SCIENCE CHINA
Information Sciences

* Supplementary File ¢

Neural algorithmic approach to network dismantling

Peng Zhang?, Jun Fu™?", Xiaojie Sun', Tonglei Cheng® & Guanrong Chen*

LState Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 100819, China
2School of Future Technology, Northeastern University, Shenyang 100819, China
3College of Information Science and Engineering, Northeastern University, Shenyang 100819, China
4Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

Appendix A Notation and Preliminaries

The dimensions of the raw feature space, outcome space, and presentation space are donated by mx, my, and mpy,
respectively. Given that the network dismantling (ND) task is regarded as a node regression task in model learning, the
number of training samples n is the number of graph nodes. Let A; € {0,1}*** X; € R¥*™X and y; € R denote the
adjacency matrix, feature matrix and label of the k-hop ego-graph of the i-th sample, respectively. The representations
learned by models are denoted as H € R™*™H where H, ; € R™*1 represents the i-th variable in the representation space.
Let w € {w € R’_H Z?:l w; = n} denote sample weights, u and v represent Random Fourier Features mapping functions,
and N (-) be neighboring nodes of a given node.

Appendix A.1 Algorithmic Alignment

The concept of Algorithmic Alignment [15] is crucial for constructing effective algorithmic reasoners that extrapolate better.
Roughly, it means that a neural network aligns with an algorithm when different parts of the algorithm can be “easily”
modeled by one of the modules of the neural network. Recent theoretical results explain why algorithmically inspired models
improve extrapolation in algorithmic and physics-based tasks [14].Briefly,if we can design architecture components so that
the individual parts have to learn nearly linear ground-truth functions, it implies stronger out-of-distribution performance.
Expanding on this, category theory and abstract algebra [32] are used to demonstrate an intricate relationship between GNNs
and DP, beyond initial observations on algorithms like Bellman-Ford. This revelation greatly broadens the understanding
and potential applications of Algorithmic Alignment.

Guided by this principle, novel GNN architectures and training methods have been proposed to facilitate align with
a wider range of combinatorial algorithms [18,33]. These works support the original theoretical findings [15], which are
categorized into Algo-level, Step-level, and Unit-level alignments based on algorithm alignment structures [12]. Among
them, Algo-level alignment focuses on learning entire algorithms from inputs to outputs. Given that most network disman-
tling algorithms are based on heuristics and lack precise reasoning structures, we adopt the Algo-level alignment as the
foundational concept for our model design.

Appendix A.2 Stable Learning

The Stable Learning framework aims to bridge the gap between the precise modeling of causal inference and the black-box
approaches of machine learning, thereby effectively addressing concerns related to stability, explainability, and fairness [34].
From the causality perspective, this framework is developed from the idea of Directly Confounder Balancing (DCB) in
the potential outcomes framework, which learns global sample weights to make input variables independent [35]. Following
regression analysis on the weighted samples, the regression coefficient of each input variable indicates its causal effect on the
outcome. Similarly, from the view of statistical learning, the Stable Learning framework provides a theoretical guarantee
that the feature variables utilized in the linear regression model to predict the outcome variable are stable [31]. Thus, this
framework can be seen as a feature selection method that relies on regression coefficients to differentiate between stable and
unstable features in the representation space.

The core of the framework lies in adjusting the weights of samples to eliminate the independence among features.
Although various techniques such as Hilbert-Schmidt Independence Criterion (HSIC) and Mutual Information (MI) can
be used for independence test, they can hardly be used to optimize deep models at an acceptable cost. Considering the
complex correlations among features obtained by deep learning, a novel nonlinear feature decorrelation method based on
Random Fourier Features with linear computational complexity is proposed [23]. Equation (A1) measures the independence
between any pair of features H. ; and H. ; in the representation space. To simplify the notation, we use A and B represent

* Corresponding author (email: junfu@mail.neu.edu.cn)

Sci China Inf Sci 2

one-dimensional random variables instead of H, ; and H. j and we sample (A1, Ao, ..., Ayn) and (Bi, Ba, ..., Bn) for the
distribution of A and B.

iAB;w: nilz wlu(A,)—%iju(A])
=1 =t (A1)
wiv (Bi) — %Zwﬂ’ (Bi)]|
where .
u(A) = (u1(A),u2(A), ... un,(A)) ,u;(A) € Hrrr, Vj, (A2)

v(B) = (v1(B),v2(B), ... vng (B)),v;(B) € Hrrr, V).

Here, we sample n 4 and np functions from Hrpr, where Hrpr represents the function space of Random Fourier Features
characterized by the following form:

Hrrr ={h: 2z — \/icos(wx + o) |

. (A3)
w ~ N(0,1),¢ ~ Uniform (0,2n)},

where w is sampled from the standard normal distribution and ¢ is sampled from the uniform distribution.

Appendix B Stable-AGDM Model

Our model takes one network as input, without any node feature information, and produces a scalar value p, ranging
from zero to one for each node n. When dismantling a network, nodes are sorted and removed in descending order of p,
until the target is reached. Then, because the value p, indicates the likelihood of the node being part of an optimal set,
Stable-AGDM employs a node reinsertion strategy [25] to refine the dismantling set after dismantling. And the Stable-
AGDM approach is applicable to undirected, unweighted simple graphs. Currently, it cannot be used for the disintegration
of weighted networks because the graph neural networks employed do not consider edge weights. However, in the future,
we can incorporate graph neural networks that account for edge weights into this framework, enabling its use for weighted
network disintegration.

