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Appendix A Notation and Preliminaries

The dimensions of the raw feature space, outcome space, and presentation space are donated by mX , mY , and mH ,

respectively. Given that the network dismantling (ND) task is regarded as a node regression task in model learning, the

number of training samples n is the number of graph nodes. Let Ai ∈ {0, 1}k×k, Xi ∈ Rk×mX , and yi ∈ R denote the

adjacency matrix, feature matrix and label of the k-hop ego-graph of the i-th sample, respectively. The representations

learned by models are denoted as H ∈ Rn×mH , where H:,i ∈ Rn×1 represents the i-th variable in the representation space.

Let w ∈ {w ∈ Rn
+|

∑n
i=1 wi = n} denote sample weights, u and v represent Random Fourier Features mapping functions,

and N (·) be neighboring nodes of a given node.

Appendix A.1 Algorithmic Alignment

The concept of Algorithmic Alignment [15] is crucial for constructing effective algorithmic reasoners that extrapolate better.

Roughly, it means that a neural network aligns with an algorithm when different parts of the algorithm can be “easily”

modeled by one of the modules of the neural network. Recent theoretical results explain why algorithmically inspired models

improve extrapolation in algorithmic and physics-based tasks [14].Briefly,if we can design architecture components so that

the individual parts have to learn nearly linear ground-truth functions, it implies stronger out-of-distribution performance.

Expanding on this, category theory and abstract algebra [32] are used to demonstrate an intricate relationship between GNNs

and DP, beyond initial observations on algorithms like Bellman-Ford. This revelation greatly broadens the understanding

and potential applications of Algorithmic Alignment.

Guided by this principle, novel GNN architectures and training methods have been proposed to facilitate align with

a wider range of combinatorial algorithms [18, 33]. These works support the original theoretical findings [15], which are

categorized into Algo-level, Step-level, and Unit-level alignments based on algorithm alignment structures [12]. Among

them, Algo-level alignment focuses on learning entire algorithms from inputs to outputs. Given that most network disman-

tling algorithms are based on heuristics and lack precise reasoning structures, we adopt the Algo-level alignment as the

foundational concept for our model design.

Appendix A.2 Stable Learning

The Stable Learning framework aims to bridge the gap between the precise modeling of causal inference and the black-box

approaches of machine learning, thereby effectively addressing concerns related to stability, explainability, and fairness [34].

From the causality perspective, this framework is developed from the idea of Directly Confounder Balancing (DCB) in

the potential outcomes framework, which learns global sample weights to make input variables independent [35]. Following

regression analysis on the weighted samples, the regression coefficient of each input variable indicates its causal effect on the

outcome. Similarly, from the view of statistical learning, the Stable Learning framework provides a theoretical guarantee

that the feature variables utilized in the linear regression model to predict the outcome variable are stable [31]. Thus, this

framework can be seen as a feature selection method that relies on regression coefficients to differentiate between stable and

unstable features in the representation space.

The core of the framework lies in adjusting the weights of samples to eliminate the independence among features.

Although various techniques such as Hilbert-Schmidt Independence Criterion (HSIC) and Mutual Information (MI) can

be used for independence test, they can hardly be used to optimize deep models at an acceptable cost. Considering the

complex correlations among features obtained by deep learning, a novel nonlinear feature decorrelation method based on

Random Fourier Features with linear computational complexity is proposed [23]. Equation (A1) measures the independence

between any pair of features H:,i and H:,j in the representation space. To simplify the notation, we use A and B represent
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one-dimensional random variables instead of H:,i and H:,j and we sample (A1, A2, ..., An) and (B1, B2, ..., Bn) for the

distribution of A and B.

