sr), solving problem (50) predicts an input-state
trajectory of L steps into the future, i.e., from t to t + L − 1. Therefore, during a DoS attack (i.e., t 6= sr), for
t ∈ N[sr ,sr+L], we can sequentially use the first t− sr computed inputs ūi(sr) ∈ N[0,t−sr], and for t ∈ Nsr+L+1, we
simply use zero inputs until the next successful transmission takes place.

For reference, this scheme is summarized in Algorithm 1. Under this algorithm, both maximum resilience and
ISS can be achieved, which is consistent with the model-based results presented in [113]. Recursive feasibility of
problem (50) and the stability analysis of the closed-loop system (49) can be found in [21, Theorem 1].

Algorithm 1 Data-driven resilient control via input-state data.

1: Input: prediction horizon L > 2; parameters of the cost function R1 ≻ 0, R2 ≻ 0, λg > 0 and λh > 0; noise bound w̄; input-state

trajectories (upre, xpre) of system (49) with





HL+1(u
pre)

HL+1(x
pre)



 having full row rank;

2: Construct Hankel matrix for the input-state trajectory, i.e., H=[H⊤
L (upre), H⊤

L (xpre)]⊤;

3: if t = sr
4: Use the state x(t− 1) and input u(t − 1) to solve problem (50); set u(t) = ū0(t);

5: else if t 6= sr
6: if t − sr 6 L − 1

7: Set u(t) = ūt−sr (sr);

8: else if t − sr > L − 1

9: Set u(t) = 0;

10: end if

11: end if

12: Set t = t + 1 and go back to 3.

When only input-output data are available, collect a sequence of input-output data (upre, ypre) :=(u[0,T−1],y[0,T−1])
generated from the following system:

x(t+ 1) = Ax(t) +Bu(t) + w(t), (51a)

y(t) = Cx(t) + v(t). (51b)
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Similar to Subsection 4.2.1, let η denote the observability index of the pair (A,C). Additionally, we have bounded
process noise w(t) ∈ R

n and measurement noise v(t) ∈ R
p, both satisfying w̄ := maxt∈N{‖w(t)‖, ‖v(t)‖}.

In this setting, several changes are made with respect to the input-state case. Specifically, the prediction horizon
should satisfy L ∈ Nη. In addition, at each successful transmission time instant (i.e., t = sr), instead of trans-
mitting the state x(sr), an output packet containing the past η measurements, i.e., y[sr−η,sr−1] is transmitted. To
accommodate these changes, the data-driven MPC scheme in (50) is replaced by the following formulation:

J∗
L(u[t−η,t−1], y[t−η,t−1]) := min

g(t),h(t)
ūi(t),ȳi(t)

L−1∑

i=0

c(ūi(t), ȳi(t))+λgw̄‖g(t)‖2+
λh

w̄
‖h(t)‖2

s.t.

[
ū(t)

ȳ(t) + h(t)

]
=

[
HL+η(u

pre)

HL+η(y
pre)

]
g(t), (52a)

[
ū[−η,−1](t)

ȳ[−η,−1](t)

]
=

[
u[t−η,t−1]

y[t−η,t−1]

]
, (52b)

[
ū[L−η,L−1](t)

ȳ[L−η,L−1](t)

]
=

[
0

0

]
, (52c)

ūi ∈ U, i ∈ N[0,L−1]. (52d)

The resilient control scheme and the stability result remain consistent with Algorithm 1 and [21, Theorem 1].

5.2 Data-driven resilient control under FDI

To design data-driven resilient controllers against FDI attacks, there are three emerging challenges: (i) how to
model unknown FDI attacks; (ii) how to design a resilient controller against FDI attacks based only on input-state
data; and (iii) the associated stability analysis and robustness guarantees. This section reviews the main results
in [77] to address these challenges.

5.2.1 Healthy system

For the design of a resilient controller against FDI attacks, we consider system (49) implementing a time-varying
state-feedback controller, i.e.,

x(t+ 1) = Ax(t) +Bu(t) + w(t), (53a)

u(t) = K(t)x(t). (53b)

During online operation, the state and input signals are transmitted through a vulnerable communication channel.
These signals are subject to FDI attacks, compromising the integrity of both input and state data, leading to changes
in the dynamics described in (53). In this context, the objective is to devise a stabilizing controller in the form
of (53b) to mitigate the impact of FDI attacks and ensure the closed-loop stability of the resultant FDI-corrupted
system.

5.2.2 Switched FDI modeling

Before moving forward, we introduce a series of assumptions to characterize the behavior of an attacker in the
context of FDI attacks. To distinguish between the pristine offline data denoted as x(t) and u(t) and the data
tainted by attacks, we employ the labels xp(t) and up(t) to represent the online polluted states and control inputs,
respectively. We posit the following assumption.

Assumption 9 (FDI attack). The FDI attack is governed by the following conditions.
(i) The attacker possesses access to clean input-state data U , X , and X+, based on which an attack strategy is

devised offline.
(ii) Upon launching an FDI attack, the attacker intercepts xp(t) as it is transmitted from the plant to the

controller, and simultaneously eavesdrops on uo = K(t)xp(t), the command sent from the controller to the actuators.
(iii) Based on the attack strategy and the state xp(t), the attacker computes the injection signal ua(t) and adds

it to the non-corrupted input uo(t), so that the actuator implements uo(t) + ua(t) instead.
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Remark 4. Assumption 9 is consistent with the model-based setting in [74,114]. This is realistic since the attacker
can inject zero attack inputs, i.e., ua(t) = 0, for some times to eavesdrop the clean input-state data of the actual
system before designing and launching the attack. By this assumption, we mean that the considered attack model
involves the worst case; i.e., the attacker can design an optimal attack strategy that maximizes the performance
degradation.

Under this premise, the system corrupted by FDI attacks can be formally stated as

xp(t+ 1) = Axp(t) +Bup(t) + w(t), (54a)

up(t) = uo(t) + ua(t), (54b)

uo(t) = K(t)xp(t). (54c)

Additionally, consider a potent attacker with the capability to compromise a maximum of m actuator channels,
where m is the dimension of the input, i.e., up(t) ∈ R

m. Specifically, at each time step t, the attacker selects a
maximum of m actuator channels from a predetermined strategy within a finite set M := {0, 1, · · · ,M}, where
M is defined as M :=

∑m
i=0 C

i
m with Ci

m the combination formula defined in Table 1. Furthermore, the attacker
employs distinct state feedback matrices for each actuator channel compromise. In other words, for the j-th channel
combination with j = 0, · · · ,M , the attacker deploys the feedback matrix Kj

a, resulting in ua(t) = Dj
aK

j
axp(t),

where Dj
a characterizes the attack direction. The following example provides an illustration of the j-th channel

combination and matrix Dj
a.

