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The close integration of the sixth-generation (6G) communica-
tions and the Internet of Things (IoT) technologies has driven the
widespread application of the industrial IoT (IIoT). As a commu-
nication technology-driven manufacturing paradigm, the IToT can
effectively overcome the limitations of traditional wired connec-
tions in terms of deployment cost and maintenance efficiency [1-3].
However, industrial environments pose distinct challenges to the
IIoT communication field, particularly due to complex multipath
propagation, rich scattering environments, and significant path
loss (PL). These factors can often lead to unpredictable signal be-
havior, making the design and implementation of reliable commu-
nication networks complex. Therefore, understanding these unique
characteristics and modeling the IIoT channels are critical for de-
ploying and optimizing the IIoT communication systems.

IIoT channel modeling based on measurement data can align
with actual scenarios and exhibit higher robustness. Most exist-
ing channel measurements in IIoT scenarios were carried out in
relatively simple environments, such as general factories, labora-
tories, and offices, with little focus on real-world measurements in
more complex industrial settings. Additionally, the measurement
frequency bands were relatively limited. Furthermore, there was a
lack of comparison across multiple frequencies and bandwidths, as
well as insufficient consideration of how equipment density affects
the channel in an IIoT environment.

To address these challenges, this study conducts multi-
frequency ultra-wideband channel measurements in a smart fac-
tory. Our main contributions are as follows. (1) Ultra-wideband
(UWB) IIoT channel measurements and characteristic analysis
under typical scenarios are conducted across multiple frequen-
cies, and the impacts of different device densities on key chan-
nel characteristics are elaborated. (2) Multipath clustering and
tracking are performed on IIoT channels using power delay pro-
files (PDPs). The mechanism by which dynamic metallic equip-
ment affects abrupt changes in cluster counts is clarified based
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on the Saleh-Valenzuela (S-V) model. (3) A new dual-slope PL
model incorporating equipment density is proposed, which accu-
rately characterizes the nonlinear relationship between PL, metal
density, distance, and frequency.

IIoT channel measurement. The IIoT channel measurements
were performed in a smart factory of Tai Kai Group in Shandong
Province, China. The factory is approximately 220 m long and
160 m wide and has a complex internal environment that includes
numerous metallic scatterers, moving equipment, and operating
machinery. The vector signal transceiver (VST) was used for chan-
nel measurements. The measurement equipment is illustrated in
Figure 1. The transceiver process of the VST is presented in Ap-
pendix A.1. To meet different testing requirements, during the
measurement period, the factory was divided into dense equip-
ment areas and sparse equipment areas as shown in Figure 1. See
Appendix A.2 for the specific measurement process.

Measurement data processing. During the measurement data
processing, the channel impulse response (CIR) is firstly obtained
by calibrating out effects of the system response from the raw
measurement data. See Appendix B.1 for the processing process
of CIR. The PDP obtained through CIR preprocessing can clearly
demonstrate the relationship between the received signal power
and the arrival time delay, which can be given by

Prpp(r) =E [|n(1)]*], (1)

where 7 is the time delay, h(7) is the CIR at a time delay of T,
and E [] is the expectation operator used for averaging over differ-
ent CIRs. The peak search algorithm is used to extract multipath
components (MPCs) from the PDP with a threshold determined
by the maximum power and noise floor. Based on this, the typi-
cal channel characteristics are calculated. More details about the
characteristic calculation formulas can be found in Appendix B.2.

Model description. In IIoT communication, two commonly used
PL models are the alpha-beta-gamma (ABG) PL model [4] and the
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close-in (CI) free space PL model [5]. Under single-frequency con-
ditions, the ABG model simplifies to the floating-intercept (FI)
model. In this study, a new PL model incorporating equipment
density was introduced based on the earlier work, and it is defined
as follows:

dgrbpy

L= (10 + p)n1 logyg(d) + A1p +20logo(fe), 2)
d > Tbps

(10 + p)nz logyo(d) + Azp + 201ogyg(fe),

where d represents the distance between the Tx and Rx. 7y, is
the threshold distance used to distinguish between the near- and
far-field regions, which was set to 10 m in this study; and p is the
number of pieces of equipment per square meter, and to obtain
the value of p, communication with the factory staff is required
for confirmation. Parameters Aj, As,ni, and no are the fitting
parameters for PL, and they are obtained through fitting mea-
surement data.

The root mean square delay spread (RMS DS) and Rician K-
factor (K-factor) are often fitted by normal distribution, lognormal
distribution, and exponential distribution. The Akaike informa-
tion criterion (AIC) method and the Bayesian information crite-
rion (BIC) method were used to identify the best-fitting model.
The specific formulas can be found in Appendix C.

Measurement results and analysis. The PDP was analyzed
through clustering using the bubble clustering algorithm, and the
parameters of the S-V channel model were optimized and fitted
based on the minimum mean square error (MMSE) criterion. The
clustering results are presented in Figure 1, where it can be seen
that the decay rates of the clusters followed an exponential dis-
tribution. More details about statistical results can be found in
Appendix D.1.

The coefficient of determination R2 was used as an evaluation
metric to validate the model fitting quality. According to the R2
values (see Tables D1 and D2 in Appendix D.2), the dual-slope
model achieved the best fit for PL in complex factory environ-
ments. The details of the comparison results are provided in Ap-
pendix D.2.

The fitting results of RMS DS are presented in Tables D4 and
D5 in Appendix D.3, where it can be seen that there were signifi-
cant differences in the optimal models across different equipment
density scenarios. Based on the AIC and BIC values, the normal
distribution was identified as the best-fitting model for the dense
equipment environments. In contrast, the lognormal distribution
was considered the best-fitting model for the sparse equipment
environments.

(Color online) IToT channel measurement and measurement results.

The fitting results of the K-factor CDF in the dense and sparse
equipment scenarios obtained in this study are illustrated in Fig-
ure 1, where it can be seen that both of them followed a normal
distribution. In addition, the measurement results indicate that
equipment density also has a significant impact on channel cor-
relation. More details about statistical results can be found in
Appendix D.5.

Conclusion. This study has conducted UWB IIoT channel mea-
surements in two typical scenarios and has elaborated for the first
time the impacts of different device densities on channel charac-
teristics. The accurate clustering and tracking of multipaths in
IIoT channels have been achieved using PDPs. By fitting the pa-
rameters of the S-V model, a negative correlation between device
density and ray decay rate was identified. Furthermore, a dual-
slope PL model incorporating device density has been innovatively
proposed, and compared with other models, its fitting accuracy has
been greatly improved. This study provides key technical support
for the link design, coverage planning, and performance optimiza-
tion of IToT communication systems.
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Supporting information Appendixes A-D. The channel data
can be available at https://github.com/371502200001236834/
IIOT-channel-measurement-data. The supporting information is
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