Σ̂AB;w =
1

n− 1

n∑
i=1

(wiu (Ai)−
1

n

n∑
j=1

wju (Aj)

)T

(
wiv (Bi)−

1

n

n∑
j=1

wjv (Bj)

)]
,

(A1)

where
u(A) = (u1(A), u2(A), . . . unA(A)) , uj(A) ∈ HRFF, ∀j,
v(B) = (v1(B), v2(B), . . . vnB (B)) , vj(B) ∈ HRFF, ∀j.

(A2)

Here, we sample nA and nB functions from HRFF, where HRFF represents the function space of Random Fourier Features

characterized by the following form:

HRFF ={h : x →
√
2 cos(ωx+ ϕ) |

ω ∼ N(0, 1), ϕ ∼ Uniform (0, 2π)},
(A3)

where ω is sampled from the standard normal distribution and ϕ is sampled from the uniform distribution.

Appendix B Stable-AGDM Model

Our model takes one network as input, without any node feature information, and produces a scalar value pn ranging

from zero to one for each node n. When dismantling a network, nodes are sorted and removed in descending order of pn
until the target is reached. Then, because the value pn indicates the likelihood of the node being part of an optimal set,

Stable-AGDM employs a node reinsertion strategy [25] to refine the dismantling set after dismantling. And the Stable-

AGDM approach is applicable to undirected, unweighted simple graphs. Currently, it cannot be used for the disintegration

of weighted networks because the graph neural networks employed do not consider edge weights. However, in the future,

we can incorporate graph neural networks that account for edge weights into this framework, enabling its use for weighted

network disintegration.

Appendix B.1 Model architecture

Neural Feature Engineering

• Local Structure Learning (LSL) This module utilizes the network adjacency matrix to generate local structure

vectors for each node. Existing methodologies are dominated by the utilization of feature engineering techniques. To avoid

learning failures, feature engineering typically requires features to be heterogeneous. The requirement for heterogeneity

arises from the necessity to differentiate nodes situated at various topological positions through the implementation of

constructed eigenvectors. Meanwhile, GNNs based on graph isomorphism [19,20] can distinguish more topological structures

by constructing structure vectors based on the adjacency matrix of the network, such as GIN. Therefore, we adopt GNNs

based on graph isomorphism to learn node structure information and construct structure vectors with strong topological

representation ability. To maintain generality, we assume that the raw feature vector of each node is a constant value of

one. We use Residual Gated Graph ConvNets [24] (ResGatedG) to learn local structure vectors hlocal ∈ Rn×p:

h′
locali

= hlocaliW1 +
∑

j∈N (i)

ηi,j ⊙ hlocaljW2, (B1)

where h′
locali

∈ R1×p denotes the updated local structure vector of the target node i, hlocali ∈ R1×p denotes the local

structure vector before the update, N (i) is the one-hop neighbors of node i and ηi,j = σ(hlocaliW3 + hlocaljW4) with

σ denoting the sigmoid function, and W1 ∈ Rp×p, W2 ∈ Rp×p, W3 ∈ Rp×1, W4 ∈ Rp×1 are learnable parameters. But it

should be emphasized that any graph convolutional layer that enhances topological representation ability can be used for

this module.

• Global Structure Learning (GSL) The module generates global structure vectors for each node, which combines

local structure vectors with the graph structure that it has learned. The objective of this module is to assess the global

impact of each node. As the dismantling is for the global network, it is imperative to differentiate the importance of

two nodes, even if they exhibit similar local structures. To address this issue, we utilize graph pooling to obtain graph

feature vector hgraph ∈ R1×p containing global structure information and merge it with the node local structure vectors

hlocal ∈ Rn×p so as to generate global structure vectors hglobal ∈ Rn×p in the structure presentation space:

hglobali = W5 ReLU
(
h⊤
local;i · hgraph ·W6

)
, (B2)

where hglobali ∈ R1×p denotes the updated global structure vector of the target node i, hlocali ∈ R1×p denotes the local

structure vector of the target node i, W5 ∈ R1×p and W6 ∈ Rp×p are learnable parameters.
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Topological Correlation Learning (TCL)