Appendix B.1 Model architecture

Neural Feature Engineering

e Local Structure Learning (LSL) This module utilizes the network adjacency matrix to generate local structure
vectors for each node. Existing methodologies are dominated by the utilization of feature engineering techniques. To avoid
learning failures, feature engineering typically requires features to be heterogeneous. The requirement for heterogeneity
arises from the necessity to differentiate nodes situated at various topological positions through the implementation of
constructed eigenvectors. Meanwhile, GNNs based on graph isomorphism [19,20] can distinguish more topological structures
by constructing structure vectors based on the adjacency matrix of the network, such as GIN. Therefore, we adopt GNNs
based on graph isomorphism to learn node structure information and construct structure vectors with strong topological
representation ability. To maintain generality, we assume that the raw feature vector of each node is a constant value of
one. We use Residual Gated Graph ConvNets [24] (ResGatedG) to learn local structure vectors hjpeqr € R™*P:

h{ocali = hlocali Wi+ Z Ni,j © hlocalj Wa, (Bl)
JEN(3)
where h/ € RXP denotes the updated local structure vector of the target node %, hjocar, € R *P denotes the local
local i
7

structure vector before the update, N (i) is the one-hop neighbors of node i and 7; ; = o(hiocat; W3 + hiocal Wy4) with
o denoting the sigmoid function, and Wy € RP*P, Wy € RP*P, W3 € RP*! W, € RP*! are learnable parameters. But it
should be emphasized that any graph convolutional layer that enhances topological representation ability can be used for
this module.

e Global Structure Learning (GSL) The module generates global structure vectors for each node, which combines
local structure vectors with the graph structure that it has learned. The objective of this module is to assess the global
impact of each node. As the dismantling is for the global network, it is imperative to differentiate the importance of
two nodes, even if they exhibit similar local structures. To address this issue, we utilize graph pooling to obtain graph
feature vector hgrapn € RXP containing global structure information and merge it with the node local structure vectors
hiocar € R™*P s0 as to generate global structure vectors hgiobar € R™*P in the structure presentation space:

hgtobat; = Ws ReLU (Aihear,i Bgraph - We) , (B2)

where hgiobat; € R1XP denotes the updated global structure vector of the target node i, hiocal; € R1XP denotes the local
structure vector of the target node i, Wy € R1XP and Wg € RPXP are learnable parameters.

Sci China Inf Sci 3

Topological Correlation Learning (TCL)

The module generates representation vectors for each node by discovering the correlation between node global structure
vectors. The selection of critical nodes in the ND problem is significantly influenced by the higher-order interactions between
nodes. In the preceding modules, the model has learnt the node topology information through GNNs. The focus of this
module is to learn the impact of topological interactions on key nodes, namely the correlation between node features. So,
GNNs based on graph signal processing are selected to learn the correlation between node features. As shown in Equation
(B3), GAT [22] has an additional adaptive edge weight coefficient compared to GCN. This mechanism is analogous, in terms
of graph signal processing, to learning a self-adaptive graph shift operator, which corresponds to a self-adaptive filtering
effect. So, GAT can focus more on learning the correlation between node features to generate the node representation
vectors H € R™*™H in the representation space:

HZI = ai,iHiW7 + Z Ozi’jHjW'y, (B3)
JEN(3)
where H; € R1X™H denotes the updated presentation vector of the target node i, Wy € R™HX™H ig the learnable
parameter and the attention coefficients «; ; is defined as
exp(LeakyReLU(H;, jW3s))
> ken()uisy exp(LeakyReLU(H;,;Wsg)) ’

(B4)

Qi =

where H; ; = [H;Wr||H;Wy] € R1¥2™H and Wg € R?™# *1 is the learnable parameter.

Feature Seletion (FS)

The module employs the Stable Learning framework to identify stable features within the representation space. The
existing node representation vectors comprise local topological information, global information, and topological correlation
information of the nodes as a result of the learning processes of the three modules mentioned above. The integration of
these information aligns with the empirical cognition of identifying key nodes in current ND problem research. However, the
highly flexible structure of the model allows it to learn a wider range of graph information, so there may be an abundance
of redundant and irrelevant features in the node representation vectors.

To effectively identify features that have a practical impact on network dismantling, we design a feature selection module
to eliminate irrelevant and spurious features. The Stable Learning framework can be statistically understood as a feature
selection mechanism based on regression coefficients, which can distinguish stable features from non-stable features in the
representation space. Therefore, we adopt a feature selection module based on the Stable Learning framework, which select
stable feature variables through a weighted loss function to increase the robustness of the model. For more information,
please refer to the ” Training algorithm” Appendix B.2 section.

Appendix B.2 Training algorithm

Algorithm B1 Training procedure of Stable-AGDM

Require: Training dataset G = {(A41, X1,%1), ..., (AN, XN, yn)}, Sample size n, Training epochs T,
Decorrelation epochs D.
1: fort=1toT do
2: for 1 to BatchNumber do
3: According to the algorithmic framework in the main text (i.e., the Eq. B1, B2, B3 in Appendix
B), forward propagation to generate H;
4 for 1 to D do
5 Optimize sample weights w via Eq. B6;
6: end for
7: Update f,v and g via Eq. B5;
8: end for
9: end for

Appendix B.2.1 Training dataset

We perform supervised training of our model using synthetic networks (25 nodes each) generated by the Barabasi-Albert
(BA), the Erdos-Renyi (ER) and the Static Power Law (PL) models respectively. A brute-force search (i.e., attempting
every possible combination of nodes) is conducted on each synthetic network to find all the minimum-size solutions that
reduce the Largest Connected Component to a specified target size, which in our work is 18%. It is important to note that
there may be several optimal dismantling sets for each synthetic network. Hence, the label of each node is computed as
the ratio of the number of optimal sets that include the node to the total number of optimal sets. This ratio reflects the
probability of the node being part of an optimal set. When there is only one optimal set, the nodes in this set are labeled

Sci China Inf Sci 4

1, while the rest are labeled 0. When there are two optimal sets, the nodes that belong to both sets are labeled 1, the nodes
that belong to only one set are labeled 0.5, and the nodes that belong to neither set are labeled 0. This approach assigns
higher labels to nodes that are more relevant for the optimal dismantling of the network. This is meant to teach the model
that some nodes are more essential than others for the optimal dismantling of the network, as they are included in multiple
optimal sets.

