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1 Appendix A

Non-stationary characteristics pose a significant obstacle to the safe and stable operation of complex
industrial processes, with traditional safety control methods often overlooking these factors, making it
difficult to adapt to changing operating conditions. To address above issue, this paper proposes a scheme
for safety control of non-stationary complex industrial processes based on a resiliently time-varying dy-
namic Bayesian network (RTV-DBN). This method is based on a vector autoregressive model, which
extracts the temporal variation features among multiple variables, dynamically updating the RTV-DBN
model structure and parameters to ensure that it can accurately describe the dynamic changes in indus-
trial processes. For non-stationary processes, a global detection model for non-stationary characteristics
of industrial processes is constructed, using difference guidance to remove non-stationarity. In addition,
a RTV-DBN model is established using global information to capture the causal relationships among
multiple variables from the time-varying process and identify potential abnormal operating conditions.
The temporal data is projected into a finite-dimensional space, and learning the structure and parameters
of the RTV-DBN model, probability density functions are used to accurately locate abnormal time slices
and determine the process variables causing the abnormal conditions. Finally, the effectiveness of the
proposed method is validated in coal preparation processes.

2 Appendix B

Existing safety control methods for non-stationary complex industrial processes can be categorized into
model-based methods, knowledge-driven methods, and data-driven methods. Model-driven methods are
based on physical and chemical principles, with strong model interpretability, suitable for specific process
operations [1-3]. For nonlinear and non-stationary processes, modeling is challenging, and updating
and maintaining models is difficult. Model-driven approaches find it hard to adapt to rapidly changing
conditions [4]. Knowledge-driven methods leverage expert knowledge and experience, with clear rules
and transparent reasoning processes, suitable for known conditions and fault types [5]. Establishing
and maintaining a rule base is a major challenge for knowledge-driven approaches, as they cannot handle
new, unknown failures and have limited capability to manage complex nonlinear relationships [6,7]. Data-
driven methods can handle large volumes of data, capture complex patterns and nonlinear relationships,
are highly adaptable, and can be applied to various process operations [8-10]. Nevertheless, they rely
on large amounts of high-quality data, are difficult to interpret and understand, and have low sensitivity
to newly emerging faults and conditions [11,12]. Methods purely based on models or knowledge, data-
driven approaches have limited capabilities in the face of anomalies in non-stationary complex industrial
processes. This paper constructs a knowledge-data dual-driven visual graph model guided by industrial
knowledge to describe the causal topological structure of non-stationary complex industrial processes.
The Bayesian network(BN) is a probabilistic graph model widely used by combining graph theory and
probability theory. Li H and Wang F addressed the issue of insufficient abnormal data in the gold
hydrometallurgy thickening process and proposed a safety control modeling method based on Bayesian
network transfer learning for the thickening process of gold hydrometallurgy [13]. Hao Yan, Shiji Song
et al. addressed the problem of data scarcity in the flotation process and proposed an operational
adjustment modeling approach based on Bayesian network transfer learning for new flotation processes
under scarce data. Through transfer learning of structure and parameters, the decision-making accuracy
of new processes is improved [14]. Hao Yan et al. introduced a Bayesian network method based on
transfer learning to address small data problems under abnormal conditions in magnesium smelting
processes [15]. Dynamic Bayesian Network (DBN) is an extension of BN, which is a probabilistic graphical
model specifically to handle temporal data that changes over time. By combining graph structures
and probability theory, DBNs can effectively represent and reason about the complex dependencies and
uncertainties in temporal data. In the areas of complex industrial process fault detection and decision
support, DBN demonstrate unique advantages and broad application prospects [16]. Huimin Wang and Qi
Huang proposed a Dynamic Bayesian Network Control Strategy for Modeling Grid-Connected Inverter
Stability to address the dynamic stability issue of grid-connected inverters in distributed generation
systems [17]. D. Codetta-Raiteri and L. Portinale proposed an innovative method for designing and
implementing fault detection, identification, and recovery (FDIR) for autonomous spacecraft, such as



