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The network dismantling (ND) problem, which involves identifying

the minimum set of nodes that will cause a system to collapse if re-

moved, remains a critical challenge in network science. Inspired by

their advancements in optimization, deep learning techniques have

been applied to study the ND problem. Deep learning methods,

including FINDER [1] (a reinforcement learning-based approach)

and GDM [2] (a supervised learning-based approach), have demon-

strated potential but have also encountered limitations: FINDER

incurs high computational costs by iteratively recalculating node

importance during removal, while GDM’s reliance on manual fea-

ture engineering introduces human bias. These limitations are

primarily attributed to the uncharted relationship between their

model design and reasoning ability, which hinders the advance-

ment of deep learning in ND.

To gain further insight into this relationship, we analyze it using

the principle of algorithmic alignment [3] and propose a more gen-

eral supervised learning framework, stable-aligned graph disman-

tling with machine learning (Stable-AGDM), for the ND problem.

In Figure 1, the model under consideration comprises three dis-

tinct hierarchical learning modules, each corresponding to a spe-

cific learning level for the ND problem. These modules are graph

structure learning, topological correlation learning, and feature se-

lection. Notably, the processing graph structure and topological

correlation information necessitate graph neural network architec-

tures with different abilities. To mitigate the influence of imbal-

anced training data (Appendix B.2.1), Stable-AGDM integrates

the stable learning framework [4] in its feature selection module.

This integration balances information distribution across samples

to enhance model robustness. A concise overview is provided be-

low, with more exhaustive details relegated to Appendix B.

Neural feature engineering. The fundamental distinction lies

in the replacement of GDM’s manual feature engineering (e.g.,

degree, clustering coefficient) with a neural feature engineering

module in Stable-AGDM. Manual feature engineering, in its rigid

implementation, extracts predefined structural features and lim-

its the model’s adaptability. This, in turn, results in subopti-

mal dismantling performance on specific complex networks (Figure

S6). In contrast, neural feature engineering employs an adaptive

learning process to identify network-specific structural patterns,

thereby reducing human bias and enhancing performance and in-

terpretability.

The design of neural feature engineering is motivated by the

contrasting efficacy of two approaches: supervised learning models

like GDM (reliant on manual feature engineering) and reinforce-

ment learning frameworks like FINDER (feature-free). Despite

methodological divergence, both approaches achieve comparable

performance for the ND problem, prompting further investigation

into the influence of manual feature engineering on the perfor-

mance of these models. In Figure S6(a), GDM with k-core features

exhibits superior performance in comparison to variants devoid of

this feature. This finding underscores the relevance of global loca-

tion information in addressing the ND problem. In Figure S6(b),

a robust correlation is observed among degree, clustering coeffi-

cient, and k-core, while the χ2 of degree demonstrates distinct

heterogeneity.

Figure 1 (Color online) Overview of the Stable-AGDM framework.

When analyzed with Figure S6(a), it was determined that the

GDM model with the χ2 of degree outperforms the one without

the χ2 of degree. Therefore, incorporating features with substan-

tial heterogeneity can enhance model performance by distinguish-

ing nodes across topological positions. These observations demon-

strate that the efficacy of manual feature engineering is contingent

upon its capacity to capture graph structural features that are

imperative for ND. In a similar manner, GNNs can extract such

structural features, thereby providing a data-driven alternative to

manual feature engineering.

To circumvent the potential for human experience bias in model

learning, a neural feature engineering module has been devised,
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comprising two components: local and global structure learning.

The GNNs employed in the context of local structure learning

must possess the capacity to generate robust topological represen-

tations, thereby facilitating the acquisition of node structure in-

formation. A residual gated graph neural network (ResGatedG) is

employed to learn local structure vectors hlocal ∈ R
n×p. However,

it should be emphasized that any GNN that enhances topological

representation ability can be used for this module. In the domain

of global structure learning, graph pooling is employed to acquire

a graph feature vector hgraph ∈ R
1×p, which encompasses global

structure information. This vector is then integrated with the local

structure vectors to yield global structure vectors hglobal ∈ R
n×p

in the structure presentation space:

hglobali
= W5 ReLU

(

h
⊤

local;i · hgraph ·W6

)

, (1)

where hglobali
∈ R

1×p denotes the updated global structure vec-

tor of the target node i, hlocali
∈ R

1×p denotes the local structure

vector of the target node i, and W5 ∈ R
1×p and W6 ∈ R

p×p are

learnable parameters.