The module generates representation vectors for each node by discovering the correlation between node global structure

vectors. The selection of critical nodes in the ND problem is significantly influenced by the higher-order interactions between

nodes. In the preceding modules, the model has learnt the node topology information through GNNs. The focus of this

module is to learn the impact of topological interactions on key nodes, namely the correlation between node features. So,

GNNs based on graph signal processing are selected to learn the correlation between node features. As shown in Equation

(B3), GAT [22] has an additional adaptive edge weight coefficient compared to GCN. This mechanism is analogous, in terms

of graph signal processing, to learning a self-adaptive graph shift operator, which corresponds to a self-adaptive filtering

effect. So, GAT can focus more on learning the correlation between node features to generate the node representation

vectors H ∈ Rn×mH in the representation space:

H′
i = αi,iHiW7 +

∑
j∈N (i)

αi,jHjW7, (B3)

where Hi ∈ R1×mH denotes the updated presentation vector of the target node i, W7 ∈ RmH×mH is the learnable

parameter and the attention coefficients αi,j is defined as

αi,j =
exp(LeakyReLU(Hi,jW8))∑

k∈N (i)∪{i} exp(LeakyReLU(Hi,jW8))
, (B4)

where Hi,j = [HiW7||HiW7] ∈ R1×2mH and W8 ∈ R2mH×1 is the learnable parameter.

Feature Seletion (FS)

The module employs the Stable Learning framework to identify stable features within the representation space. The

existing node representation vectors comprise local topological information, global information, and topological correlation

information of the nodes as a result of the learning processes of the three modules mentioned above. The integration of

these information aligns with the empirical cognition of identifying key nodes in current ND problem research. However, the

highly flexible structure of the model allows it to learn a wider range of graph information, so there may be an abundance

of redundant and irrelevant features in the node representation vectors.

To effectively identify features that have a practical impact on network dismantling, we design a feature selection module

to eliminate irrelevant and spurious features. The Stable Learning framework can be statistically understood as a feature

selection mechanism based on regression coefficients, which can distinguish stable features from non-stable features in the

representation space. Therefore, we adopt a feature selection module based on the Stable Learning framework, which select

stable feature variables through a weighted loss function to increase the robustness of the model. For more information,

please refer to the ”Training algorithm”Appendix B.2 section.

Appendix B.2 Training algorithm

Algorithm B1 Training procedure of Stable-AGDM

Require: Training dataset G = {(A1,X1, y1), ..., (AN ,XN , yN )}, Sample size n, Training epochs T ,
Decorrelation epochs D.

1: for t = 1 to T do
2: for 1 to BatchNumber do
3: According to the algorithmic framework in the main text (i.e., the Eq. B1, B2, B3 in Appendix

B), forward propagation to generate H;
4: for 1 to D do
5: Optimize sample weights w via Eq. B6;
6: end for
7: Update f ,γ and g via Eq. B5;
8: end for
9: end for

Appendix B.2.1 Training dataset

We perform supervised training of our model using synthetic networks (25 nodes each) generated by the Barabasi-Albert

(BA), the Erdos-Renyi (ER) and the Static Power Law (PL) models respectively. A brute-force search (i.e., attempting

every possible combination of nodes) is conducted on each synthetic network to find all the minimum-size solutions that

reduce the Largest Connected Component to a specified target size, which in our work is 18%. It is important to note that

there may be several optimal dismantling sets for each synthetic network. Hence, the label of each node is computed as

the ratio of the number of optimal sets that include the node to the total number of optimal sets. This ratio reflects the

probability of the node being part of an optimal set. When there is only one optimal set, the nodes in this set are labeled
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1, while the rest are labeled 0. When there are two optimal sets, the nodes that belong to both sets are labeled 1, the nodes

that belong to only one set are labeled 0.5, and the nodes that belong to neither set are labeled 0. This approach assigns

higher labels to nodes that are more relevant for the optimal dismantling of the network. This is meant to teach the model

that some nodes are more essential than others for the optimal dismantling of the network, as they are included in multiple

optimal sets.