Example 1. Consider a system as in (53) with m = 3 actuator channels, resulting in M =
∑3

i=0 C
i
3 = 8

different channel combinations, i.e., {∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, which are sequentially indexed
by the elements in M = {0, 1, 2, 3, 4, 5, 6, 7}. Suppose that at time t the first and third channels (which therefore
correspond to the 6-th channel combination {1, 3}) are attacked, i.e., σ(t) = 6, and the associated channel-selection

matrix D6
a is given by D6

a =
[
1 0 0
0 0 0
0 0 1

]
.

Under this configuration, we introduce a piece-wise constant function σ(t), which varies with time and takes
values from the set M, thus facilitating the switching between subsystems. Consequently, the system under attacks
in (54) can be reformulated as a switched system with M subsystems that switch based on the signal σ(t), as
follows:

xp(t+ 1) = Aσ(t)xp(t) +Buo(t) + w(t), (55a)

uo(t) = K(t)xp(t), (55b)

where Aσ(t) := A+BD
σ(t)
a K

σ(t)
a is derived as a combination of matrices to capture the attack effect.

We introduce the concept of time instances ts to denote the moments when an attack is initiated. Specifically,
ts marks the time when the s-th attack occurs, defined as ts = min{t > ts−1 : σ(t) 6= σ(ts−1)} for s ∈ N+, with
t0 = 0. Furthermore, we assume that the system is in mode j at time ts, implying that σ(t) = j holds for all
t ∈ [ts, ts+1 − 1].

To maintain a level of stealth and considering the attacker’s limited energy resources, we introduce two crucial
assumptions that restrict the switching frequency and the magnitude of the injection signal.

Assumption 10 (Switching frequency). For any t1 6 t2 ∈ N, the function Nσ(t1, t2) counts the number of
discontinuities in the signal σ over the time interval [t1, t2). We assume the existence of constants κ ∈ N and
τ ∈ N2, such that the following condition is satisfied:

Nσ(t1, t2) 6 κ+ (t2 − t1)/τ. (56)

Assumption 11 (Attacking power). There exists a constant φ > 0 such that ‖Dj
aK

j
a‖ 6 φ holds for j ∈ M.

Assumption 12 (Attacked system). The pairs (Aj , B) for all j ∈ M are unknown to the defender but are assumed
to be controllable.

Note that C0
m indicates that no attacks occur, which is also one of the channel combinations. This further implies

the controllability of the pair (A,B).

Building on the preliminaries above, the objective becomes that, given noisy input-state data (upre, xpre) gen-
erated from (53a), design a time-varying state feedback controller in the form of (55b) such that the unknown
switched system in (55) is ISS.
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5.2.3 Data-driven resilient control

To begin with, let Φ := [X⊤ U⊤]⊤. It follows from Lemma 1 that the healthy system Z := [A B]⊤ ∈ E w̄ where

E w̄ :=
{
Z̄ : Z̄⊤Aw̄Z̄ + Z̄⊤Bw̄ +B⊤

w̄Z̄ +Cw̄ � 0
}

(57)

with

Aw̄ := ΦΦ⊤, Bw̄ := −ΦX⊤
+ , Cw̄ := X+X

⊤
+−T w̄2I. (58)

Let φ1 := φ‖B‖. Under Assumptions 11 and 12, it is evident that each switching subsystem Zj := [Aj B]⊤ is at
most φ1-far from the healthy system [A B], and therefore, for all j ∈ M,

Zj ∈ Bφ1 :=
{
Z̄ = [Ā B̄]⊤: ‖Z̄ − Z‖ 6 φ1

}
. (59)

A set Bδ that contains all matrices within set Bφ1 can be constructed as follows:

Bδ :=
{
Z̄ : Z̄⊤Z̄ − Z̄⊤Z̃ − Z̃⊤Z̄ +Cδ � 0

}
, (60)

where the matrix Z̃ = −A−1
w̄ Bw̄ and the constant Cδ := Z̃⊤Z̃ − δ2I with

δ := λ
−1/2
Aw̄

‖(B⊤
w̄A

−1
w̄ Bw̄ −Aw̄)

1/2‖+ φ1.

Remark 5. Set (60) defines a matrix ellipsoid constructed based on an upper bound of the attacking power
(cf. Assumption 11). While this set is guaranteed to contain all systems consistent with attack-corrupted data, it
may also include redundant matrices that do not correspond to any physically realizable attack, which introduces
a degree of conservatism in the subsequent controller design. It is worth highlighting that, since no assumptions
are imposed on the attack strategy, the level of conservatism cannot be explicitly quantified in the general case.
However, if prior knowledge about the attackers behavior, such as the distribution of attack power, the dynamics
of the attack, or the frequency of occurrence, becomes available, the conservatism of the ellipsoidal set Bδ could
be more accurately evaluated. In such cases, a robustness margin analysis for the designed controller could also
be systematically derived, offering a more precise assessment of its performance under attack. Investigating this
direction represents an interesting and valuable avenue for future work.

During online operation, we assume that the initial conditions up(0) and xp(0) are arbitrary. At time t ∈ N+,
the key idea is to combine only the most fresh data (xp(t− 1), uo(t− 1), xp(t)) from the subsystem (Aσ(t−1), B) and
the set of offline data from the health system (A,B) to design the controller K(t) on the fly.

To this end, consider the switched system (55) at any time t ∈ N+, for which we have observed the online data
(xp(t− 1), uo(t− 1), xp(t)). The set of matrices Zt = [At Bt]

⊤ that can generate (xp(t− 1), uo(t− 1), xp(t)) is given
by

Et =
{
Zt : Z

⊤
t AtZt + Z⊤

t Bt +B⊤
t Zt +Ct � 0

}
, (61)

where

At :=

[
xp(t− 1)

uo(t− 1)

][
xp(t− 1)

uo(t− 1)

]⊤
, Bt := −

[
xp(t− 1)

uo(t− 1)

]
x⊤
p (t), Ct := xp(t)x

⊤
p (t)− w̄2I. (62)

Set Et is also a matrix ellipsoid. It is evident that the active subsystem [Aσ(t−1) B]⊤ ∈ Et.
Note from (60) that all subsystems are contained in Bδ, which implies Zσ(t−1) = [Aσ(t−1) B]⊤ ∈ Bδ for all t.

Combining this with (61), we conclude that

Zσ(t−1) ∈ Et ∩ Bδ, ∀t ∈ N+, (63)

where the intersection set Et ∩Bδ is bounded. The problem thus reduces to finding a controller K(t) to stabilize all
the systems in the set Et ∩ Bδ for all t. This can be achieved by the following SDP:

min
γ,β,τ1,τ2,
P,Y,L,Q

γ (64a)
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s.t.