Sct China Inf Sci 2

Mars rovers, using dynamic Bayesian networks [18]. Tong Q and Gernay T proposed a framework
to measure the resilience of facilities in the process industry susceptible to cascading accidents, using
DBNSs to model scenarios of potential spatial and temporal cascading accident evolution, considering the
uncertainty in the evolutionary paths during accident escalation [19]. Nevertheless, Existing safety control
methods mainly focus on stationary temporal data and are predominantly grounded in linear models
with the assumption of independent and identically distributed (IID) data. This restricts their ability
to handle the intricate control problems of non-stationary processes. In real-world industrial settings,
processes frequently display non-stationary traits. Their properties and behaviors evolve dynamically
over time. The dynamic aspect means that data in non-stationary processes have temporal correlations
and thus do not meet the IID assumption. To address the safety control problem of non-stationary
processes, this paper establishes a Resilient Time-Varying Dynamic Bayesian Network (RTV-DBN) model
for multi-level and multi-dimensional decision-making. This model adaptively handles non-stationary
sequential data, dynamically adjusting its structure and parameters to reflect real-time process changes,
ensuring the safe and stable operation of industrial process. First, field data is collected to construct
a detection model for non-stationary characteristics, using the Augmented Dickey-Fuller (ADF) test
to assess process stationarity. If non-stationarity is detected, differencing is employed. Stabilized and
original stationary data are then integrated for correlation analysis, enhancing decision-making accuracy
during anomalies. Next, a RT'V-DBN model is established to capture causal relationships in time-varying
processes and identify potential abnormalities. Temporal data is projected into a finite-dimensional
space, and after learning the model’s structure and parameters, the probability density function is used
to pinpoint abnormal time slices and identify the variables causing anomalies. Finally, abnormal data is
input as evidence into the dynamic Bayesian network to reason decision-making schemes that eliminate
abnormal conditions, which are converted into robust control actions. The effectiveness of this method
is validated in dense medium coal preparation and flotation processes. The contributions of this paper
are summarized as follows:

e A novel safety control framework for non-stationary industrial processes is proposed based on a
RTV-DBN, effectively addressing the challenges posed by frequent abnormal conditions and dynamic
changes in complex process environments. Unlike traditional methods that overlook temporal variations,
the RTV-DBN dynamically adapts to changing conditions by updating its structure and parameters,
enabling robust abnormal condition detection and control.

e A knowledge-data guided RTV-DBN modeling approach is developed, which integrates global non-
stationarity detection, temporal variation feature extraction, and causal structure learning to capture
time-evolving causal relationships among process variables and accurately identify potential abnormal
conditions.

e Extensive validation through real-world simulation cases in dense medium coal preparation and
coal slurry flotation processes demonstrates the effectiveness and robustness of the proposed method in
improving process safety and stability under non-stationary conditions.

3 Appendix C
3.1 ADF Test

The ADF test is a statistical test used to detect the presence of a unit root in temporal data [20]. The
presence of a unit root indicates that the time series data is non-stationary, meaning its mean, variance,
and autocorrelation structure change over time. The stationarity of a time series is a fundamental
assumption in many statistical and econometric models, making the ADF test highly significant in time
series analysis. The ADF test determines the stationarity of a time series by testing for the presence
of a unit root in the model. It is an extension of the Dickey-Fuller test, accommodating more complex
situations, including higher-order autocorrelation structures in the time series. The ADF test improves
the reliability of the test by introducing lagged difference terms to eliminate higher-order autocorrelation
in the series.
The ADF test is based on one of the following three model forms:
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1.Without a constant term and without a time trend.

P
Ay =g 1+ Y Bildyii+1 (1)

i=1

2.With a constant term but without a time trend.

p
Ays = p+oay 1+ Y Bildye i+ (2)

i=1

3.With a constant term and a time trend.

P
Ay =pu+ M+ ay—1 + Zﬂiﬁyt—i + ¢ (3)
i=1

where, Ay; represents y; — y; 1, which is the first difference of the time series; y;_1 is the lagged value
of the time series; u is the constant term; At is the time trend term; « is the most important coefficient
in the ADF test, used to determine the existence of a unit root; 3; are the coefficients of the difference
terms, used to eliminate higher-order autocorrelation in the series; p is the lag order.

The data in the dense medium coal preparation and coal slurry flotation process often exhibit a mean
value and a non-zero time trend due to the changes in the properties of the raw coal and the systematic
drift of the operating environment. After multiple experimental tests, this paper ultimately selects the
third ADF test mode. The steps of the ADF test are divided into four steps:1. Select the appropriate
model form based on the characteristics of the time series; 2. Use the least squares method to estimate the
parameters in the model;3. Calculate the ADF statistic, which is the estimated divided by its standard
error; 4. Compare the calculated ADF statistic with the corresponding critical value. The critical values
are obtained from the Dickey-Fuller distribution table. If the ADF statistic is smaller than the critical
value, the null hypothesis is rejected, indicating that the time series is stationary; if the ADF statistic is
greater than the critical value, the null hypothesis cannot be rejected, indicating that the time series is
non-stationary.