The imbalanced training data arises from our label generation method, consistent with GDM and other supervised
learning-based algorithms: each node’s label equals its frequency in optimal dismantling sets divided by the total number of
such sets. Since optimal sets contain far fewer nodes than the entire network, most nodes receive zero-valued labels, while
only a small fraction have non-zero values.

Appendix B.2.2 Loss function

As previously mentioned, the distribution of training samples for the ND task exhibits a significant imbalance, which may
lead to biased model performance and hinder its generalization ability. To enhance the model’s comprehensive understanding
of diverse data information, we choose to employ a widely recognized approach known as sample reweighting for addressing
uneven data acquisition. The Stable Learning framework represents an adaptive sample reweighting process, which is highly
suitable for supervised learning tasks with abundant samples but imbalanced distributions. Moreover, as discussed in the
Feature Seletion module, the Stable Learning framework facilitates the learning of stable features that are relevant to the
task. The integration of the Stable Learning framework can enhance the predictive performance of the model, thereby
facilitating more comprehensive scientific research. Moreover, to guarantee the efficacy of the node structural information,
we integrate graph reconstruction loss to maintain the original network structures within the structure presentation space,
as shown in the second term of Equation (B5).

Therefore, Stable-AGDM iteratively optimize sample weights w, the neural engineering module f, the topological cor-
relation learning mudule v and the feature selection module g. The training algorithm implemented is shown in Algorithm
B1,with

f(t+1), ”y(t+1),g(t+1)

=argmin _ w(” (g (7 (f (As, X4))) — v:)°

N Y A — (B5)
- © ® |
t t
+a Z @i j ||Pgiobal; — hglobalj .
Q=1
2
t+1 . 2
wtY = arg min Z EH(t+1)H(t+1)"w s (B6)
wEA, it 53 ’ F

1<i<j<mpy

where « is a positive hyper-parameter weighing between these two losses, a;,; denotes whether nodes ¢ and j are adjacent,
and A, = {'w eRY [>0 wy = n}

Appendix B.3 Dismantling Strategy

The existing ND algorithms based on supervised learning regard the prediction values of the model as indicators of node
dismantling importance.The top k nodes are removed based on their prediction values until the network dismantling thresh-
old is reached. However, in accordance with the meaning of training sample labels, the node prediction values generated
by deep learning models should closely approximate the probabilities of nodes belonging to the optimal solution set. For
example, as shown in Supplementary Fig. B1, when the threshold is set to the maximum connected subgraph size of 1,
there are two optimal solution sets: 1,3 and 2,4, both with a supervised learning label of 1/2. When the model prediction
performance is good, the dismantling order based on model prediction values may be: 1, 2, 3. The direct dismantling of
the network solely based on node prediction values may not yield satisfactory results and may deviate from the intended
interpretation of model prediction output. Therefore, based on the above considerations, we adopt the following dismantling
strategy : After iteratively removing the top k nodes based on their prediction values until reaching the specified threshold,
we implement the node reinsertion strategy used in MinSum, which ensures the maximum connected subgraph size after
reinserting becomes smaller than the dismantling threshold range.

Appendix C More details of experiments

We train our model using the model configuration and training hyperparameters as shown in Table C1. All experiments are
conducted on a shared machine equipped with an Intel (R) Core (TM) i7-9700 CPU, 16GB RAM, and an NVIDIA Quadro
P620.

Appendix C.1 Baseline Methods

We compare Stable-AGDM with other state-of-the-art methods that focus on network dismantling. To demonstrate that the
dismantling performance of our algorithm is not dependent on the node reinsertion strategy, we incorporate node reinsertion
into these benchmark algorithms (except HDA and CI) and add the random _rein algorithm for comparison.

Sci China Inf Sci 5

Figure B1 An example of network dismantling.

Table C1 Stabel-AGDM model configuration and hyperparameters

Hyperparameter Value
Learning Rate 0.01
Weight Decay 1x107°
Training Epochs 800
Decorrelation Epochs 20
Sample Size 200
Fully Connected Layers 2
RFF Dimension 2
Learning Rate (Stable Learning) 10
Graph Reconstruction Loss Cofficient 0.01
GNN Type LSL ResGatedGraph
TCL GAT
GNN Layers LSL 4
TCL 2
LSL 40

Embedding Dimension
TCL 40

e FINDER [6]. FINDER is a reinforcement learning-based method. It encodes the state (remaining network) and all
possible actions (remove node) into embedding vectors, so that it takes action a that represents the maximum expected
rewards given state s.

e CI [2]. CI value is defined as the product of the node reduced degree (original degree minus one) and total reduced
degree of neighboring nodes at the surface of a ball of constant radius. The CI method sequentially removes the node with
the highest CI value and recalculates the CI values after each node removal.

e MinSum [1]. MinSum, a classical optimal decycling based method, is composed of three stages: (i) use MinSum
message passing algorithm to break all the loops in the network; (ii) iteratively remove the root node until the size of the
tree component is not larger than the desired threshold C; (iii) reinsert some nodes to close cycles without increasing the
size of the largest component.

e GND [3]. In each step, GND uses the spectral cut method to partition the remaining network into two non-overlapping
components and removes nodes that cover all of the edges between two components at minimal cost.

e GDM [7]. GDM is the first supervised learning model, which is composed of feature engineering, GNN layers and a
regressor. Its dismantling strategy is the same as Stable-AGDM.

e NIRM [10]. NIRM, a supervised learning method, consists of six modules: (1) feature engineering, (2) feature scoring,
(3) representation encoding, (4) local scoring, (5) global scoring, and (6) fusion and rank. Its dismantling strategy is the
same as Stable-AGDM.

e random_rein. It firstly randomly removes nodes until the biggest size of the remaining components is not larger than
the desired threshold C, and then applies the node reinsertion strategy.

