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Memory-centric computing (MCC) has emerged as a promising

solution for the memory wall problem, which is related to no-

table bottlenecks in modern computing systems. By performing

computations close to the memory (e.g., near-memory computing

(NMC)) or directly within the memory (e.g., compute-in-memory

(CIM)), MCC reduces data movement, leading to reduced latency

and energy consumption. MCC has demonstrated its potential

in various applications such as artificial intelligence accelerators,

database processing, and high-performance computing. However,

it faces significant challenges that hinder its widespread adoption.

For example, CIM requires substantial modifications to the exist-

ing memory devices and is typically limited to specific operations,

such as matrix-vector multiplication, which restricts its flexibility

and programmability [1]. Additionally, NMC faces architecture-

related issues, such as interoperability with host processor caches

and virtual memory, because of the need for data sharing [2].

In this study, we revisit a classic computing method, specif-

ically, the lookup table (LUT) computation, which is a well-

established approach for accelerating computations by storing pre-

computed results in memory. This approach is particularly advan-

tageous in computationally intensive or repetitive operations. Dif-

ferent from using LUTs as accelerators in processor-centric com-

puting, the proposed LUT-based MCC platform allocates dedi-

cated memory for diverse LUT algorithms. Although this ap-

proach has been increasingly applied, it has not been sufficiently

investigated. The LUT-based streaming data processor (LSDP)

proposed by Yuemaier et al. has emerged as a prototype [3]. How-

ever, considering that this architecture uses a field programmable

gate array to control the memory array, there is still room for re-

ducing power consumption and latency. A preliminary schematic

diagram of a future version is shown in Figure 1(a). In this ar-

chitecture, each node, which consists of a fixed-size LUT and a

simple write/read controller, serves as the basic computing unit.

A rectangular region composed of one or more adjacent nodes can

be configured as a processing block (PB), where the bus width can

be expanded horizontally, whereas the capacity can be increased

vertically. Various PBs can be designed to execute different algo-

rithms, as denoted by the various colors in the figure. Addition-

ally, preconfigured dedicated pathways establish direct physical

connections between PBs before execution, enabling a pipelined

dataflow with deterministic latency. This architecture is more flex-

ible than CIM; furthermore, by avoiding data migration, it over-

comes the data-sharing bottleneck problem encountered in NMC.

In this study, we outline the potential advantages and applications

of the LUT-based MCC platform and investigate the directions to-

ward its development.

Potential of the LUT-based MCC platform.

• Rich algorithmic ecosystem: The LUT algorithms are well-

established, highly optimized, and easily integrated into existing

workflows. In contrast, CIM and NMC still lack a robust library

of algorithms and programming tools.

• Flexibility: Different from the operation-specific nature of

CIM, LUTs are inherently flexible and reconfigurable; these advan-

tages enable them to implement diverse algorithms. In NMC, data

mapping is used to determine the optimal memory allocation for

different processing elements (PEs), constituting a longstanding

research problem [2]. The LUT-based MCC platform avoids the

interaction between PEs and memory, allowing for flexible setting

of LUT sizes according to the requirements of specific applications.

• Energy efficiency: By eliminating the need for repetitive com-

putations, LUTs achieve a significant reduction in energy con-

sumption, making them ideal for ultra-low-power applications.

• Scalability: With the emergence of non-volatile memory

(NVM) technologies, such as phase-change memories (PCMs) and

resistive random-access memories, large-capacity RAM arrays can

be used to implement LUT-based computation at scale, further

enhancing the applicability of the LUT-based platform.

Applications specifically suitable for LUT-based computing.

• Function approximation. LUTs excel in approximating com-

plex mathematical functions that are computationally intensive

to implement using traditional methods. For example, trigono-

metric and logarithmic functions, which are often used in graphics

processing, signal processing, and scientific computing, can be effi-

ciently handled using precomputed LUTs. CIM and NMC face dif-

ficulties in performing these operations because of their hardware

limitations. In such cases, LUTs can provide a straightforward
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Figure 1 (Color online) (a) Schematic diagram of the preliminary concept of the LUT-based MCC platform; (b) block diagram showing the

extraction of MFCCs using the proposed LUT-based MCC platform.

and effective solution.

• Neural networks. LUTs can directly store precomputed

weight values and activation function outputs, enabling fast and

energy-efficient computations. Neural network weights, which are

often fixed during inference, can be stored in LUTs for direct re-

trieval, thus eliminating the need for repeated multiplications and

additions. Additionally, LUTs can accelerate nonlinear activation

functions, such as the rectified linear unit, sigmoid, and softmax

functions, by mapping input values to their corresponding out-

puts. By incorporating LUTs into memory-centric architectures,

the computational bottleneck in neural network inference can be

alleviated, leading to improved performance and reduced power

consumption.

• High-complexity computations. Certain applications, such as

encryption and scientific simulations, involve high-computational-

complexity simulations. In such operations, LUTs can directly

map inputs to outputs, thus avoiding the need for intensive cal-

culations. Our approach is especially suited to scenarios involving

repeatedly performed computations.

• Ultra-low-power applications. In energy-constrained applica-

tions, such as wearable devices and IoT sensors, LUT-based com-

putation provides an effective solution. By precomputing results

and storing them in memory, LUTs can minimize power consump-

tion while maintaining computational accuracy.

Case study. To provide insights into the operation of the pro-

posed LUT-based MCC platform, we consider the mel-frequency

cepstrum coefficients (MFCCs) extraction process as a simple case

study. MFCCs are features representing the short-term power

spectrum of sound in a way that mimics human auditory per-

ception; MFCCs are widely used in acoustic processing operations

such as speech and speaker recognition [4]. The steps required for

extracting MFCCs are presented in Figure 1(b); each step is sep-

arately assigned to a PB. The windowing step involves complex

cosine operations. Additionally, the fast Fourier transform (FFT),

logarithmic operations, and the discrete cosine transform in the

other steps are relatively complex computational tasks. Therefore,

function approximation based on LUTs is well-suited in this case.

Furthermore, the mel-frequency scale mapping is described by a

complex equation; in this case, LUT-based computation would be

a resource-efficient approach. The dataflow direction is between

PBs that undertake the LUT tasks before execution, and the en-

tire process adopts the pipeline mode. The number of nodes is

different in each PB (although in Figure 1(b), their sizes appear

to be the same). LUT-based computing is advantageous in the

extraction of MFCCs. For example, during FFT processing, our

prototype LSDP exhibits significant advantages over the existing

MCC solutions [3]; for example, it achieves 70.6% lower power

consumption (3.53 mW vs. 12 mW) compared with that reported

in [5]. In addition, emerging NVMs can be used to improve the

performance of LUT-based MCC. For example, considering the

use of PCMs in LSDPs as an example, the power consumption

can be reduced to 0.66 nJ/KB at a read voltage of 3.3 V, and the

read time can be reduced to only 20 ns [3].

Conclusion. LUT-based computing is a classic but underin-

vestigated method, providing a promising avenue for advancing

MCC. By exploiting the strengths of LUTs, i.e., availability of al-

gorithms, flexibility, and energy efficiency, many of the limitations

of the current MCC architectures, such as CIM and NMC, can

be overcome. With the rise in emerging NVM technologies, LUT-

based computing should be revisited, and its potential applications

should be investigated.
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