3.2 Resiliently Time-Varying Dynamic Bayesian Network Structure and Parameter Learn-
ing

A BN is composed of a DAG consisting of nodes and directed edges, where each node represents a
random variable, and the directed edges represent the conditional dependencies between these variables.
A DBN is an extension of a BN, which specifically deals with temporal data and dynamic systems [21]. Tt
combines the time dependency characteristics of hidden Markov models (HMM) and state-space models,
thus enabling the representation and reasoning of probabilistic relationships that change over time. In
a DBN, a set of random variables X is represented as X = {X;}[T]i=1...n, where X,[t] is the random
variable at time step t. Define a network structure G, where this network structure represents the
dependencies between variables at the same and adjacent time steps [22]. The dependencies in G allow
for connections between variables at adjacent time steps, represented as Pa(X4i[t]) C {X[t—1], X[¢]}. This
process assumes that the transition process follows a first-order Markov property, where all conditional
dependencies are assumed to be stationary. Therefore, the dependencies between variables in the dynamic
Bayesian network over time are as follows:

n
P(Xi|Xi-1,00) = [ P(XealPa(Xe.), 00) (4)

i=1
Nevertheless, in actual complex industrial processes, industrial processes are mostly dynamic and
non-stationary. Therefore, this paper proposes a RTV-DBN. This network is an extended DBN model
specifically designed to handle non-stationary complex processes with dynamically changing time series
data and structures. This model combines the advantages of BN and DBN, capable of adaptively pro-
cessing non-stationary temporal data with dynamically changing structures. RTV-DBN can dynamically
adjust the network structure, network topology, and parameters based on the changes in temporal data,
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thereby better capturing the dependencies in the system at different time points. By dynamically ad-
justing the structure and parameters over time, RT'V-DBN can adapt to the system’s different modes of
behavior at different times. Between time points ¢ and ¢ + 1, let X;[t] and parameters ©;[t] represent the
nodes at time point ¢, and let the conditional dependencies between the nodes be represented by G[t].
Then the parents of node X;[t] can be defined as [23-25]:

Pa(X;[t]) = {Paa(Xi[t]), ©:[t]} (5)

where, Pag(X;[t]) represents the non-parameter parent nodes of node X;[t], which are the set of data
nodes adjacent to X;[t].

To describe the dynamic changes in parameters and structure, this paper introduces two transition
models: one for parameter transitions and one for structural transitions.

Assuming the parameter O;[t] is independent and follows a Gaussian process, then:

Oift + 1] ~ GP (i, K;) (6)

where, p; is the mean function, and Kj; is the covariance function, describing the smooth changes of the
parameter over time.

To justify the Gaussian process (GP) assumption for parameter transitions, we note that the temporal
evolution of parameters in non-stationary industrial processes often exhibits smoothness and continuity,
which aligns well with the properties of GP models. The GP framework allows for flexible modeling of
non-linear trends and uncertainty in time-evolving parameters. The covariance function K; is modeled
using a squared exponential kernel:

Ki(t,t1) = s*Exp (— (t2_€2t/)> (7)

where s? is the signal variance controlling the amplitude of fluctuations, and ¢ is the length-scale hyper-
parameter controlling temporal smoothness. These hyperparameters are selected via cross-validation on
a held-out validation set, maximizing the marginal likelihood of observed data under the GP prior.

For structural transitions, the Markov assumption is adopted due to its simplicity and effectiveness
in modeling systems with memoryless transitions between discrete states. This assumption is widely used
in dynamic Bayesian networks and enables tractable inference of structure evolution over time.

Assuming the changes in structure G[t] can be represented as a discrete-time Markov process, then:

P(Glt+ 1|G[]) = [ [PCeislt + lei; () (8)
4,J
where, e;;[t] represents the directed edge between nodes 7 and j at time ¢. P(e;;[t + 1]|e;;[t]) describes
the transition probability of edge e;; from time ¢ to time ¢ + 1.
In summary, the RTV-DBN combined transition probability distribution can be represented as:

POt +1],Glt + 1]|0[t],G[t]) =

P(O[t + 1][e[t) P(G[t + 1]|G[t]) ¥

where, P(O[t + 1]|©O[t]) represents the parameter transition process, and P(G[t + 1]|G[t]) represents the
structure transition process.