Sci China Inf Sci 6

a node size 25 b node size 50
-l - o
MinSum MinSum
08 random_rein random_rein
= 00 |
" FINDER = FINDER
e NIRM - NIRM
07 oM 074 GoM
- Siable-AGDM - stable-AGDM
06 i 064
05 4]
= Z 05
8 8
5 5
204 1 2044
3 s
: ¢ 18
03 E 034 b .
02 024 .
0.1 0.1+ -
00 00+
BA ER ws BA PL
Types of synthetic networks Types of synthetic networks
[d
node size 100 node size 1000
o B
08 1la Minsum 08+ -] Minsum
h random_rein random_rein
- GND - GND
- FINDER - FINDER
07 N 071 —NRM
GoM
- Stablo-AGDM - Stablo-AGDM
08 06+
@ @
Sos 2051
5 s
2
& & I
204 04
k| s
& &
03 {] 03+
02] 027 I H
0.1 0.1+ -
00 00+
BA ER ws PL BA PL

Types of synthetic networks

Types of synthetic networks

Figure S1 Performance of Stable-AGDM on different types of synthetic networks. To quantify the goodness of each
algorithm in the ND problem, the relative size of NDS (denoted by p = [Nnps|/|N]), i.e., the fraction of nodes’ removal that
leads to the 20% residual LCC size, is used as a measure. (a-d) comparison of Stable-AGDM and other baseline algorithms on
four types of model networks, i.e., Barabési-Albert scale-free networks (BA), Erdés-Rényi random networks (ER), Watts-Strogatz
small-world networks (WS), and static Power Law networks (PL), with network size N =25, 50, 100, 1000.

- 100
BA n_25
BA_n_50
BA_n_100
BA_n_1000 80
ER.n 25— 7244 64.89 63.56 7422 67.56 66.22 66.67 65.33
ER.n.50- 7467 75.33 7422 80.22 76.44 75.11 7.1 76
ER_n_100- 7944 79.6 79.27 80.55 79.56 80.16 80.38 79.77
ER_n_1000- 80 80.09 80.09 80.1 80.01 80.1 80.1 80.1

WS_n_25
WS_n_50
WS_n_100
WS_n_1000
PL_n 25
PL_n_50
PL_n_100

PL_n_1000

FINDER
46.24

MinSum
45.74

Average NIRM

476

random_rein
58.72

Stable-AGDM
46.59

Figure S2 Performance of Stable-AGDM on different types of synthetic networks. To quantify the goodness of each
algorithm in the ND problem, the relative size of NDS (denoted by p = |[Nnps|/|N]), i.e., the fraction of nodes’ removal that
leads to the 20% residual LCC size, is used as a measure. comparison of Stable-AGDM and other baseline algorithms on four types
of model networks, i.e., Barabési-Albert scale-free networks (BA), Erdés-Rényi random networks (ER), Watts-Strogatz small-world
networks (WS), and static Power Law networks (PL), with network size N =25, 50, 100, 1000.

Sci China Inf Sci 7

BA ER
a b
07
06
I
@ @
2os =
5 k
£ 04 =
& W E
03
0.2
“@- Stable-AGDM & Stable-AGDM
25 50 100 1000 25 50 100 1000
Network size Network size
c d
ws PL
08 0.55
0.50
0.7
045
B o6 8 |
g g 0.40
“ 3 035
g 05 5
° =
& 3
« 0.30 |
04
0.25
0.20 3
03 NIRI
o
<@ Stable-AGDM 015 -4 Stable-AGDM
25 50 100 1000 25 50 100 1000
Network size Network size

Figure S3 Performance trend of the algorithm as a function of scale on each synthetic network. (a-d) represent different kinds
of synthetic network models, i.e., Barabdsi-Albert scale-free networks (BA), Erdds-Rényi random networks (ER), Watts-Strogatz
small-world networks (WS), and static Power Law networks (PL).

-1 arenas-meta arenas-meta
a arenas-meta 3 9713 10.15 1.04 © b 10 c
cfinder-google - 63.74 352 3 3.527 19.34 3.083 ﬁimm 05 ;‘ms“m
oo o0
econ-wm1 - 6346 I 2423 23.85 2346 2346 08 en P .
1271 1.305 1.438 1335 NRM z 04 NRM
o com 5 cou
foodweb-baydry - 78.91 ¥ X .4 . z R —— SableAGOM 9 y
foodweb-baywet - 79.60 | 5547 5391 5781 6328 | 5391 8 503 (o= Sl AooM
internet-topology 2.408 1.657 - H 0
loc-brightite 12.38 0 53 10.54 24 i I o4 3
maayan-Stelz! 6.096 6 551 3 5 | \L__‘_‘_h_‘
o p 60 02 01
maayan-figeys 6.074 8 5.806 9 .
maayan-foodweb - 3552 Y 2514 y 000 002 004 006 008 010 012 5 10 15 20 25 30 35 40
maayan-vidal 58 o 0 " percentage of removed nodes(%) dismanting threshold(%)
moreno_propro 4.064 3.476 2.834 6 cfinder-google cfinder-google
munmun_digg_reply_LCC 13.06 k 1.79 3 40 10 a a
insum 06 Vinsum
opsahl-openflights 10.21 3 5274 oo ° N
opsahl-ucsocial - i 24.49 222 08 et e e
y z 5 3 com 5 con
slashdot-threads 5501 5.769 8 g S04 o
subelj_jdk_jdk - 75.41 6 3 i 5 3715 20 06 N = Sible-AGOM
web-EPA 6 656 6812 ¢ 7.024 S H
web-webbase-2001 004358 0. 003736 0.03 04 g 02
wikipedia_link_kn X I 16.76 6 2015 16.58
wikipedia_link_i 09 10.23 4 14.13 1004 02 PO e o
0
Average random_rein MinSum GND FINDER GDM Stable-AGDM 0.00 005 0.10 015 020 5 10 15 20 25 30 35 40
4354 15.17 13.62 1361 13.75 X 14.21 1274 percentage of removed nodes(%) dismanting threshold(%)