The imbalanced training data arises from our label generation method, consistent with GDM and other supervised

learning-based algorithms: each node’s label equals its frequency in optimal dismantling sets divided by the total number of

such sets. Since optimal sets contain far fewer nodes than the entire network, most nodes receive zero-valued labels, while

only a small fraction have non-zero values.

Appendix B.2.2 Loss function

As previously mentioned, the distribution of training samples for the ND task exhibits a significant imbalance, which may

lead to biased model performance and hinder its generalization ability. To enhance the model’s comprehensive understanding

of diverse data information, we choose to employ a widely recognized approach known as sample reweighting for addressing

uneven data acquisition. The Stable Learning framework represents an adaptive sample reweighting process, which is highly

suitable for supervised learning tasks with abundant samples but imbalanced distributions. Moreover, as discussed in the

Feature Seletion module, the Stable Learning framework facilitates the learning of stable features that are relevant to the

task. The integration of the Stable Learning framework can enhance the predictive performance of the model, thereby

facilitating more comprehensive scientific research. Moreover, to guarantee the efficacy of the node structural information,

we integrate graph reconstruction loss to maintain the original network structures within the structure presentation space,

as shown in the second term of Equation (B5).

Therefore, Stable-AGDM iteratively optimize sample weights w, the neural engineering module f , the topological cor-

relation learning mudule γ and the feature selection module g. The training algorithm implemented is shown in Algorithm

B1,with

f (t+1), γ(t+1), g(t+1)

= argmin
f,γ,g

n∑
i=1

w
(t)
i (g (γ (f (Ai,Xi)))− yi)

2

+ α

n∑
i,j=1

ai,j

∥∥∥h(t)
globali

− h
(t)
globalj

∥∥∥2
2
,

(B5)

w(t+1) = argmin
w∈∆n

∑
1⩽i<j⩽mH

∥∥∥∥Σ̂H
(t+1)
:,i

H
(t+1)
:,j

;w

∥∥∥∥2
F

, (B6)

where α is a positive hyper-parameter weighing between these two losses, ai,j denotes whether nodes i and j are adjacent,

and ∆n =
{
w ∈ Rn

+ |
∑n

i=1 wi = n
}
.

Appendix B.3 Dismantling Strategy

The existing ND algorithms based on supervised learning regard the prediction values of the model as indicators of node

dismantling importance.The top k nodes are removed based on their prediction values until the network dismantling thresh-

old is reached. However, in accordance with the meaning of training sample labels, the node prediction values generated

by deep learning models should closely approximate the probabilities of nodes belonging to the optimal solution set. For

example, as shown in Supplementary Fig. B1, when the threshold is set to the maximum connected subgraph size of 1,

there are two optimal solution sets: 1,3 and 2,4, both with a supervised learning label of 1/2. When the model prediction

performance is good, the dismantling order based on model prediction values may be: 1, 2, 3. The direct dismantling of

the network solely based on node prediction values may not yield satisfactory results and may deviate from the intended

interpretation of model prediction output. Therefore, based on the above considerations, we adopt the following dismantling

strategy : After iteratively removing the top k nodes based on their prediction values until reaching the specified threshold,

we implement the node reinsertion strategy used in MinSum, which ensures the maximum connected subgraph size after

reinserting becomes smaller than the dismantling threshold range.

Appendix C More details of experiments

We train our model using the model configuration and training hyperparameters as shown in Table C1. All experiments are

conducted on a shared machine equipped with an Intel (R) Core (TM) i7-9700 CPU, 16GB RAM, and an NVIDIA Quadro

P620.