4 Appendix D

The stationarity of an complex industrial process refers to a time series where the mean and variance do
not change over time, representing a long-term stable relationship. Nevertheless, most complex industrial
processes are non-stationary. Non-stationary complex industrial processes typically exhibit characteristics
where parameters and structures change over time due to factors such as disturbances and operational
condition switches. These factors cause continuous changes in system states and parameters, making
it difficult for a single fixed model to accurately describe and assess system behavior, thereby affecting
control performance and decision accuracy. Proposing a reliable safety control scheme for non-stationary
processes is crucial to ensuring the safe and stable operation of industrial processes.
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Table 1 Measurement Variables in the Dense Medium Coal Preparation Process

Container Nodes Physical Meanings ~ Nodes Nodes States
Double Deck Screen Output Flow Rate (t/h) B
Single Deck Screen Output Flow Rate (t/h) C

Mixing Tank Slurry Density (kg/m®) E
Dense Medium Cyclone ~ Medium Density (kg/m®) F
K

H

: Normal,2: AbnormalSmall,3: AbnormalLarge
: Normal,2: AbnormalSmall,3: AbnormalLarge
: Normal, 2: AbnormalSmall,3: Abnormal Large

: Normal,2: AbnormalSmall,3: Abnormal Large

e e e

Correct Medium Tank ~ Medium Density (kg/m?)
Dense Medium Cyclone  Overflow Ash Content (%)

: Normal,2: AbnormalSmall,3: AbnormalLarge

1: Normal,?2: Abnormal

Table 2 Operational Variables in the Dense Medium Coal Preparation Process

Container Nodes Physical Meanings ~ Nodes Nodes States
Raw Bunker Coal input (t/h) A 1: Normal,2: AbnormalSmall,3: AbnormalLarge
Dense Medium Cyclone Intervention pressure (Pa) G 1: Normal,2: AbnormalSmall,3: AbnormalLarge

4.1 Analysis of Dense Medium Coal Preparation and Coal Slurry Flotation Processes

Dense medium coal preparation is a commonly used coal washing method that separates coal and gangue
using a dense medium suspension, aiming to improve coal quality and reduce impurity content. The basic
principle is to exploit the density differences between coal and gangue. Through the flotation action of
the dense medium suspension, coal with a smaller density floats on the surface of the suspension, while
gangue with a larger density sinks to the bottom, thus achieving the separation of coal and gangue.
The process flow diagram of dense medium coal preparation is shown in Figure 1. The main equipment
includes a dense medium cyclone, a double deck screen, a single deck screen, a mixing tank, a magnetic
separator, a gangue desliming screen, a correct medium tank. In the analysis case presented in this paper,
the dense medium coal preparation process includes 6 measurement variables and 2 operational variables,
with detailed variable allocations shown in Tables 1 and 2.

In the dense medium coal preparation process, the raw coal is first crushed and screened to remove
large pieces of coal and gangue, ensuring a uniform particle size of the coal entering the separation process.
The pre-treated coal enters the dense medium separator, where, in the dense medium suspension, coal
with a smaller density float to the surface while gangue with a larger density sinks to the bottom. The
clean coal floating on the surface and the gangue sinking to the bottom are separately subjected to
dewatering using dewatering screens, removing the surface suspension liquid to obtain clean coal and
gangue. Finally, a magnetic separator is used to recover magnetite powder from the suspension, which
is then reintroduced into the suspension for recycling. With technological advancements and increasing
environmental requirements, the development trend of dense medium coal preparation is moving towards
automation and intelligence. The adoption of automated and safety control technologies is crucial for
improving separation efficiency and ensuring the safe and stable operation of industrial processes.

The coal slurry flotation process is a method that achieves separation by exploiting the differences
in density and surface chemical properties between coal and mineral impurities. The flotation method
utilizes the different wettability of coal and impurities in water. By adding flotation reagents, coal
particles attach to air bubbles and float to the surface of the water, thereby separating coal from mineral
impurities. The basic principle of flotation is based on the different wettability of coal and mineral
impurities in water. Coal has strong hydrophobicity, while most mineral impurities are hydrophilic. By
adding flotation reagents, the surface properties of coal particles are altered to become more hydrophobic,
making it easier for them to attach to air bubbles and float to the surface along with the bubbles. The
process flow diagram of the flotation process is shown in Figure 2. The main equipment includes: Ore
Slurry Pre-Processor, Thickener, Flotation cell, raw bunker, reagent addition system, and others. Detailed
variable allocations are shown in Tables 3 and 4.