Figure S4 Performance of Stable-AGDM on real-world networks. (a) To quantify the goodness of each algorithm in ND
problem, we consider the relative size of NDS (denoted by p = |[Nnps|/|N]), i.e., the fraction of nodes’ removal that leads to the
20% residual LCC size, is used as a measure. The smaller the relative size of NDS p, the darker the color. (b) The Area Under the
Curve (AUC) represents changes in the size of the Largest Connected Component (LCC) during the attacks. A lower area under
the curve indicates more efficient network teardown. (c) comparison of the relative sizes of NDS at different dismantling thresholds.

Appendix C.2 Dataset

Appendix C.2.1 Synthetic Networks.

Our synthetic data are composed of Barabdsi-Albert scale-free networks, Erdos-Rényi random networks, Watts-Strogatz
small-world networks and static Power Law networks, which are implemented in igraph [36] and Networkx [37]. 10 instances
are generated with 25, 50, 100 and 1K nodes each and the results are averaged.

All networks were generated with the following configurations:

e Barabasi-Albert (BA) scale-free networks The number of outgoing edges per vertex (m) ranges from 2 to 10.

e Erdos-Renyi (ER) networks The average degree ranges from 4 to 20.

e Static Power-law generational models The power-law exponent (v) ranges from 2.1 to 2.9, and the average degree
ranges from 4 to 20.

Sci China Inf Sci 8

arenas-meta 100
cfinder-google
econ-wm1 -
ego-twitter
foodweb-baydry - 60.16 60.94 61.72 69.53 63.28 67.97 67.97 60.94 - 80
foodweb-baywet - 57.81 59.38 60.16 85.16 62.5 67.19 67.19 60.16
internet-topology 1.853 22.74
loc-brightkite 10.62 26.44
maayan-Stelz . 5.92 21.22 60
maayan-figeys 6.074 25.86
maayan-foodweb - 38.8

maayan-vidal 8.682 19.12
moreno_propro 4.064 7.647
munmun_digg_reply_LCC 11.63 27.51
opsahl-openflights 9.051 27.53
opsahl-ucsocial 22.06 42.81
slashdot-threads 5.426 21.21
subelj_jdk_jdk 5.16 26.75
web-EPA 6.884 20.25
web-webbase-2001 0.3051 10.85
wikipedia_link_kn 17.15 43.8
wikipedia_link_li 10.44 27.86

Average Cl FINDER MinSum random_rein GND GDM NIRM Stable-AGDM

19.48 18.5 15.07 32.93 16.24 16.22 17.75 15.19

Figure S5 Performance of Stable-AGDM on real-world networks. To further validate the model’s effectiveness, we test a
smaller target (5% residual LCC) on real networks.

o Watts-Strogatz (WS) small-world networks The average degree ranges from 4 to 20, and the rewiring probability (p)
ranges from 0.01 to 0.15.

Appendix C.2.2 Real-world Networks.

We choose 22 real-world networks, as shown in Table C2. We consider all the networks as undirected and unweighted.

Appendix C.3 Experiments results and analyses

In our experiments, we compare Stable-AGDM with other state-of-the-art methods, such as CI [2], MinSum [1], GND [3],
FINDER (6], GDM [7], NIRM [10]. As mentioned earlier, Stable-AGDM performs a node reinsertion strategy during
dismantling. To demonstrate that the dismantling performance of our algorithm is not dependent on the node reinsertion
strategy, we incorporate the node reinsertion strategy into the above-mentioned benchmark algorithms (except FINDER
and CI) and add random_rein algorithm, which randomly removes nodes until the target is reached and then applies the
node reinsertion strategy.

In the ND problem, the size of largest connected component (LCC) is frequently used as a measure for quantifying normal
system functions, and when the size of LCC decreases below a predefined threshold C, it is regarded as a collapse in system
functionality [26-28]. Thus, a widely accepted and rigorous definition of the ND problem is to determine the minimum
network dismantling node set (NDS), whose removal is able to dismantle the network into isolated sub-components of a
specific small size [1], defined by.

N;ns = {Ndns - N Iglcc(Ndns)V|N| < C} (Cl)

where |Giee(Nans)| denotes the number of nodes in LCC Gy after the removal of NDS Ny, s and |N] is the number of
nodes in G. To quantify the goodness of each algorithm in the ND problem, we consider the relative size of NDS (denoted
by p, and p = [Ngns|/IN]), e.g., the fraction of nodes’ removal that leads to a 20% residual LCC size in this paper. The
relative size of NDS is adopted because we are more concerned with the situation where the network dismantles to the
critical point of collapse rather than the process itself. Unless otherwise specified, the performance evaluation metric used
in our experiments is the relative size of NDS.