Appendix C.1 Baseline Methods

We compare Stable-AGDM with other state-of-the-art methods that focus on network dismantling. To demonstrate that the

dismantling performance of our algorithm is not dependent on the node reinsertion strategy, we incorporate node reinsertion

into these benchmark algorithms (except HDA and CI) and add the random rein algorithm for comparison.
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Figure B1 An example of network dismantling.

Table C1 Stabel-AGDM model configuration and hyperparameters

Hyperparameter Value

Learning Rate 0.01

Weight Decay 1× 10−5

Training Epochs 800

Decorrelation Epochs 20

Sample Size 200

Fully Connected Layers 2

RFF Dimension 2

Learning Rate (Stable Learning) 10

Graph Reconstruction Loss Cofficient 0.01

GNN Type
LSL ResGatedGraph

TCL GAT

GNN Layers
LSL 4

TCL 2

Embedding Dimension
LSL 40

TCL 40

• FINDER [6]. FINDER is a reinforcement learning-based method. It encodes the state (remaining network) and all

possible actions (remove node) into embedding vectors, so that it takes action a that represents the maximum expected

rewards given state s.

• CI [2]. CI value is defined as the product of the node reduced degree (original degree minus one) and total reduced

degree of neighboring nodes at the surface of a ball of constant radius. The CI method sequentially removes the node with

the highest CI value and recalculates the CI values after each node removal.

• MinSum [1]. MinSum, a classical optimal decycling based method, is composed of three stages: (i) use MinSum

message passing algorithm to break all the loops in the network; (ii) iteratively remove the root node until the size of the

tree component is not larger than the desired threshold C; (iii) reinsert some nodes to close cycles without increasing the

size of the largest component.

• GND [3]. In each step, GND uses the spectral cut method to partition the remaining network into two non-overlapping

components and removes nodes that cover all of the edges between two components at minimal cost.

• GDM [7]. GDM is the first supervised learning model, which is composed of feature engineering, GNN layers and a

regressor. Its dismantling strategy is the same as Stable-AGDM.

• NIRM [10]. NIRM, a supervised learning method, consists of six modules: (1) feature engineering, (2) feature scoring,

(3) representation encoding, (4) local scoring, (5) global scoring, and (6) fusion and rank. Its dismantling strategy is the

same as Stable-AGDM.

• random rein. It firstly randomly removes nodes until the biggest size of the remaining components is not larger than

the desired threshold C, and then applies the node reinsertion strategy.
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a

Figure S1 Performance of Stable-AGDM on different types of synthetic networks. To quantify the goodness of each

algorithm in the ND problem, the relative size of NDS (denoted by ρ = |NNDS |/|N |), i.e., the fraction of nodes’ removal that

leads to the 20% residual LCC size, is used as a measure. (a-d) comparison of Stable-AGDM and other baseline algorithms on

four types of model networks, i.e., Barabási-Albert scale-free networks (BA), Erdös-Rényi random networks (ER), Watts-Strogatz

small-world networks (WS), and static Power Law networks (PL), with network size N =25, 50, 100, 1000.
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Figure S2 Performance of Stable-AGDM on different types of synthetic networks. To quantify the goodness of each

algorithm in the ND problem, the relative size of NDS (denoted by ρ = |NNDS |/|N |), i.e., the fraction of nodes’ removal that

leads to the 20% residual LCC size, is used as a measure. comparison of Stable-AGDM and other baseline algorithms on four types

of model networks, i.e., Barabási-Albert scale-free networks (BA), Erdös-Rényi random networks (ER), Watts-Strogatz small-world

networks (WS), and static Power Law networks (PL), with network size N =25, 50, 100, 1000.
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b

Figure S3 Performance trend of the algorithm as a function of scale on each synthetic network. (a-d) represent different kinds

of synthetic network models, i.e., Barabási-Albert scale-free networks (BA), Erdös-Rényi random networks (ER), Watts-Strogatz

small-world networks (WS), and static Power Law networks (PL).

a b c

Figure S4 Performance of Stable-AGDM on real-world networks. (a) To quantify the goodness of each algorithm in ND

problem, we consider the relative size of NDS (denoted by ρ = |NNDS |/|N |), i.e., the fraction of nodes’ removal that leads to the

20% residual LCC size, is used as a measure. The smaller the relative size of NDS ρ, the darker the color. (b) The Area Under the

Curve (AUC) represents changes in the size of the Largest Connected Component (LCC) during the attacks. A lower area under

the curve indicates more efficient network teardown. (c) comparison of the relative sizes of NDS at different dismantling thresholds.