P − βI 0 0 0

⋆ −P−Y ⊤ 0

⋆ ⋆ 0 Y

⋆ ⋆ ⋆ P



− τ1




−Ct −B⊤
t 0

⋆ −At 0

⋆ ⋆ 0


− τ2




−Cδ −Z⊤
tr 0

⋆ −I 0

0 0 0


 � 0, (64b)

β > 0, τ1 > 0, τ2 > 0, P ≻ 0, (64c)
[
L Y

Y ⊤ P

]
� 0, (64d)

[
Q I

I P

]
� 0, (64e)

Tr(P ) + Tr(L) + ǫ‖Q‖ 6 γ. (64f)

The feasibility of this SDP at each time t can be guaranteed following a similar step as in [76, Theorem 3.1]. Let
(γ∗(t), P ∗(t), Y ∗(t), L∗(t), Q∗(t)) denote any optimal solution. The stabilizing controller uo(t) = K(t)xp(t) for all
systems in I∗

t can be designed as follows:

K(t) = Y ∗(t)(P ∗(t))−1. (65)

Based on (64) and (65), the online data-driven controller is summarized in Algorithm 2. Recursive feasibility of
the SDP (63) and stability analysis under this data-based controller can be found in [77, Theorem 3.1].

Remark 6. It is worth highlighting several notable advantages of the reviewed data-driven method in [76] com-
pared to previous studies such as [74, 115].

(1) Although Ref. [74] designed a resilient controller under FDI attacks, their method relies on pre-collected
injected data and requires exact knowledge of the system matrices, neither of which is needed in Algorithm 2.
Moreover, instead of computing a time-invariant controller gain matrix, the gain (65) is time-varying and hence can
automatically adapt to the unknown FDI-induced changes in system dynamics.

(2) Although an online data-driven LQRmethod for stabilizing unknown switched systems was considered in [115],
the method in Algorithm 2 offers four main differences and advantages.

(i) The core idea in Algorithm 2 is the online implementation of a modified SDP formulation from [102], where the
LQR structure is adopted mainly to ensure recursive stability; therefore, the associated proofs deviate significantly
from those in [115].

(ii) Algorithm 2 leverages Petersen’s lemma, which enables direct extension to scenarios involving process noise,
a feature not addressed in [115].

(iii) Algorithm 2 reduces the computational complexity from O(n3
x(nx(nu + 1) + nu)

3) to O(n3
x(nx + nu)

3).
(iv) Algorithm 2 does not impose a requirement that the minimum switching interval must be larger than

2(nx(nu + 1) + nu)− 1, thereby allowing for stronger and more frequent attacker behaviors.

Algorithm 2 Online data-driven control.

1: Offline: Collect input-state data (u[0,T−1], x[0,T ]) and form matrices X,X+, U , and Φ; compute Bδ as in (60);

2: Online: Given initial conditions xp(0), uo(0) and constant ǫ > 0, for t = 1, 2, 3, . . ., do

3: (1) Compute the matrix ellipsoid Et in (61) based on uo(t − 1), xp(t − 1), and xp(t);

(2) Solve the SDP in (64) and let (γ∗(t), P∗(t), Y ∗(t), L∗(t), Q∗(t)) denote the solution;

(4) Compute the control input uo(t) = K(t)xp(t), where K(t) = Y ∗(t)(P∗(t))−1 is given in (65);

(5) Set t = t + 1 and go back to (1).

6 Distributed configuration

In this section, our focus shifts from centralized network systems to the distributed network systems, i.e., MASs.
We survey results in [93, 95, 98], including distributed data-driven methods for MASs to design event-triggered,
self-triggered, and output synchronization control protocols. To avoid notations burden, we use ETC/STC also to
represent event-/self-triggered consensus control in the following subsequent sections.

Before delving further, some fundamental graph theory concepts frequently employed in the analysis and synthesis
of MASs are recalled.
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Notation (graph theory). In the context of our communication network, we employ a weighted graph G = (V , E)
to depict the communication topology among our agents. Here, V = {v1, . . . , vN} signifies the set of nodes, while
E ⊆ V × V represents the set of edges. Each element in E , denoted as (vi, vj), symbolizes the link from node
vj to node vi. The construction of the adjacency matrix A = [aij ] ∈ R

N×N involves setting aij > 0 only if
(vj , vi) ∈ E ; otherwise, aij = 0. It is pertinent to note that self-loops are not considered, meaning that aii = 0

holds for all i ∈ N[1,N ]. The in-degree of node vi is described by di =
∑N

j=1 aij . The degree matrix D is introduced

as diag{di}Ni=1. Furthermore, the Laplacian matrix L = [lij ] ∈ R
N×N associated with G is formally defined as

L = D −A. The neighbor set of node vi is defined as Ni = {j ∈ V|(i, j) ∈ E}.
We extend our graph to encompass additional elements by introducing Ḡ = (V̄ , Ē), where V̄ = V ∪ v0, with v0

representing the node associated with the leader. In this extension, Ē includes all the arcs present in E as well as
those spanning from v0 to E . Specifically, a graph Ḡ is deemed to contain a directed spanning tree if a particular
node, known as the root, exists such that every other node within V̄ can be reached via a directed path originating
from this root node. The pinning matrix P = diag{pi}Ni=1 serves as a valuable tool for describing the accessibility
of the leader node v0 to the remaining nodes vi ∈ V . It is worth noting that the pinning gain pi > 0 if (v0, vi) ∈ Ē ,
while pi = 0 otherwise. In addition, define the matrix Λ := L + P . It should be noted that a topology Ḡ that
contains a directed spanning tree is discussed over this section (see Assumption 13 in Subsection 6.1 for details).

6.1 Distributed data-driven ETC

Generally, MASs can be categorized into two types depending on whether all agents have identical systems, namely,
homogeneous (i.e., identical systems (A,B)) and heterogeneous (i.e., non-identical systems (Ai, Bi)). The property
of having identical systems simplifies many challenges in MASs; therefore, data-driven ETC design and stability
analysis can be directly extended from Subsection 4.1; see [91] for details. Therefore, this section reviews a data-
driven design for heterogeneous MASs, which is summarized from [93].

Consider a heterogeneous leader-following MAS, comprising a leader (indexed as 0) and N followers (indexed
from 1 to N). The communication network among these agents is represented by a directed graph Ḡ, in accordance
with the following assumption.

Assumption 13 (Communication topology). Assume that only a subset of followers has direct access to the
leader’s information, and the graph Ḡ contains a directed spanning tree with the leader serving as the root.