Additionally, we chose a 20% residual LCC size as the evaluation criterion because it aligns with the method used to
generate node labels for supervised learning. We emphasize that this choice of training labels is arbitrary, and other labels
might be more effective for different datasets or objectives. To ensure a fair comparison with models like GDM, we used
the same training dataset and label generation approach as GDM. Specifically, we identified all minimal solutions through
brute-force that reduce the Largest Connected Component (LCC) to approximately 18% of its original size. The label for
each node was then calculated as the proportion of optimal sets it is part of relative to the total number of optimal solutions.
Since the model essentially learns the optimal dismantling sets that reduce the LCC to around 18%, we selected a similar

Sci China Inf Sci 9

a arenas-meta b
cfinder-google
econ-wm1 1.00
ego-twitter
foodweb-baydry - - 80 075
foodweb-baywet 4 53.91 53.91 54.69 53.91
internet-topology 1.8 12.27 12.01 050
loc-brightkite 29.1 18.54 22.67 :
maayan-Stelz| 5.51 5.92 5.627
60 0.25
maayan-figeys SIEIL) 6.744 5.985 -
maayan-foodweb -SRPZNE 24.04 24.04
maayan-vidal 13.66 8.203 9.607 0.00
moreno_propro 4.439 3.797 3.583 o
munmun_digg_reply_LCC -SEYRLS 14.08 14. 12.84 40 g L -0.25
opsahl-openflights -SEEIVEE] 7.315 5.24 8.472 X
opsahl-ucsocial -PERL] 22.96 22.96 21.75 - -050
slashdot-threads -SPLIEL) 7.231 14.83 6.675 9
subelj_jdk_jdk -SEEERL) 38.95 4.647 4.974 20 <)
2 = --0.75
web-EPA -SEE] 7.071 7.773 7.094 2 0 : 33
£
[EURVSIERER R 0.03736 0.06848 0.04358 0.03736 &)
wikipedia_link_kn 31.66 33.25 25.44 25.36 ! . --1.00
X . Degree Chi degree
wikipedia_link_Ii SPAR:C] 15.61 24.46 21.41 o
Average D_CC_CD D_KC_CC KC_CC_CD D_KC_CD
20.23 19.24 15. 15.53
C - 100 d - 100
arenas-meta arenas-meta
cfinder-google cfinder-google
econ-wm1 ‘econ-wm1
ego-twitter ego-twitter
foodweb-baydry - 80 foodweb-baydry -80
foodweb-baywet foodweb-baywet
internet-topology JERY internet-topology
loc-brightkite 10.66 loc-brightkite
maayan-Stelz| -SECKCPS 2 ™ maayan-Stelzl 686 3.8 5.56¢ 60
maayan-figeys 6 maayan-figeys
maayan-foodweb maayan-foodweb
maayan-vidal maayan-vidal
moreno_propro moreno_propro
munmun_digg_reply_LCC 40 munmun_digg_reply_LCC 40
opsahl-openflights opsahl-openflights
‘opsahl-ucsocial oopsahl-ucsocial
slashdot-threads slashdot-threads
subel]_jok_jak 20 subel_jdk_jdk 6.186 | e | : 20

web-EPA
web-webbase-2001

web-EPA
web-webbase-2001

wikipedia_link_kn wikipedia_link_kn

wikipedia_link _i wikipedia_link_|

0
FINDER Average

lo- ResGatedG_GCN ResGatedG_Sage(sum)
2329 13.75 1451 40719

Average Stable-AGDM AGDM SL No-GSL Sage(max)_GAT ~ Sage(mean) GAT Sage(sum)_GAT
12.74 14.48 456 38.84 18.91

2285

Figure S6 The relationship between model structure and reasoning ability. (a) The dismantling performance of models
with different combinations of features: Degree (D), Clustering Coefficient (CC), K-Core (KC), x? of degree (CD); (b) The average
correlation matrix for the four features in manual feature engineering over 22 real-world networks. Degree, x2 of degree (Chi
degree), Clustering Coefficient (CC), and K-Core (Kcore) are the four features given here. Details of the 22 networks are shown in
Supplementary Table C2 in Supplementary Information. Each element is the averaged value of the Kendall correlation coefficient 7
between the two indices corresponding to its position over the 22 networks, and the value is visualized by the color. (¢) The AGDM
algorithm represents the model without the Stable Learning framework, No-LSL represents the model without Local Structure
Learning, No-GSL indicates the model without Global Structure Learning, and No-TCL denotes the model without Topological
Correlation Learning; (d) Ranking of GNN’s ability to learn graph structure information [19, 20, 29]: ResGatedG is the most
effective, followed by Sage(sum), Sage(mean), and Sage(max) being the least;Ranking of GNN’s ability to topological correlation
information [20-22]: GAT is the most effective, followed by GCN, and Sage(sum) being the least.

target, 20% residual LCC, for performance evaluation based on the influence of the supervised labels. While alternative
thresholds (e.g., VN) may suit specific applications, our approach prioritizes a consistent evaluation framework aligned
with existing methods.

Fig. S1 and S2 show that the performance of Stable-AGDM is always competitive across network scales and types,
especially outperforming other supervised learning algorithms. The error bars indicate that the robustness of node removal
from Stable-AGDM is similar to other baseline algorithms, which suggests that the algorithm’s dismantling ability is
relatively reliable rather than claiming dataset-specific superiority. Also, as shown in Supplementary Fig. S3, the trend of
dismantling efficiency changing for each algorithm in BA and WS networks differs from that of ER networks as network
scale changes. This could be explained by the fact that dismantling algorithms perform better on network models with
scale-free or small-world properties. This becomes more prominent for BA and WS networks as network size increases, while
ER networks become more disordered. This indirectly suggests that the Stable-AGDM algorithm learns network structural
properties and uses them to improve performance.