Appendix C.2 Dataset

Appendix C.2.1 Synthetic Networks.

Our synthetic data are composed of Barabási-Albert scale-free networks, Erdös-Rényi random networks, Watts-Strogatz

small-world networks and static Power Law networks, which are implemented in igraph [36] and Networkx [37]. 10 instances

are generated with 25, 50, 100 and 1K nodes each and the results are averaged.

All networks were generated with the following configurations:

• Barabasi-Albert (BA) scale-free networks The number of outgoing edges per vertex (m) ranges from 2 to 10.

• Erdos-Renyi (ER) networks The average degree ranges from 4 to 20.

• Static Power-law generational models The power-law exponent (γ) ranges from 2.1 to 2.9, and the average degree

ranges from 4 to 20.
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Figure S5 Performance of Stable-AGDM on real-world networks. To further validate the model’s effectiveness, we test a

smaller target (5% residual LCC) on real networks.

• Watts-Strogatz (WS) small-world networks The average degree ranges from 4 to 20, and the rewiring probability (p)

ranges from 0.01 to 0.15.

Appendix C.2.2 Real-world Networks.

We choose 22 real-world networks, as shown in Table C2. We consider all the networks as undirected and unweighted.

Appendix C.3 Experiments results and analyses

In our experiments, we compare Stable-AGDM with other state-of-the-art methods, such as CI [2], MinSum [1], GND [3],

FINDER [6], GDM [7], NIRM [10]. As mentioned earlier, Stable-AGDM performs a node reinsertion strategy during

dismantling. To demonstrate that the dismantling performance of our algorithm is not dependent on the node reinsertion

strategy, we incorporate the node reinsertion strategy into the above-mentioned benchmark algorithms (except FINDER

and CI) and add random rein algorithm, which randomly removes nodes until the target is reached and then applies the

node reinsertion strategy.

In the ND problem, the size of largest connected component (LCC) is frequently used as a measure for quantifying normal

system functions, and when the size of LCC decreases below a predefined threshold C, it is regarded as a collapse in system

functionality [26–28]. Thus, a widely accepted and rigorous definition of the ND problem is to determine the minimum

network dismantling node set (NDS), whose removal is able to dismantle the network into isolated sub-components of a

specific small size [1], defined by.

N ∗
dns ≡ {Ndns ⊆ N : |Glcc(Ndns)|/|N | ⩽ C} (C1)

where |Glcc(Ndns)| denotes the number of nodes in LCC Glcc after the removal of NDS Ndns and |N | is the number of

nodes in G. To quantify the goodness of each algorithm in the ND problem, we consider the relative size of NDS (denoted

by ρ, and ρ = |Ndns|/|N |), e.g., the fraction of nodes’ removal that leads to a 20% residual LCC size in this paper. The

relative size of NDS is adopted because we are more concerned with the situation where the network dismantles to the

critical point of collapse rather than the process itself. Unless otherwise specified, the performance evaluation metric used

in our experiments is the relative size of NDS.

Additionally, we chose a 20% residual LCC size as the evaluation criterion because it aligns with the method used to

generate node labels for supervised learning. We emphasize that this choice of training labels is arbitrary, and other labels

might be more effective for different datasets or objectives. To ensure a fair comparison with models like GDM, we used

the same training dataset and label generation approach as GDM. Specifically, we identified all minimal solutions through

brute-force that reduce the Largest Connected Component (LCC) to approximately 18% of its original size. The label for

each node was then calculated as the proportion of optimal sets it is part of relative to the total number of optimal solutions.