For all i ∈ N[0,N ], the dynamics are described by the following linear discrete-time recursions:

xi(t+ 1) = Aixi(t) +Biui(t), (66a)

ui(t) =

{
Kixi(t

i
k), i = 0,

∑
j∈N Kijeij(t

i
k), i > 0,

t ∈ N[tik,t
i
k+1−1], (66b)

where eij(t
i
k) := xi(t

i
k) − xj(t

j
k′(t)) represents the state measurement error between agents i and j, and k′(t) :=

argminl∈N:t>tjl
{t− tjl } (where tjl is the transmitted instant of agent j). Therefore, for each t ∈ N[ti

k
,ti

k+1
−1], t

j
k′(t)

is the last transmitted time of agent j; tik ∈ N is the sampling time generated by the distributed version of the
periodic dynamic ETS in Subsection 4.1, i.e.,

tik+1 = tik + hmin
v∈N

{
v > 0

∣∣ηi(τ ik,v) + θiρi(τ
i
k,v) < 0

}
, (67)

where τ ik,v := tik + vh, v ∈ N+, h shares the same definition as in Subsection 4.1, constant θi > 0 is to be designed,
and functions

ρ0(τ
0
v ) := σ0x

⊤
0 (t

0
k)Ω0x0(t

0
k)− e⊤0 (τ

0
v )Ω0e0(τ

0
v ),

ρi(τ
i
k,v) :=

N∑

j 6=i

σije
⊤
ij(t

i
k)Ωieij(t

i
k)− e⊤i (τ

i
k,v)Ωiei(τ

i
k,v).

Here Ωi ≻ 0 is a weight matrix, and σ0, {σij}j∈N are parameters, all to be designed; ei(τ
i
k,v) := xi(τ

i
k,v) − xi(t

i
k)

denotes the error of agent i between the latest transmitted signal xi(t
i
k) and the current sampled signal xi(τ

i
k,v);

and, ηi(τ
i
k,v) satisfies

ηi(τ
i
k,v+1)− ηi(τ

i
k,v) = −λiηi(τ

i
k,v) + ρi(τ

i
k,v), (68)

where ηi(0) > 0 and λi > 0 are given parameters.
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Remark 7. In addition to the MAS introduced in (66a), most existing studies consider an MAS, where the leader’s
input is zero, i.e., u0(t) = 0 for all t ∈ N; see [116–118]. Although incorporating a nonzero, time-varying control
input for the leader in (66a) complicates the design procedure, it brings several advantages. Specifically, this model
is more realistic and applicable in practice since it allows the leader to adjust its behavior accordingly and optimize
its performance. For example, in vehicle platoon control systems, the leader vehicle may need to adjust its speed,
acceleration, or trajectory based on traffic conditions, road inclines, or other dynamic factors. To capture these
changes, modeling the leader by involving a control input is more appropriate.

For data collection, we consider the perturbed version of (66a) as follows:

xi(t+ 1) = Aixi(t) +Biui(t) +Bw,iwi(t), ∀i ∈ N[0,N ], (69)

where Bw,i ∈ R
n×nw is known and has full column rank. The objective of distributed data-driven ETC is that,

given input-state data (upre
i , xpre

i ) := {ui(t), xi(t)}Tt=0 of each agent i generated from system (69), design controller
gain matrices K0, Kij , and matrices Ω0, Ωij in the ETS (67) ensuring the state consensus of the MAS (66).

Since the objective for each agent i is to follow the leader, we shift our focus from the state of each agent to the
error between the leader and each follower. Let ǫi(t) := xi(t)− x0(t) denote the tracking error between the leader
and follower i with i = 1, · · · , N . Upon collecting the errors of all agents along with the state of the leader to form
ǫ(t) := [ǫ⊤1 (t) · · · ǫ⊤N (t) x⊤

0 (t)]
⊤, we establish the following closed-loop system expression:

ǫ(t+ 1) = Aǫ(t) +BKǫ(tk), t ∈ N[tik,t
i
k+1−1]. (70)

Here, ǫ(tk) := [ǫ⊤1 (t
1
k) · · · ǫ⊤N (tNk ) x⊤

0 (t
0
k′(t))]

⊤, ǫi(tik) := xi(t
i
k)− x0(t

0
k′(t)), and

A :=

[
diag{Ai}Ni=1 1Ndiag{Ai −A0}Ni=1

0 A0

]
,

B :=

[
diag{Bi}Ni=1 1N ⊗ (−B0)

0 B0

]
,

K :=




∑
j∈N K1j −K12 · · · −K1N 0

...
...

. . .
...

...

−KN1 −KN2 · · · ∑j∈N KNj 0

0 0 · · · 0 K0



,

where 1N denotes an N -dimensional column vector whose elements are I.
According to the definition of the tracking error ǫi(t), for each agent i, we compute from the state data xpre

i

the tracking error data ǫprei := {ǫi(t)}Tt=0. Let u(t) := [u⊤
1 (t) · · · u⊤

N (t) u⊤
0 (t)]

⊤ and construct the following data
matrices:

U :=
[
u(0) u(1) · · · u(T − 1)

]
,

E :=
[
ǫ(0) ǫ(1) · · · ǫ(T − 1)

]
,

E+ :=
[
ǫ(1) ǫ(2) · · · ǫ(T )

]
.

In accordance with Lemma 1 and leveraging these data, a data-based representation can be derived for the error
system (70).

Lemma 4 ([93, Lemma 1]). Suppose that the unknown noise matrix Wi for each agent satisfies Assumption 1. In
this context, the set of system matrices [Ā B̄] capable of explaining the data (U,E,E+) can be represented as

ΣAB =

{
[Ā B̄]

∣∣∣
[
[Ā B̄]⊤

I

]⊤
ΘAB

[
[Ā B̄]⊤

I

]
� 0

}
,

where ΘAB :=
[−E 0
−U 0
E+ Bw

]
Qd

[−E 0
−U 0
E+ Bw

]⊤
and Bw :=

[
diag{Bw,i}Ni=1 1N ⊗ (−Bw,0)

0 Bw,0

]
.
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Building on the data-based system representation, the subsequent design follows a similar approach as in the
model-based case in [92, Theorem 2], and the main result is presented below.

Theorem 7 ([93, Theorem 3]). Consider the heterogeneous MAS (66a) under the event-triggered state-feedback
consensus control law (66b) and (67). Given positive scalars σ0, σij , h̄, h, and λi, θi satisfying 1 − λi − 1

θi
> 0 for

all i ∈ N[0,N ] and j ∈ N , there exists a block controller gain K such that asymptotic consensus of the system is
achieved for any [Ā B̄] ∈ ΣAB, and ηi(τ

i
k,v) tends to zero for any ηi(0) > 0, if there exist matrices R1 ≻ 0, R2 ≻ 0,

P ≻ 0, S = S⊤, M1, M2, G, Kc, and Ω̄i ≻ 0 for all i ∈ N[0,N ], satisfying LMIs ∀h ∈ {h, h̄}, ς = 1, 2,



T1 F + T2 0

∗ Ξ0 + hΞς + Ψ̂ + Q̄+ T3 hMς

∗ ∗ −hRς


 ≺ 0, (71)

where

Ψ̂ := Sym
{
−DGH2

}
, F :=

[
H⊤

1 G⊤, H⊤
5 K⊤

c

]⊤
,

D := (H1 + ǫH2)
⊤,V1 :=

[
I 0
]
, V2 :=

[
0 D

]
,

T1 := V1ΘABV⊤
1 , T2 := V1ΘABV⊤

2 , T3 := V2ΘABV⊤
2 ,

and other matrices are outlined in [93, Theorem 3]. Moreover, the desired block controller matrix K is given by

K = KcG
−1, and the triggering matrices are designed as Ωa = G−1⊤Ω̄aG

−1, and Ωb = G−1⊤Ω̄bG
−1.