Fig. S4 shows the performance of each dismantling method on every real-world network considered in this study, allowing
for an overall comparison. As shown in Fig. S4 a, Stable-:AGDM has the best performance on 11 networks and also achieves
top three performance on the rest networks. On average, Stable-AGDM outperforms the other algorithms. Specifically, it
only needs to remove 12.74% nodes to dismantle a network on average. This remains noteworthy since the proposed Stable-
AGDM is a one-pass method without manual feature engineering while the others need recompute the nodes’ structural
importance or consider manual features during the dismantling process, validating our approach. To further validate the
model’s effectiveness, we test a smaller target (5% residual LCC) on real networks. As shown in Fig. S5, Stable-AGDM
maintains competitive dismantling performance even at this stricter threshold, especially outperforming other supervised
learning algorithms.

To conduct a thorough performance analysis, we utilize the arenas-meta network and cfinder-google network as repre-

Sct China Inf Sci 10

Table C2 Statistical properties of real-world networks.

Network Category Nodes Number Edges Number Modularity
arenas-meta [38] Social 6.5K 43.3K 0.417
cfinder-google [38] Hyperlink 15.8K 149.5K 0.491
econ-wml [38] Economic 260 2.6K 0.2623
ego-twitter [38] Social 23.4K 32.8K 0.8771
foodweb-baydry [38] Trophic 128 2.1K 0.1459
foodweb-baywet [38] Trophic 128 2.1K 0.1472
Internet-topology [38] Infrastructure 34.8K 107.7K 0.5646
loc-brightkite [38] Social 58.2K 214.1K 0.6166
maayan-figeys [38] Metabolic 2.2K 6.4K 0.472
maayan-foodweb [38] Trophic 183 2.5K 0.3054
maayan-Stelzl [38] Metabolic 1.7K 3.2K 0.6149
maayan-vidal [38] Metabolic 3.1K 6.7K 0.6531
moreno_propro [38] Metabolic 1.9K 2.3K 0.8492
munmun_digg rely LCC [38] Communication 29.7K 84.8K 0.4069
opsahl-openflights [38] Infrastructure 2.9K 15.7K 0.6065
opsahl-ucsocial [38] Communication 1.9K 13.8K 0.253
slashdot-threads [38] Communication 51.1K 117.4K 0.4607
subelj_jdk_jdk [38] Software 6.4K 53.7K 0.4317
web-EPA [39] Hyperlink 4.3K 8.9K 0.6219
web-webbase-2001 [39] Hyperlink 16.1K 25.6K 0.9248
wikipedia_link kn [38] Hyperlink 29.5K 278.7K 0.5881
wikipedia_link_li [38] Hyperlink 49.1K 294.3K 0.5997

sentative examples. We initially examine the Area Under the Curve (AUC) encoding changes in the size of the Largest
Connected Component (LCC) throughout the attacks. A lower area under the curve indicates a more effective network
dismantling. Fig. S4 b shows that Stable-AGDM dismantles the network faster than the other algorithms. To further verify
whether the proposed algorithm has good dismantling performance at different dismantling thresholds, Fig. S4 c shows
that Stable-AGDM maintains competitive performance at different thresholds.

To explicitly understand the impact of each module on the performance of Stable-AGDM, we have performed a module
ablation experiment. As shown in Fig. S6c, these modules help improve the performance of our algorithm. Among
the four modules, the Local Structure Learning module contributes the most to the overall performance, followed by
the Stable Learning framework and the Topological Correlation Learning module, while the Global Structure Learning
module contributes the least. Although the No-GSL model already has competitive performance, learning the global graph
structure information is more conducive to improving the network dismantling performance. This aligns with our design
goal of employing global projection to consider the global influence of each node. More importantly, the Local Structure
Learning module greatly affects the algorithm’s performance, verifying the analysis for the ND task.

It is noted that processing graph structure and topological correlation information have distinct requirements for GNNs
[20]. GNNs based on graph isomorphism (e.g., GIN, k-GNN) are good at processing graph structure information, whereas
those based on graph signal processing (e.g., GCN, GAT) are better at processing topological correlation information. To
verify this analysis, in Fig. S6 d, we analyze the performance of the model using GNNs with varying learning abilities in
these two modules. We observe that the performance of the model using different GNNs shows notable differences, verifying
that graph structure learning and topological correlation learning are essential to improving the performance of the model.
It is stressed that the two GNNs employed in this study are replaceable, provided that the GNN structures to be chosen
can enhance the learning ability of these two modules.

References

1 Braunstein A, Dall’Asta L, Semerjian G, et al. Network dismantling. Proc. Natl. Acad. Sci. U.S.A, 2016, 113: 12368-12373

2 Morone F and Makse HA. Influence maximization in complex networks through optimal percolation. Nature, 2015, 524: 65-68

3 Ren XL, Gleinig N, Helbing D, et al. Generalized network dismantling. Proc. Natl. Acad. Sci. U.S.A, 2019, 116: 6554-6559

4 Clusella P, Grassberger P, Pérez-Reche FJ, et al. Immunization and targeted destruction of networks using explosive perco-

lation. Phys. Rev. Lett, 2016, 117: 208301

Kitsak M, Gallos LK, Havlin S, et al. Identification of influential spreaders in complex networks. Nat. Phys, 2010, 6: 888-893

Fan C, Zeng L, Sun Y, et al. Finding key players in complex networks through deep reinforcement learning. Nat. Mach.