In the coal slurry flotation process, the raw coal is first crushed and screened to reduce the coal
particle size and remove large impurities, ensuring that the coal particle size meets flotation requirements.
The pre-treated coal is then further ground and mixed into a slurry to increase the surface area and
improve flotation effectiveness. During the slurry preparation process, coal powder is mixed with water
to form a slurry. At this stage, regulators are added to adjust the pH of the slurry to enhance the
flotation performance of the mineral surfaces. Suitable flotation reagents are then selected based on the
properties of the coal and impurities. The most critical step is flotation, where the slurry is fed into a
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Figure 1 Dense medium coal preparation process flow diagram.

Table 3 Measurement Variables in the Slurry Flotation Process

Container Nodes Physical Meanings  Nodes Nodes States
Ore Slurry Pre-Processor  Medium Density (kg/m?) N 1: Normal,2: AbnormalSmall,3: AbnormalLarge
Thickener Medium Density (kg/m?) M 1: Normal,2: AbnormalSmall,3: AbnormalLarge
Flotation cell Overflow Ash Content (%) S 1: Normal,2: Abnormal

flotation cell. In the flotation cell, mechanical agitation and air injection generate numerous bubbles, and
the froth product floating to the surface is collected through a froth trough. The froth product obtained
from flotation needs to be dewatered to obtain the final clean coal product. If abnormalities occur during
the flotation process, they can lead to economic losses and even serious consequences such as injuries or
fatalities.

4.2 Resiliently Time-varying Dynamic Bayesian Network Modeling

Methods based solely on data or expert knowledge are difficult to adapt to the highly dynamic, mul-
tivariable, time-varying, and strongly coupled nature of non-stationary complex industrial production
processes. To address the safety control issues of non-stationary complex industrial processes, this paper
designs a decision model based on a RTV-DBN. The RTV-DBN decision model combines data-driven and
mechanism knowledge for modeling, making it a hybrid model driven by both data and knowledge. When
data is abundant, the model can automatically adjust parameters through learning; when data is scarce,
prior knowledge can be used to supplement and ensure the model’s effectiveness. It can also be updated
in real-time to adapt to changes in non-stationary processes. By dynamically adjusting model parameters
and structure, it accurately reflects the state changes of the system over different periods, ensuring pre-
cise description and prediction of the system state. RT'V-DBN can handle complex dependencies among
multiple variables simultaneously, which is particularly important when dealing with multivariable cou-
pling issues in complex industrial processes, as multiple process variables often influence and relate to
each other. The model captures long-term trend changes and sudden abnormal conditions in industrial
processes when dealing with time-varying characteristics of process parameters and structure, making
the model more flexible and accurate. RTV-DBN inherently have the advantage of handling uncertainty,
quantifying, and managing it through probability distributions.

Table 4 Operational Variables in the Slurry Flotation Process

Container Nodes Physical Meanings Nodes Nodes States
Raw Bunker Coal input (t/h) A 1: Normal,2: AbnormalSmall,3: AbnormalLarge
Thickener Underflow flow (m®/h) L 1: Normal,2: AbnormalSmall,3: AbnormalLarge

Flotation cell — Stirring speed (rad/min) P 1: Normal,2: AbnormalSmall,3: AbnormalLarge
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Figure 3 Safety control model for non-stationary complex industrial processes based on RTV-DBN.

In RTV-DBN, uncertainty is described through conditional probability distributions, effectively deal-
ing with randomness and noise in industrial processes. As shown in Figure 3, to achieve anomaly detection
and decision reasoning in non-stationary complex industrial processes, the main process of the RTV-DBN
model is divided into three parts:1. Data Preprocessing: Analyze and process the collected field data.
Use the ADF square root algorithm to test the stationarity of the data. If the data is non-stationary,
apply differencing to stabilize the data. Merge the stabilized data with the original stationary data. After
data fusion, perform correlation analysis to assess the relationships and dependencies between different
variables. 2. RTV-DBN Structure Learning and Parameter Learning: Construct a network structure that
reflects the causal relationships among industrial process variables, capturing the dependency changes of
the system over different periods. Accurately locate abnormal time slices based on the learned structure
and parameters, and determine the process variables causing the anomalies. The stationary temporal
data is projected into a finite-dimensional space and fed into the RTV-DBN. After learning the structure
and parameters of the RT'V-DBN model, probability density functions are used to precisely locate ab-
normal time slices and identify the process variables responsible for the abnormal conditions. Structure
learning is based on an resiliently net regression approach, where a temporally weighted Gaussian kernel
function is employed to sparsely model the dynamic dependencies among variables. Significant connec-
tions are selected via L1 regularization, and a directed acyclic graph (DAG) is constructed accordingly.
Parameter learning is divided into static and dynamic components. The static parameters are initial-
ized using weighted maximum likelihood estimation. The dynamic parameters are updated recursively
using a particle filtering algorithm, which incorporates a forgetting factor and M-estimation to handle
non-stationary data. Additionally, KL divergence is utilized to monitor model drift and trigger structure
adaptation when necessary.3. Decision Reasoning: Use the abnormal data as evidence input into the
model to reasoning decision schemes that can eliminate abnormal conditions, and convert the decision
schemes into robust control operations applied to the coal preparation process. The specific steps are as
follows:

Step 1: Data Collection

Gather data from industrial processes, this involves collecting various temporal data representing different
process related variables.
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Step 2: Stationarity Testing with ADF

Apply the ADF test to the collected temporal data. This test assesses whether the data is stationary.
Stationary data has constant statistical properties over time. If the data fails the ADF test, it is non-
stationary and requires further processing.

Step 3: Handling Non-stationary Data

For non-stationary data identified in Step 2, use differencing techniques. This typically involves subtract-
ing consecutive data points to transform the non-stationary data into a stationary sequence. The goal is
to make the statistical properties of the data stable over time.

Step 4: Data Fusion

Fusion the stabilized non-stationary data with the original stationary data. This creates a combined
dataset that contains all relevant information about the industrial process variables in a consistent format
for further analysis.

Step 5: Data Correlation Analysis

Perform correlation analysis on the fusion dataset. This analysis helps identify the relationships between
different variables in the industrial process. By calculating correlation coefficients, we can determine
which variables move in tandem and how strongly they are related, providing insights into the process
dynamics.

Step 6: RTV-DBN Structure Learning

Conduct structure learning for the RTV-DBN. Analyze the time-varying relationships between variables
in the processed data. Use algorithms to determine the causal connections between variables at different
time steps. This step builds the network structure that represents the process’s dynamic behavior.
Step 7: RTV-DBN Parameter Learning

After establishing the network structure in Step 6, estimate the parameters of the RTVDBN model.
Calculate probabilities associated with the relationships between variables. These parameters quantify
the strength and nature of the causal relationships in the network, enabling accurate predictions.

Step 8: Abnormal Detection with RTV-DBN

Input the online abnormal data phenomenon variables into the established RTVDBN model as evidence.
The model uses its learned structure and parameters to perform probabilistic inference. Through this
process, it determines the specific time slices when anomalies occur in the industrial process and identifies
the variables causing these abnormal conditions.

Step 9: Control Scheme Reasoning

Based on the anomaly detection results from Step 8, the RTVDBN model reasons out control schemes.
These schemes are designed to eliminating the identified abnormal conditions and bring the industrial
process back to normal operation.

Step 10: Control Scheme Implementation

Implement the control schemes in the industrial process. Monitor the process to check if the abnormal
conditions are eliminated. If the anomalies are resolved, the process switches to normal working mode.
If not, return to Step 8, input new online data as evidence, and repeat the process of anomaly detection,
control scheme reasoning, and implementation until the abnormal conditions are successfully addressed.

5 Appendix E

Due to changes in environmental conditions, disturbances, and operational condition switches, both
the dense medium coal preparation process and the coal slurry flotation process exhibit non-stationarity.
The non-stationarity and time-varying nature of industrial processes lead to continuous changes in system
states and parameters, making it difficult for a single fixed model to accurately describe and assess system
behavior, thereby affecting control performance and decision accuracy. Relying solely on expert knowledge
or data-driven methods to solve abnormal conditions introduces significant uncertainty, increasing the
difficulty of modeling and making control decisions. Therefore, using the dense medium coal preparation
process and the coal slurry flotation process as examples, this paper designs a safety control decision
model based on resiliently time-varying dynamic Bayesian networks. This section will take the coal
preparation process as an example to carry out experimental verification of the method proposed in
Appendix D on the laboratory simulation platform. The simulation platform is shown in Figure 8. There
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are 10,000 pieces of data respectively in both the dense medium coal preparation process and the coal
slurry flotation process, and the data sampling frequency is at the minute level.