Since the model essentially learns the optimal dismantling sets that reduce the LCC to around 18%, we selected a similar
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Figure S6 The relationship between model structure and reasoning ability. (a) The dismantling performance of models

with different combinations of features: Degree (D), Clustering Coefficient (CC), K-Core (KC), χ2 of degree (CD); (b) The average

correlation matrix for the four features in manual feature engineering over 22 real-world networks. Degree, χ2 of degree (Chi

degree), Clustering Coefficient (CC), and K-Core (Kcore) are the four features given here. Details of the 22 networks are shown in

Supplementary Table C2 in Supplementary Information. Each element is the averaged value of the Kendall correlation coefficient τ

between the two indices corresponding to its position over the 22 networks, and the value is visualized by the color. (c) The AGDM

algorithm represents the model without the Stable Learning framework, No-LSL represents the model without Local Structure

Learning, No-GSL indicates the model without Global Structure Learning, and No-TCL denotes the model without Topological

Correlation Learning; (d) Ranking of GNN’s ability to learn graph structure information [19, 20, 29]: ResGatedG is the most

effective, followed by Sage(sum), Sage(mean), and Sage(max) being the least;Ranking of GNN’s ability to topological correlation

information [20–22]: GAT is the most effective, followed by GCN, and Sage(sum) being the least.

target, 20% residual LCC, for performance evaluation based on the influence of the supervised labels. While alternative

thresholds (e.g.,
√
N) may suit specific applications, our approach prioritizes a consistent evaluation framework aligned

with existing methods.

Fig. S1 and S2 show that the performance of Stable-AGDM is always competitive across network scales and types,

especially outperforming other supervised learning algorithms. The error bars indicate that the robustness of node removal

from Stable-AGDM is similar to other baseline algorithms, which suggests that the algorithm’s dismantling ability is

relatively reliable rather than claiming dataset-specific superiority. Also, as shown in Supplementary Fig. S3, the trend of

dismantling efficiency changing for each algorithm in BA and WS networks differs from that of ER networks as network

scale changes. This could be explained by the fact that dismantling algorithms perform better on network models with

scale-free or small-world properties. This becomes more prominent for BA and WS networks as network size increases, while

ER networks become more disordered. This indirectly suggests that the Stable-AGDM algorithm learns network structural

properties and uses them to improve performance.

Fig. S4 shows the performance of each dismantling method on every real-world network considered in this study, allowing

for an overall comparison. As shown in Fig. S4 a, Stable-AGDM has the best performance on 11 networks and also achieves

top three performance on the rest networks. On average, Stable-AGDM outperforms the other algorithms. Specifically, it

only needs to remove 12.74% nodes to dismantle a network on average. This remains noteworthy since the proposed Stable-

AGDM is a one-pass method without manual feature engineering while the others need recompute the nodes’ structural

importance or consider manual features during the dismantling process, validating our approach. To further validate the

model’s effectiveness, we test a smaller target (5% residual LCC) on real networks. As shown in Fig. S5, Stable-AGDM

maintains competitive dismantling performance even at this stricter threshold, especially outperforming other supervised

learning algorithms.

To conduct a thorough performance analysis, we utilize the arenas-meta network and cfinder-google network as repre-
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Table C2 Statistical properties of real-world networks.