Having derived a distributed data-driven ETC, we now take a step further by considering noise also in the online
operation, i.e., replace (66a) with

xi(t+ 1) = Aixi(t) +Biui(t) +Bw,iwi(t), t ∈ N, (72)

which is more general in practice. In this case, an H∞ should be designed from noisy data. The closed-loop error
dynamics become

ǫ(t+ 1) = Aǫ(t) +BKǫ(tk) +Bww(t), t ∈ N[tik,t
i
k+1−1], (73)

where w(t) := [w⊤
1 (t) · · · w⊤

N (t) w⊤
0 (t)]

⊤ ∈ R
(N+1)nw .

Different from (70), due to the presence of the noise w(t), zero tracking error cannot be achieved. To improve
the performance of system (73), we seek for H∞ control method. For clarity, the definition of H∞ stabilization for
the closed-loop system (73) is introduced as follows.

Definition 2. Given a scalar γ > 0, the system (73) achieves H∞ consensus with the disturbance attenuation γ
if the following conditions hold:

(1) The system (73) with the controller (66b) is asymptotically stable with zero disturbance w(t) = 0;
(2) The following bounded L2-gain condition is satisfied under zero initial condition for all nonzero wi(t) ∈

L2[0,∞]:
+∞∑

t=0

ǫ⊤(t)ǫ(t) 6
+∞∑

t=0

γ2w⊤(t)w(t). (74)

Building upon Theorem 7 and Definition 2, a data-driven H∞ ETC can be designed as follows.

Theorem 8 ( [93, Theorem 4]). Consider the system (73) under the event-triggered state-feedback consensus
control law (66b) and (67) over the graph Ḡ. Given the same scalars as in Theorem 7, there exists a controller
gain K such that H∞ consensus of the system is achieved with a given disturbance attenuation γ > 0 for any
[Ā B̄] ∈ ΣAB, and ηi(τ

i
k,v) tends to zero for any ηi(0) > 0, if there exist matrices R1 ≻ 0, R2 ≻ 0, P ≻ 0, S = S⊤,

M1, M2, G, Kc, and Ω̄i ≻ 0 for all i ∈ N[0,N ], satisfying the following LMIs for all h ∈ {h, h̄}:



T1 F + T2 0 0

∗ Ξ0 + hΞς + Ψ̃ + Q̄+ T3 hMς DBdG

∗ ∗ −hRς 0

∗ ∗ ∗ −γ2G⊤G



≺ 0, ς = 1, 2, (75)

where Ψ̃ = Ψ̂ +H⊤
1 G⊤GH1. Furthermore, the desired controller matrix can be computed as K = KcG

−1, and the

triggering matrices are designed as Ωa = G−1⊤Ω̄aG
−1 and Ωb = G−1⊤Ω̄bG

−1.
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6.2 Distributed data-driven STC

Similar to the centralized case, predicting future states from noisy historical data and the state from the last
triggering time plays an important role in the design of distributed data-driven STC. However, this procedure is
rather challenging even for homogeneous MASs, and there are few existing results, with the exception of [98]. That
work extended the switched systems approach in Subsection 4.2.2 and proposed a data-driven STC for homogeneous
MASs with a zero-input leader (i.e., u(t) = 0 for all t ∈ N). In the following, we review the main results from [98],
which is only a starting point for distributed data-driven STC and suggests two possible research directions: (i)
data-driven STC for heterogeneous MASs, and (ii) data-driven STC using an MPC-based method.

Consider a homogeneous leader-following MAS as follows:

x0(t+ 1) = Ax0(t), (76a)

xi(t+ 1) = Axi(t) +Bui(t), i ∈ N[1,N ], (76b)

ui(t) = Kzi(t
i
k), t ∈ N[tik, t

i
k+1−1], (76c)

where zi(t) is the combined measurement variable given by

zi(t) :=

N∑

j=1

aij (xi(t)− xj(t)) + pi (xi(t)− x0(t)) . (77)

The triggering time tik is generated by the STS below

tik+1 = tik + inf
{
sik ∈ N[1,s̄]

∣∣fi
(
xi(t

i
k), zi(t

i
k), s

i
k

)
> 0
}
, (78)

where the triggering function fi(xi(t
i
k), zi(t

i
k), s

i
k) is defined as fi(xi(t

i
k), zi(t

i
k), s

i
k) = e⊤i (s

i
k)Φei(s

i
k)−σz⊤i (tik)Φzi(t

i
k).

Here, Φ ∈ R
n×n represents a positive definite matrix to be designed, σ is a positive constant, sik = tik+1 − tik repre-

sents the kth inter-event triggering interval for agent i, and ei(s
i
k) = xi(t

i
k + sik)− xi(t

i
k) denotes the error between

the last broadcast state at tik and the state at tik+1.
The objective here is that, given input-state data (upre

i , xpre
i ) of leader and a follower i generated from the

perturbed version of system (76a) and (76b), design controller gain matrix K, and matrix Φ in the STS (78)
ensuring the state consensus of the MAS (76). The rest of the design extends the data-driven switched systems
approach-based STC in Subsection 4.2.2 from centralized systems to MASs.

Similar to Subsection 6.1, controller design and stability analysis in the distributed setting focus on the dynamics
of the state error between the ith agent and the leader, i.e., ǫi(t) := xi(t)− x0(t). It follows from (76) that

ǫi(t+ 1) = Aǫi(t) +Bui(t), i ∈ N[1,N ]. (79)

Interpreting the dynamics of the system (79) as a switched system yields

ǫi(t
i
k + sik) = Asikǫi(t

i
k) +BsikKsikzi(t

i
k). (80)

Here, Ksik := [K⊤ K⊤ · · · K⊤]⊤ containing sik copies of K, and Asik and Bsik := [Asik−1B Asik−2B · · · B] are
system matrices with sik ∈ N[1, s̄]. For any i ∈ N[1,N ], calculating {ǫi(t)}T+s−1

t=0 for all s ∈ N[1,s̄] using xpre
i . Similar

to Subsection 4.2.2, construct the following data matrices:

E1
i :=

[
ǫi(0) ǫi(1) . . . ǫi(T − 1)

]
,

Es
i+ :=

[
ǫi(s) ǫi(s+ 1) . . . ǫi(T + s− 1)

]
,

Us
i :=




ui(0) ui(1) · · · ui(T − 1)
...

...
. . .

...

ui(s− 1) ui(s) · · · ui(T + s− 2)


 ,

W 1
i := Wi,

W s
i :=

[
As−1Bw As−2Bw · · · Bw

]
W s

i ,

W s
i :=




wi(0) wi(1) · · · wi(T − 1)
...

...
. . .