5.1 Stationarity Testing and Analysis of the Coal Preparation Process

To explore the stationarity of the coal preparation process, this subsection employs the ADF square root
test method to perform stationarity testing on the coal preparation process. If a time series is non-
stationary, it means its statistical properties change over time. The presence of a unit root is one of the
main reasons for the non-stationarity of a time series. The ADF test method constructs a hypothesis
test to determine whether a time series contains a unit root. The original hypothesis is that a unit
root, exists, indicating the data is non-stationary; the alternative hypothesis is that a unit root does not
exist, indicating the data is stationary. Understanding the stationarity of data in the coal preparation
process is crucial for establishing effective control strategies and improving separation efficiency. In the
coal preparation process, key variables such as density and flow rate may fluctuate over time, and such
fluctuations can lead to process control instability and reduced separation efficiency. Experiments show
that key variables in the coal preparation process exhibit non-stationarity. Automatic control systems
based on traditional control methods may not effectively adapt to these changes, leading to a decline in
control performance.

This paper conducts ADF tests on the time series data in the coal preparation process to identify
non-stationary process variables, thereby providing a reliable basis for further data processing and control
strategy adjustments. In the dense medium coal preparation process, the non-stationary variables are the
raw coal feed rate into the raw bunker (A), the double deck screen discharge flow rate (B), the single deck
screen discharge flow rate (C), the cyclone medium density (F), the dense medium cyclone inlet pressure
(G), and the dense medium cyclone overflow ash content (H). In the coal slurry flotation process, the
non-stationary variables are the thickener underflow flow rate (L), the thickener medium density (M),
the slurry pretreatment device medium density (N), and the flotation cell stirring speed (P).

The trend in non-stationary data can interfere with the decision-making capability of models and
easily lead to overfitting. Converting the non-stationary process into a stationary process has significant
benefits for control decision-making. This not only improves the accuracy and robustness of predictive
models, but also simplifies the computation and analysis processes. By removing the non-stationarity of
the data, the interpretability and operability of the data are enhanced, and the sensitivity and reliability
of the control strategy are improved. After performing non-stationarity testing using the above method,
this paper adopts data differencing to convert the non-stationary data process into a stationary one. On
the basis of stationary data, any abnormal points deviating from stationarity can be more easily detected,
which helps to timely identify and handle abnormal situations in the coal preparation process, and allows
learning a more robust and adaptive time-varying dynamic Bayesian network structure and parameters.

5.2 Control Decision-making and Reasoning in the Coal Preparation Process

To validate the effectiveness of the modeling method proposed in Appendix D, this subsection conducts
an online application verification of the RTV-DBN modeling method. The experimental validation is
divided into two processes. The quality indicators selected for the two processes in this article are the
ash content of the cyclone overflow (node H) and the ash content of the flotation cell overflow (node S).
The detailed information about the abnormalities of the two quality indicators is shown in Table 5.

Table 5 Abnormal Information of Quality Indicators

Variable Range Types of Abnormal Process Impact
0 10%11% anomaly: larger (>11%) Decline in the quality of clean coal, increased
0 0 .
anomaly: smaller (<10%) equipment wear
S 6%-6.6% anomaly: larger (>6.6%) Decline in the quality of clean coal, reduced
o R anomaly: smaller (<6%) economic benefits, loss of flotation tailings

Process One: Dense Medium Coal Preparation Process.
Due to the complexity of the production environment, the dense medium coal preparation process ex-
hibits characteristics of a non-stationary complex industrial process, such as multivariable, time-varying,
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and strongly coupled properties. The RTV-DBN model can adapt to parameters and structures that
change over time, which is crucial for handling the non-stationary characteristics of the coal preparation
process. The model captures the causal relationships between variables and presents these relationships
in a graphical form, providing intuitive support for control decisions. After removing the non-stationarity
of the data, the RTV-DBN model is trained with the data to uncover the causal relationships behind the
data and determine the dynamic dependencies between nodes. As time progresses, the model can update
these dependencies in real-time, reflecting the real-time state changes in the coal preparation process.
When an anomaly is detected in a key variable or its dependencies, timely adjustments can be made to
ensure the safe and stable operation of the coal preparation process. The network structure of the dense
medium coal preparation process is shown in Figure 4.