Intell, 2020, 2: 317-324

7 Grassia M, De Domenico M and Mangioni G. Machine learning dismantling and early-warning signals of disintegration in
complex systems. Nat. Commun, 2021, 12: 5190

8 Liu Q and Wang B. Neural extraction of multiscale essential structure for network dismantling. Neural Netw, 2022, 154:
99-108

[}

10

11

12

13
14

15

16

17

18

19

20
21

22

23

24

26

27
28

29

31

32

33

34

35

36

38

39

Sct China Inf Sci 11

Tian M, Dong Z and Wang X. Reinforcement learning approach for robustness analysis of complex networks with incomplete
information. Chaos Solitons Fract, 2021, 144: 110643

Zhang J and Wang B. Dismantling complex networks by a neural model trained from tiny networks. In: Proceedings of ACM
International Conference on Information & Knowledge Management (CIKM), Atlanta GA, 2022. 2559-2568

Bengio Y, Lodi A and Prouvost A. Machine learning for combinatorial optimization: a methodological tour d’Horizon. Eur.
J. Oper. Res, 2021, 290: 405-421

Cappart Q, Chételat D, Khalil E, et al. Combinatorial optimization and reasoning with graph Neural Networks. J. Mach.
Learn. Res, 2023, 1-61

Garmendia Al, Ceberio J and Mendiburu A. Neural combinatorial optimization: a new player in the field. ArXiv:2205.01356
Xu K, Zhang M, Li J, et al. How neural networks extrapolate: from feedforward to graph neural networks. In: Proceedings
of International Conference on Learning Representations (ICLR), Vienna, 2021.

Xu K, Li J, Zhang M, et al. What can neural networks reason about? In: Proceedings of International Conference on Learning
Representations (ICLR), Addis Ababa, 2020.

Numeroso D, Bacciu D and Velickovi¢ P. Dual algorithmic reasoning. In: Proceedings of International Conference on Learning
Representations (ICLR), 2023.

Ibarz B, Kurin V, Papamakarios G, et al. A Generalist Neural Algorithmic Learner. In: Proceedings of the First Learning on
Graphs Conference (LoG), 2022. 2-1

Tang H, Huang Z, Gu J, et al. Towards scale-invariant graph-related problem solving by iterative homogeneous GNNs. In:
Proceedings of International Conference on Neural Information Processing Systems (NeurIPS), 2020. 15811-15822

Xu K, Hu W, Leskovec J, et al. How powerful are graph neural networks? In: Proceedings of International Conference on
Learning Representations (ICLR), 2019.

Hamilton WL. Graph representation learning. Morgan & Claypool Publishers, 2020. 60-95

Kipf TN and Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of International
Conference on Learning Representations (ICLR), 2017.

Velickovié P, Cucurull G, Casanova A, et al. Graph attention networks. In: Proceedings of International Conference on
Learning Representations, ICLR, 2018.

Zhang X, Cui P, Xu R et al. Deep stable learning for out-of-distribution generalization. In: Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2021. 5372-5382

Bresson X and Laurent T. Residual gated graph convnets. ArXiv:1711.07553

Qin SM, Ren XL and Lii LY. Efficient network dismantling via node explosive percolation. Commun. Theor. Phys, 2019, 71:
764

Bellingeri M, Cassi D and Vincenzi S. Efficiency of attack strategies on complex model and real-world networks. Sci. A, 2014,
414: 174-180

Albert R and Barabdsi AL. Statistical mechanics of complex networks. Rev. Mod. Phys, 2002, 74: 47-97

Callaway DS, Newman MEJ, Strogatz SH, et al. Network robustness and fragility: percolation on random graphs. Phys. Rev.
Lett, 2000, 85: 5468-5471

Dwivedi VP, Joshi CK, Luu AT, et al. Benchmarking graph neural networks. J. Mach. Learn. Res, 2023, 24: 1-48

Li L, Chen D, Ren XL, et al. Vital nodes identification in complex networks. Phys. Rep, 2016, 650: 1-63

Xu R, Zhang X, Shen Z, et al. A theoretical analysis on independence-driven importance Weighting for covariate-shift
generalization. In: Proceedings of International Conference on Machine Learning (ICML), Baltimore, 2022.24803-24829
Dudzik AJ and Velickovié¢ P. Graph neural networks are dynamic programmers. In: Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, 2022. 20635-20647

Bevilacqua B, Nikiforou K, Ibarz B, et al. Neural algorithmic reasoning with causal regularisation. In: Proceedings of
International Conference on Machine Learning (ICML), Hawai, 2023. 2272-2288

Cui P and Athey S. Stable learning establishes some common ground between causal inference and machine learning. Nat.
Mach. Intell, 2022, 4: 110-115.

Shen Z, Cui P, Zhang T, et al. Stable learning via sample reweighting. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), New York, 2020. 5692-5699.

Nepusz GCAT and Csardi G. The igraph software package for complex network research. Complex Syst, 2006, 1695: 1-9.
Hagberg AA, Schult DA and Swart PJ. Exploring network structure, dynamics, and function using networkX. Los Alamos
National Laboratory (LANL), Los Alamos. 2008.

Kunegis J. KONECT: the koblenz network collection. In: Proceedings of the 22nd international conference on world wide web
(IW3C2), io de Janeiro, 2013. 1343-1350

Rossi RA and Ahmed NK. The network data repository with interactive graph analytics and visualization. In: Proceedings
of the AAAI conference on artificial intelligence (AAAI), 2015. 29(1)

	Notation and Preliminaries
	Algorithmic Alignment
	Stable Learning

	Stable-AGDM Model
	Model architecture
	Training algorithm
	Training dataset
	Loss function

	Dismantling Strategy

	More details of experiments
	Baseline Methods
	Dataset
	Synthetic Networks.
	Real-world Networks.

	Experiments results and analyses