...

wi(s− 1) wi(s) · · · wi(T + s− 2)


 ,
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where s ∈ N[2,s̄] and matrices W 1
i , W

s
i , and W s

i are unknown.

Consequently, for all s ∈ N[1,s̄] and i ∈ N[1,N ], the following set contains all matrices Ās and B̄
s
consistent with

the data (Us
i , E

1
i , E

s
i+,W

s
i ):

Σs
i :=

{
[Ās B̄

s
] | Es

i+ = ĀsE1
i + B̄

s
Us
i +Bs

wW
s
i

}
, (81)

where B1
w := Bw for s = 1 and Bs

w := I for all s ∈ N[2,s̄].
The MASs version of Assumption 6 is given as follows.

Assumption 14 (Requirement of data). The matrix

Θs
i :=




−E1
i 0

−Us
i 0

Es
i+ Bs

w




[
Qs

d Ss
d

∗ Rs
d

] [
·
]⊤

has full column rank.

Building upon Assumption 14, the following lemma provides a data-based representation of the MAS (80), which
is the MASs version of the representation (39).

Lemma 5 ([98, Lemma 2]). Suppose Assumptions 5 and 14 hold. The set Σ̄s
i of agent i can be represented in the

form of a QMI:

Σ̄s
i :=

{
[Ās B̄

s
] ∈ R

n×(n+sp)
∣∣∣
[
[Ās B̄s]

I
I

]⊤ [
Θ̂s

i 0
0 M

] [
[Ās B̄s]

I
I

]
� 0

}
, (82)

where M ≻ 0, Θ̂s
i :=

[
−R̂s

d Ŝs⊤
d

∗ −Q̂s
d

]
, and

[
Q̂s

d Ŝs⊤
d

∗ R̂s
d

]
:=
[
Qs

d Ss
d

∗ Rs
d

]−1

.

To implement the data-driven design, STS (78) should be transformed into a QMI form, given as follows.

Lemma 6 ([98, Lemma 3]). The model-based STS (78) is satisfied if the following condition holds for all [Ās B̄
s
] ∈

Σ̄s
i (s ∈ N[1,s̄]): 



Āsǫi(t
i
k) + B̄

s
Kszi(t

i
k)

ǫi(t
i
k)

zi(t
i
k)




⊤ 


−Φ Φ 0

Φ −Φ 0

0 0 σΦ



[
·
]
> 0. (83)

Remark 8. It can be observed from Lemmas 5 and 6 that although each agent i has the same dynamics, both the
switched system representation of MASs and the STS are different from that of centralized systems in Subsection
4.2.2. Such differences come from the distributed setting, which introduces local interaction between agents (cf.
zi(t) in (77)). Moreover, although each agent has an identical matrix, different triggering time tik renders the set Σ̄s

i

different. It is evident that this data-based representation can become more complex when a heterogeneous MAS
is considered. This can be an interesting future direction.

Building on Lemmas 5 and 6, the following theorem designs a distributed data-driven STS.

Theorem 9 ([98, Theorem 1]). Consider the MAS (76a) and (76b) and the state-feedback controller (76c) under the
graph Ḡ. Under Assumptions 5, 13 and 14 and given a scalar σ > 0, a controller gain K, a triggering matrix Φ ≻ 0,
and the latest transmitted state xi(t

i
k) of agent i, the triggering condition (83) is satisfied for any [Ās B̄

s
] ∈ Σ̄s

i , if
and only if there exists a scalar α > 0 such that the following LMI holds for i ∈ N[1,N ] and some s ∈ N[1,s̄]:

Fi(ǫi(t
i
k), zi(t

i
k))− αQs

i (ǫi(t
i
k), zi(t

i
k)) � 0, (84)

where Fi(ǫi(t
i
k), zi(t

i
k)) and Qs

i (ǫi(t
i
k), zi(t

i
k)) are defined in (FQ):

Fi(ǫi(t
i
k), zi(t

i
k)) :=




I 0 0

0 ǫi(t
i
k) 0

0 0 zi(t
i
k)




⊤ 


−Φ Φ 0

Φ −Φ 0

0 0 σΦ



[
·
]
,

Qs
i (ǫi(t

i
k), zi(t

i
k)) :=




I 0 0 0 0

0 ǫ⊤i (t
i
k) z⊤i (tik)(K

s)⊤ 0 0

0 0 0 ǫ⊤i (t
i
k) z⊤i (tik)(K

s)⊤




[
Θ̂s

i 0

0 M

] [
·
]⊤

.

(FQ)



Wang G, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 121201:27

In light of Theorem 9, we can formulate a data-driven STS as follows:

tik+1 = tik +max
{
sik ∈ N+

∣∣f̂i
(
xi(t

i
k), zi(t

i
k), s

i
k

)
� 0
}
, (85)

where

f̂i
(
xi(t

i
k), zi(t

i
k), s

i
k

)
= Fi(ǫi(t

i
k), zi(t

i
k))− αQs

i (ǫi(t
i
k), zi(t

i
k)). (86)

Leveraging the data-driven representation of MASs in Lemma 5 and the unknown MAS (76a) and (76b) under
the controller (76c) and the STS (85), we now ready to establish a data-driven condition that ensures the stability
of the system (79) in closed-loop with the controller (76c) for all [Ā B̄] ∈ Σi.

Theorem 10 ( [98, Theorem 2]). Consider the MAS (76a) and (76b) operating under the graph Ḡ. Under
Assumptions 5, 13, and 14 and given scalars σ > 0, ǫ, the leader-following consensus is achieved asymptotically for
any initial state under the state-feedback controller (76c) and the data-driven STS (85) for any [Ā B̄] ∈ Σi, if there
exist a scalar β > 0 and matrices P ≻ 0, Φ̄ ≻ 0, G, KG such that the following LMIs are satisfied for i ∈ N[1,N ]:

[
0 T
∗ Ω +Ψ

]
+ β(IN ⊗ Θ̃i) ≺ 0, (87)

where

R := (L1 + ǫL2)
⊤,

T := [(IN ⊗GL1)
⊤ (H⊗KGL3)

⊤]⊤,

Ω := L⊤
2 (IN ⊗ P )L2 − L⊤

1 (IN ⊗ P )L1,

Ψ := Sym{−(IN ⊗RGL2)} + σ(L⊤
3 (H2 ⊗ Φ̄)L3)− (L3 − L1)

⊤(IN ⊗ Φ̄)(L3 − L1),

Lκ :=
[
0n×(κ−1)n, In, 0n×(3−κ)n

]
, κ = 1, 2, 3,

Θ̃i := [ I 0
0 R ] Θi [ I 0

0 R ]
⊤
.

Moreover, the controller gain is given by K = KGG
−1 and the triggering matrix is designed as Φ = (G−1)⊤Φ̄G−1.