Topological correlation learning. This module is designed to

generate node representation vectors by capturing correlations

among global structure vectors hglobal ∈ R
n×p. The critical

node selection in ND is significantly influenced by higher-order in-

teractions, necessitating the use of graph signal processing-based

GNNs to model topological correlations. A graph attention net-

work (GAT) introduces adaptive edge weights, analogous to a self-

adaptive graph shift operator in signal processing, to prioritize

correlations between structural features. Accordingly, GAT is em-

ployed to generate the node representation vectors H ∈ R
n×mH in

the representation space. However, it should be emphasized that

any graph convolutional layer that enhances feature correlation

learning ability can be used for this module.

Feature selection. This module integrates the stable learning

framework to identify stable features within the representation

space. The design motivation of the module is derived from Fig-

ure S6(c), which illustrates the degradation in performance that

occurs when neural architectures replace manual feature engineer-

ing (i.e., the AGDM model). This occurrence can be attributed

to the sparsity of nodes in optimal dismantling sets, which re-

sults in severe training data imbalance. Consequently, models

tend to overfit the majority class (zero-labeled nodes) while un-

derfitting the minority class (nonzero-labeled nodes), particularly

under conditions of limited samples and high model complexity.

Consequently, existing supervised methods continue to depend on

manual feature engineering despite its inherent limitations, as neu-

ral feature engineering increases model complexity. Moreover, the

absence of proper data balancing frequently results in training fail-

ure. A more nuanced understanding of this phenomenon can be

attained by employing a feature selection framework. Specifically,

while neural feature engineering flexibly captures rich graph infor-

mation, it inevitably introduces redundant or irrelevant features,

making models struggle to identify task-critical features with lim-

ited training data.

To identify features that have a practical impact on ND, a fea-

ture selection module is designed to eliminate irrelevant and spu-

rious correlations. The stable learning framework can be statis-

tically understood as a feature selection mechanism based on re-

gression coefficients [4], which can distinguish stable features from

nonstable features in the representation space. Consequently, a

feature selection module is adopted, based on the stable learning

framework. This module selects stable feature variables through

a weighted loss function, with the objective of increasing the ro-

bustness of the model.

Result. Figures S1 and S2 demonstrate that the performance

of Stable-AGDM is consistently competitive across a range of net-

work scales and types, thereby refuting the assertion of dataset-

specific superiority. In Figure S4, Stable-AGDM accomplishes ND

by removing an average of 12.74% of nodes. This efficiency is evi-

dent in the operational mechanism of Stable-AGDM, which func-

tions as a one-pass method without the necessity of manual fea-

ture engineering. In contrast, conventional baselines necessitate

iterative structural recomputation or manual feature engineering,

thereby compromising efficiency. Extended results can be found

in Appendix C.

Conclusion. The present study puts forth a more general deep

learning framework, Stable-AGDM, for addressing the ND prob-

lem. The distinguishing feature of the proposed Stable-AGDM

framework is its composition of three modules, each represent-

ing a distinct learning level for the ND problem: graph structure

learning, topological correlation learning, and feature selection.

As demonstrated in experimental trials, Stable-AGDM has been

shown to outperform existing methods and exhibits generalization

capacity across a range of ND scenarios. In this regard, it is pro-

posed that a more profound investigation be undertaken into the

structural design of module alignment within the ND problem.

This investigation will entail the identification of empirical knowl-

edge that is genuinely useful for addressing the problem, with a

particular focus on the impact of diverse modules on model per-

formance. This endeavor will facilitate the acquisition of more

profound insights. Moreover, observations of low-rank phenomena

in the neural feature engineering module further motivate us to in-

vestigate their underlying causes through larger-scale experiments

and explainable machine learning techniques.
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