Network Category Nodes Number Edges Number Modularity

arenas-meta [38] Social 6.5K 43.3K 0.417

cfinder-google [38] Hyperlink 15.8K 149.5K 0.491

econ-wm1 [38] Economic 260 2.6K 0.2623

ego-twitter [38] Social 23.4K 32.8K 0.8771

foodweb-baydry [38] Trophic 128 2.1K 0.1459

foodweb-baywet [38] Trophic 128 2.1K 0.1472

Internet-topology [38] Infrastructure 34.8K 107.7K 0.5646

loc-brightkite [38] Social 58.2K 214.1K 0.6166

maayan-figeys [38] Metabolic 2.2K 6.4K 0.472

maayan-foodweb [38] Trophic 183 2.5K 0.3054

maayan-Stelzl [38] Metabolic 1.7K 3.2K 0.6149

maayan-vidal [38] Metabolic 3.1K 6.7K 0.6531

moreno propro [38] Metabolic 1.9K 2.3K 0.8492

munmun digg rely LCC [38] Communication 29.7K 84.8K 0.4069

opsahl-openflights [38] Infrastructure 2.9K 15.7K 0.6065

opsahl-ucsocial [38] Communication 1.9K 13.8K 0.253

slashdot-threads [38] Communication 51.1K 117.4K 0.4607

subelj jdk jdk [38] Software 6.4K 53.7K 0.4317

web-EPA [39] Hyperlink 4.3K 8.9K 0.6219

web-webbase-2001 [39] Hyperlink 16.1K 25.6K 0.9248

wikipedia link kn [38] Hyperlink 29.5K 278.7K 0.5881

wikipedia link li [38] Hyperlink 49.1K 294.3K 0.5997

sentative examples. We initially examine the Area Under the Curve (AUC) encoding changes in the size of the Largest

Connected Component (LCC) throughout the attacks. A lower area under the curve indicates a more effective network

dismantling. Fig. S4 b shows that Stable-AGDM dismantles the network faster than the other algorithms. To further verify

whether the proposed algorithm has good dismantling performance at different dismantling thresholds, Fig. S4 c shows

that Stable-AGDM maintains competitive performance at different thresholds.

To explicitly understand the impact of each module on the performance of Stable-AGDM, we have performed a module

ablation experiment. As shown in Fig. S6c, these modules help improve the performance of our algorithm. Among

the four modules, the Local Structure Learning module contributes the most to the overall performance, followed by

the Stable Learning framework and the Topological Correlation Learning module, while the Global Structure Learning

module contributes the least. Although the No-GSL model already has competitive performance, learning the global graph

structure information is more conducive to improving the network dismantling performance. This aligns with our design

goal of employing global projection to consider the global influence of each node. More importantly, the Local Structure

Learning module greatly affects the algorithm’s performance, verifying the analysis for the ND task.

It is noted that processing graph structure and topological correlation information have distinct requirements for GNNs

[20]. GNNs based on graph isomorphism (e.g., GIN, k-GNN) are good at processing graph structure information, whereas

those based on graph signal processing (e.g., GCN, GAT) are better at processing topological correlation information. To

verify this analysis, in Fig. S6 d, we analyze the performance of the model using GNNs with varying learning abilities in

these two modules. We observe that the performance of the model using different GNNs shows notable differences, verifying

that graph structure learning and topological correlation learning are essential to improving the performance of the model.

It is stressed that the two GNNs employed in this study are replaceable, provided that the GNN structures to be chosen

can enhance the learning ability of these two modules.
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25 Qin SM, Ren XL and Lü LY. Efficient network dismantling via node explosive percolation. Commun. Theor. Phys, 2019, 71:

764
26 Bellingeri M, Cassi D and Vincenzi S. Efficiency of attack strategies on complex model and real-world networks. Sci. A, 2014,

414: 174-180
27 Albert R and Barabási AL. Statistical mechanics of complex networks. Rev. Mod. Phys, 2002, 74: 47-97
28 Callaway DS, Newman MEJ, Strogatz SH, et al. Network robustness and fragility: percolation on random graphs. Phys. Rev.

Lett, 2000, 85: 5468-5471
29 Dwivedi VP, Joshi CK, Luu AT, et al. Benchmarking graph neural networks. J. Mach. Learn. Res, 2023, 24: 1-48
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