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The close integration of the sixth-generation (6G) communica-

tions and the Internet of Things (IoT) technologies has driven the

widespread application of the industrial IoT (IIoT). As a commu-

nication technology-driven manufacturing paradigm, the IIoT can

effectively overcome the limitations of traditional wired connec-

tions in terms of deployment cost and maintenance efficiency [1–3].

However, industrial environments pose distinct challenges to the

IIoT communication field, particularly due to complex multipath

propagation, rich scattering environments, and significant path

loss (PL). These factors can often lead to unpredictable signal be-

havior, making the design and implementation of reliable commu-

nication networks complex. Therefore, understanding these unique

characteristics and modeling the IIoT channels are critical for de-

ploying and optimizing the IIoT communication systems.

IIoT channel modeling based on measurement data can align

with actual scenarios and exhibit higher robustness. Most exist-

ing channel measurements in IIoT scenarios were carried out in

relatively simple environments, such as general factories, labora-

tories, and offices, with little focus on real-world measurements in

more complex industrial settings. Additionally, the measurement

frequency bands were relatively limited. Furthermore, there was a

lack of comparison across multiple frequencies and bandwidths, as

well as insufficient consideration of how equipment density affects

the channel in an IIoT environment.

To address these challenges, this study conducts multi-

frequency ultra-wideband channel measurements in a smart fac-

tory. Our main contributions are as follows. (1) Ultra-wideband

(UWB) IIoT channel measurements and characteristic analysis

under typical scenarios are conducted across multiple frequen-

cies, and the impacts of different device densities on key chan-

nel characteristics are elaborated. (2) Multipath clustering and

tracking are performed on IIoT channels using power delay pro-

files (PDPs). The mechanism by which dynamic metallic equip-

ment affects abrupt changes in cluster counts is clarified based

on the Saleh-Valenzuela (S-V) model. (3) A new dual-slope PL

model incorporating equipment density is proposed, which accu-

rately characterizes the nonlinear relationship between PL, metal

density, distance, and frequency.

IIoT channel measurement. The IIoT channel measurements

were performed in a smart factory of Tai Kai Group in Shandong

Province, China. The factory is approximately 220 m long and

160 m wide and has a complex internal environment that includes

numerous metallic scatterers, moving equipment, and operating

machinery. The vector signal transceiver (VST) was used for chan-

nel measurements. The measurement equipment is illustrated in

Figure 1. The transceiver process of the VST is presented in Ap-

pendix A.1. To meet different testing requirements, during the

measurement period, the factory was divided into dense equip-

ment areas and sparse equipment areas as shown in Figure 1. See

Appendix A.2 for the specific measurement process.

Measurement data processing. During the measurement data

processing, the channel impulse response (CIR) is firstly obtained

by calibrating out effects of the system response from the raw

measurement data. See Appendix B.1 for the processing process

of CIR. The PDP obtained through CIR preprocessing can clearly

demonstrate the relationship between the received signal power

and the arrival time delay, which can be given by

PPDP(τ) = E
[

|h(τ)|2
]

, (1)

where τ is the time delay, h(τ) is the CIR at a time delay of τ ,

and E [·] is the expectation operator used for averaging over differ-

ent CIRs. The peak search algorithm is used to extract multipath

components (MPCs) from the PDP with a threshold determined

by the maximum power and noise floor. Based on this, the typi-

cal channel characteristics are calculated. More details about the

characteristic calculation formulas can be found in Appendix B.2.

Model description. In IIoT communication, two commonly used

PL models are the alpha-beta-gamma (ABG) PL model [4] and the
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Figure 1 (Color online) IIoT channel measurement and measurement results.

close-in (CI) free space PL model [5]. Under single-frequency con-

ditions, the ABG model simplifies to the floating-intercept (FI)

model. In this study, a new PL model incorporating equipment

density was introduced based on the earlier work, and it is defined

as follows:

PL =

{

(10 + ρ)n1 log10(d) +A1ρ+ 20 log10(fc), d 6 rbp,

(10 + ρ)n2 log10(d) +A2ρ+ 20 log10(fc), d > rbp,
(2)

where d represents the distance between the Tx and Rx. rbp is

the threshold distance used to distinguish between the near- and

far-field regions, which was set to 10 m in this study; and ρ is the

number of pieces of equipment per square meter, and to obtain

the value of ρ, communication with the factory staff is required

for confirmation. Parameters A1, A2, n1, and n2 are the fitting

parameters for PL, and they are obtained through fitting mea-

surement data.

The root mean square delay spread (RMS DS) and Rician K-

factor (K-factor) are often fitted by normal distribution, lognormal

distribution, and exponential distribution. The Akaike informa-

tion criterion (AIC) method and the Bayesian information crite-

rion (BIC) method were used to identify the best-fitting model.

The specific formulas can be found in Appendix C.

Measurement results and analysis. The PDP was analyzed

through clustering using the bubble clustering algorithm, and the

parameters of the S-V channel model were optimized and fitted

based on the minimum mean square error (MMSE) criterion. The

clustering results are presented in Figure 1, where it can be seen

that the decay rates of the clusters followed an exponential dis-

tribution. More details about statistical results can be found in

Appendix D.1.

The coefficient of determination R2 was used as an evaluation

metric to validate the model fitting quality. According to the R2

values (see Tables D1 and D2 in Appendix D.2), the dual-slope

model achieved the best fit for PL in complex factory environ-

ments. The details of the comparison results are provided in Ap-

pendix D.2.

The fitting results of RMS DS are presented in Tables D4 and

D5 in Appendix D.3, where it can be seen that there were signifi-

cant differences in the optimal models across different equipment

density scenarios. Based on the AIC and BIC values, the normal

distribution was identified as the best-fitting model for the dense

equipment environments. In contrast, the lognormal distribution

was considered the best-fitting model for the sparse equipment

environments.

The fitting results of the K-factor CDF in the dense and sparse

equipment scenarios obtained in this study are illustrated in Fig-

ure 1, where it can be seen that both of them followed a normal

distribution. In addition, the measurement results indicate that

equipment density also has a significant impact on channel cor-

relation. More details about statistical results can be found in

Appendix D.5.

Conclusion. This study has conducted UWB IIoT channel mea-

surements in two typical scenarios and has elaborated for the first

time the impacts of different device densities on channel charac-

teristics. The accurate clustering and tracking of multipaths in

IIoT channels have been achieved using PDPs. By fitting the pa-

rameters of the S-V model, a negative correlation between device

density and ray decay rate was identified. Furthermore, a dual-

slope PL model incorporating device density has been innovatively

proposed, and compared with other models, its fitting accuracy has

been greatly improved. This study provides key technical support

for the link design, coverage planning, and performance optimiza-

tion of IIoT communication systems.
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