It is evident that both the controller (76c) and the data-driven STS (78) are implemented online in a distributed
fashion, where only local (neighbor-to-neighbor) communications are performed. Nonetheless, our design procedure
(cf. Theorem 10) is static and relies on certain global information of the MAS, in terms of the Laplacian matrix
associated with the communication graph. In this sense, our control paradigm involves centralized design and
distributed execution. It is reasonable when considering a scenario, in which minimal information is available online
and local data can be acquired during the system operation online, which has been widely studied in model-based
STC studies [117–119]. Exploring methods to eliminate the dependence on such global information in data-driven
STC design is an option for future work.

6.3 Data-driven output synchronization

In practical scenarios, the presence of inherent variations among agents and uncertainties arising from the diverse
physical characteristics of systems introduces heterogeneity in the dynamics of MASs [120]. Consequently, departing
from previous research that primarily focused on homogeneous agents or heterogeneous MASs with agents of the
same dimension, this section delves into a more comprehensive framework. Herein, agents exhibit variations in
both their dimensions and dynamics. In such a diverse setting, achieving state consensus among agents is often an
impractical goal. Instead, the emphasis shifts toward the challenging problem of output synchronization.

We begin by introducing the problem setup for output synchronization. Consider a leader-following heterogeneous
MAS, composed of a leader (indexed as 0) and N followers (indexed from 1 to N). The dynamics of each follower
i and the leader are described as

xi(t+ 1) = Aixi(t) +Biui(t), (88a)

yi(t) = Cixi(t), (88b)

x0(t+ 1) = Sx0(t), (88c)

y0(t) = Hx0(t). (88d)

The followers and the leader in the MAS (88) interact via a graph Ḡ, which satisfies Assumption 13. To proceed, a
standard assumption is imposed.
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Assumption 15. The leader dynamics matrix S has all its poles on the unit circle and they are non-repeated.

Based on this assumption, we employ a distributed observer ηi(t) ∈ R
n0 to estimate the state of the leader,

governed by the following dynamics:

ηi(t+ 1) = Sηi(t) + (1 + di + pi)
−1F

(
N∑

j=1

aij(ηj(t)− ηi(t)) + pi(x0(t)− ηi(t))

)
, (89)

where F ∈ R
n0×n0 is a gain matrix. Now, we consider a distributed state feedback controller for each follower in

(88a) as
ui(t) = Ki(xi(t)−Πiηi(t)) + Γiηi(t), (90)

where Ki ∈ R
pi×ni is the feedback gain matrix to be designed, and Πi ∈ R

ni×n0 and Γi ∈ R
pi×n0 are the solutions

to the OREs given by

AiΠi +BiΓi = ΠiS,

CiΠi = H.
(91)

The objective here is that, given state-input-output data {xi(t), ui(t), yi(t)}Tt=0 for each follower i generated from
(8), design matrices Ki, Πi, and Γi, ensuring mt→∞ei(t) = mt→∞(yi(t)− y0(t)) = 0 for all i ∈ N[1,N ].

Due to the presence of noises wi(t) and vi(t), a set of systems consistent with the data exists, i.e., (Āi, B̄i, C̄i) ∈
Mi. This consequently renders the infeasibility of the initial OREs (91). Specifically, it is impossible to seek a
solution (Πi,Γi) to

[
(S⊤ ⊗ I)− (I ⊗ Āi) −(I ⊗ B̄i)

I ⊗ C̄i 0

][
vec(Πi)

vec(Γi)

]
=

[
0

vec(H)

]
,

since there are infinitely many systems (Āi, B̄i, C̄i) contained in Mi compared to the finite number of variables in
(Πi,Γi). This renders data-driven output synchronization under noisy data challenging. To tackle this issue, a data-
driven polytopic reachability analysis approach was proposed in [95]. Instead of the exact solution of the OREs (91),
they seek an approximate solution (Πi,Γi) minimizing the error of the OREs for all possible matrices (Āi, B̄i, C̄i)
and achieve near-optimal output synchronization, i.e., ensuring limt→∞ ‖yi(t)− y0(t)‖ 6 δi for all i ∈ N[1,N ] where
δi relates to the noise. In the following, we briefly review the main results in [95].

Let ∆i1 and ∆i2 represent the errors of OREs in (91) induced by noisy data. Building upon this foundation, the
OREs (91) for all (Āi, B̄i, C̄i) ∈ Mi satisfy

∆i1 = ĀiΠi + B̄iΓi −ΠiS,

∆i2 = C̄iΠi −H.
(92)

As has been discussed in the above paragraph, neither finding the same gains Π̄i and Γ̄i for the actual system
(Ai, Bi, Ci) as with the model-based case nor seeking a single solution satisfying (91) for all (Āi, B̄i, C̄i) ∈ Mi are
possible from noisy data. Therefore, we instead seek a solution of the relaxed OREs (92) that minimizes the errors
∆i1 and ∆i2 for all (Āi, B̄i, C̄i) ∈ Mi. Drawing upon the data-based polytopic representation unveiled in Lemma 2,
this idea can be formulated by the following optimization problem:

min
Πi,Γi

∥∥∥MZi

[
Γi

Πi

]
−ΠiS

∥∥∥
F
+ ‖MCiΠi −H‖F , (93)

which is a convex optimization problem, amenable to efficient resolution via off-the-shelf solvers. With the optimal
solution (Π∗

i ,Γ
∗
i ) at our disposal, (∆∗

i1,∆
∗
i2) denotes the resulting error of the relaxed OREs (92). The following

lemma provides upper bounds on ∆∗
i1 and ∆∗

i2.

Lemma 7 ([95, Lemma 3]). Consider the MAS (88) with the relaxed OREs (92). Suppose that Assumptions 2,
13, and 15 hold. For any (Āi, B̄i, C̄i) ∈ Mi and i ∈ N[1,N ], there exist two bounded matrix polytopes M∆i1 and
M∆i2 such that the regulator equation errors ∆i1 ∈ M∆i1 and ∆i2 ∈ M∆i2 . Here,

M∆i1 :=

γwi
ρ∑

k=1

[
(β̂

(k)
W,i − β

(k)
W,i)Ŵ

(k)
i

]
[
Ui

Xi

]† [
Γs
i

Πs
i

]
, (94a)
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M∆i2 :=

γvi
ρ∑

k=1

[
(β̂

(k)
V,i − β

(k)
V,i )V̂

(k)
i

]
X†

iΠ
s
i , (94b)

where β̂
(k)
W,i and β̂

(k)
V,i are polytopic parameters associated with the true system matrices (Ai, Bi, Ci), i.e.,

[Bi Ai] =
(
Xi+ −

γwi
ρ∑

k=1

β̂
(k)
W,iŴ

(k)
i

)[Ui

Xi

]†
,

Ci =
(
Yi −

γvi
ρ∑

k=1

β̂
(k)
V,i V̂

(k)
i

)
X†

i ,

and (Πs
i ,Γ

s
i ) are the exact solution of the initial OREs (91).

Having obtained Π∗
i and Γ∗

i , achieving output synchronization reduces to finding a matrix Ki for each agent i
such that the matrix Ai +BiKi is Schur-stable. This can be achieved from noisy data by the following theorem.

Theorem 11 ([95, Theorem 1]). Consider the MAS (88) under the distributed data-driven feedback protocol (89)

and (90) over the graph Ḡ. Let Assumptions 13 and 15 hold and define Ωi = Xi+ −∑γwi
ρ

k=1 β
(k)
W,iŴ

(k)
i . Then, the

following SDP is feasible, and the gain matrix Ki = UiMi(XiMi)
−1 with any Mi ∈ R

ρ×ni satisfying (95) renders
Ai +BiKi Schur-stable for all (Āi, B̄i) ∈ MZi :

XiMi − ΩiMi(XiMi)
−1(ΩiMi)

⊤ ≻ 0,

XiMi ≻ 0.
(95)

Leveraging previous results, including the optimization problem (93), Lemma 7, and Theorem 11, a distributed
data-driven output synchronization solution for the unknown heterogeneous MAS (88) is established below.

Theorem 12 ([95, Theorem 2]). Consider the MAS (88) along with the graph Ḡ. Let Assumptions 13 and 15
hold. Given that the optimal solution of problem (93) is defined as (Π∗

i ,Γ
∗
i ), the distributed data-driven feedback

control protocol (89)–(90) ensures that the tracking errors ei(t) are ultimately uniformly bounded. This holds for
any initial state and all i ∈ N[1,N ], provided that the following two conditions are met.

(1) The controller gain Ki is designed in accordance with Theorem 11.
(2) Matrix F satisfies the condition that IN ⊗ S − ((IN +D + P)−1H)⊗ F is Schur-stable.

Remark 9. It is important to highlight that the solution to problem (93) and the SDP in (95) need only examine
the vertices of the matrix polytopes MZi and MCi defined in (12). Since the number of vertices grows combinato-
rially with the state dimension, explicit enumeration can become the dominant computational cost for large-scale
systems. Developing dedicated complexity-reduction or approximation techniques to mitigate this burden is an
interesting direction for future research (see [121, 122]), but it lies beyond the scope of the present study.

7 Conclusion and future directions

In this paper, we navigated the landscape of data-driven control for network systems, uncovering insights into four
key themes: communication delay, aperiodic transmission, network security, and distributed configuration, while
outlining potential future research avenues.

7.1 Key insights

Before outlining future research directions, we would like to emphasize the fundamental differences and advantages
of the Willems’ Fundamental Lemma-based data-driven control framework compared to traditional model-based
approaches, particularly in the presence of uncertainties and network imperfections.

Traditional model-based control strategies fundamentally rely on the availability of accurate mathematical mod-
els to represent system dynamics. However, in real-world scenarios, obtaining such models is often extremely
difficult due to factors such as unmodeled dynamics, measurement noise, time-varying environments, and incom-
plete knowledge of external disturbances. This inherent dependence on precise models can significantly limit both
the robustness and generalizability of model-based controllers.
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Over the years, various robust identification and control techniques have been developed to address uncertainties
and disturbances. Nevertheless, applying these methods in practical settings remains challenging. One key difficulty
lies in the fact that system models obtained through identification are often structurally inconsistent with the
assumptions required by robust control design. This structural mismatch introduces a gap between the identification
and control stages, which can undermine the effectiveness of model-based approaches when deployed in real-world
systems.

In contrast, the data-driven control methods reviewed in this paper avoid explicit model identification by utilizing
measured input-output data directly. These methods exploit the rich structure implicitly encoded in the data,
thereby enabling a unified and coherent framework for both system representation and controller synthesis. This
integrated approach eliminates the structural inconsistencies that typically arise when model identification and
control design are handled separately.

Furthermore, the use of real-world data inherently captures the system’s actual behavior, including latent non-
linearities and its response to external disturbances. As a result, data-driven controllers have the potential to
outperform their model-based counterparts, particularly in situations where the latter depend on oversimplified or
approximate models. This characteristic makes data-driven control strategies especially attractive for modern ap-
plications, including distributed control in unreliable networks and systems operating under dynamic and uncertain
conditions.

Building on these insights, it is clear that there remain many open challenges and opportunities for future research.
Addressing these challenges will be essential for the continued advancement of both the theoretical underpinnings
and the practical adoption of data-driven control methods.

7.2 Future directions

Looking ahead, several promising research directions and open challenges merit further attention.
(d1) Nonlinear systems. One of the most important research frontiers for data-driven control is its extension to

nonlinear network systems. These systems are common in real-world applications but are notoriously difficult to
model and control due to their complex dynamics [123]. Recent studies have demonstrated encouraging progress
by incorporating data-driven techniques into well-established nonlinear control frameworks. Examples include sum-
of-squares optimization [36], kernel-based methods [124], and linearization-based data-driven MPC [125]. However,
developing a unified framework that can address system uncertainty, enforce state and input constraints, and
handle distributed nonlinear interactions remains an open challenge. Future research could explore the integration
of machine learning and optimization methods [126,127] into data-driven control frameworks to enhance their ability
to cope with the complex behaviors of large-scale nonlinear systems.

(d2) Enhanced cybersecurity. The increasing reliance on networked control systems raises new security concerns,
particularly with regard to cyberattacks such as false data injection (FDI) and DoS attacks. While existing solutions
are predominantly model-based [128], it remains an open question whether comparable detection and mitigation
capabilities can be achieved in purely data-driven scenarios. This is especially challenging when only noisy or
partially observed data are available. Combining real-time anomaly detection, resilient control synthesis, and
secure data collection techniques in a data-driven framework could offer a promising direction for future research.

(d3) Distributed control. The increasing scale and complexity of modern network systems make centralized
control approaches impractical. Distributed data-driven control, where each agent makes decisions based on its
local data and limited communication with neighboring agents, provides a scalable alternative. Initial efforts, such
as the localized controller synthesis framework proposed in [129], have demonstrated the potential of this approach.
Nonetheless, the field is still at an early stage, and future research is expected to focus on distributed optimization,
event-triggered communication schemes, and plug-and-play architectures. These developments will be critical for
enabling robust operation in dynamic and uncertain network environments.

(d4) Real-world validation. Although the theory of data-driven control has seen significant progress, its real-
world application remains limited. Some early experimental studies, such as the implementation of data-driven
model predictive control for quadcopters [130, 131], have demonstrated the feasibility of these methods. However,
these examples also highlight the gap between theoretical assumptions and practical requirements. Future research
should emphasize the validation of data-driven controllers under realistic conditions, including model uncertainties,
time delays, and network-induced imperfections. Bridging this gap is essential for transitioning data-driven control
methods from laboratory settings to industrial and safety-critical applications.

In conclusion, the fusion of data-driven techniques with the challenges of networked systems offers a rich and
exciting research landscape. Addressing these challenges will not only further the theoretical understanding of data-
driven control but also facilitate the development of more adaptable, resilient, and efficient networked systems.
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