Table 6 Conditional Probability Table for Overflow Ash Content H in the Dense Medium Coal Preparation Process

B 1

C 1 2 3

G 1 2 3 1 2 3 1 2 3
Hpt; 1 0.1768 0.2039 0.2305 0.1658 0.0305 0.1481 0.2257 0.2318 0.0885

2 08232 0.7961 0.7695 0.8342 0.9695 0.8519 0.7743 0.7682 0.9115

B 2

C 1 2 3

G 1 2 3 1 2 3 1 2 3
Hpt; 1 0.1304 0.3076 0.1639 0.0806 0.1039 0.2336 0.1779 0.1636 0.0314

2 0.8696 0.6924 0.8361 0.9194 0.8961 0.7664 0.8221 0.8364 0.9686

B 3

C 1 2 3

G 1 2 3 1 2 3 1 2 3
"Hpt;j 1 0.2972 0.2428 0.3014 0.3639 0.2468 0.3651 0.0714 0 0.2901

2 0.7028 0.7572 0.6986 0.6361 0.7542 0.6349 0.9286 1 0.7099

Table 7 Dense Medium Coal Peparation Process Control Variable Adjustment Strategy

case A B C E F G K
1 - 0 - - 1 1 -
2 - - 1 - - ! -
3 - ) T - 4 4 -
4 T - - - - 1 -

As shown in Figure 4, the dynamic changes and causal relationships between variables in the dense
medium coal preparation process are clearly evident. The structure in Figure 4 contains a total of 8
variables, and there are 50 time slices in total to display the dynamic changes of the causal structure.
Over time, the structure and edges of the graph are updated in real-time. After learning the RTV-DBN
structure for the dense medium coal preparation process, parameter learning is conducted by providing the
conditional probability table (CPT) for each node, which forms the basis for reasoning control schemes.
When an abnormal condition occurs in the coal preparation process, the probability density function
is used to reasoning the abnormal time slice. Then, the conditional probability distribution is used to
identify the variables causing the abnormal condition, reasoning the state of each variable at the current
moment, and derive the optimal safety control scheme. Table 6 shows the conditional probability table
for the quality variable overflow ash content H during an abnormal condition in the dense medium coal
preparation process. The CPT is used to describe the probabilities of the quality variable (H) taking
different values under different combinations of values of other relevant variables. Among them, variables
B, C, and G have three different value states, namely Normal, Abnormal Small, and Abnormal Large.
In the dense medium coal preparation process, the abnormality of the dense medium cyclone overflow
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ash content (H), a quality variable, has a strong causal relationship with variables B, C, and G. Process
variable status 1 indicates normal, 2 indicates an abnormally small value, and 3 indicates an abnormally
large value. In the reasoning, the abnormal evidence state is set to 1.

After completing the parameter learning of the RTV-DBN and determining the time slices when
anomalies occur in the dense medium coal preparation process, the desired quality indicators and state
values of the variables are input into the local network structure for reasoning, obtaining the posterior
probabilities of the operational nodes. Based on the principle of maximizing the posterior probability,
the decision adjustment scheme for the dense medium coal preparation process is derived, as shown in
Table 7, where four process cases are selected for validation. In the table, ‘I’ means that the value of
the operating variable is increased, ‘| > means that the value of the operating variable is decreased, and
‘-’ means that the value of the operating variable is unchanged. Excessive inlet pressure will increase
the turbulence intensity inside the dense medium cyclone, leading to poorer particle separation. Finer
particles and ash may be carried into the overflow, resulting in increased overflow ash content. High
inlet pressure Requires higher pump power, which increases energy consumption and operating costs.
Additionally, the increased load on the pump may lead to intensified wear and tear on the pump and

pipes.

Table 8 CPT FOR OVERFLOW ASH CONTENT S IN THE COAL SLURRY FLOTATION PROCESS

L 1 2 3

N 1 2 3 1 2 3 1 2 3
M; 1 0.3182 0.0217 0.2571 0.1233 0 0.1126 0.5391 0.4379 0.2063

2 0.6818 0.9783 0.7429 0.8767 1 0.8874 0.4609 0.5621 0.7937

To validate the effectiveness of the RTV-DBN modeling method and the case adjustment strategies,
the four cases mentioned above were simulated on the dense medium coal preparation process simulation
platform shown in Figure 8. After the occurrence of abnormal conditions, the overflow ash content of the
dense medium cyclone was observed to determine whether it could return to the normal range. As shown
in Figure 5, based on the guidance of on-site operators, the threshold for the premium ore grade in the
dense medium coal preparation process is set to 0.11. When the threshold was exceeded, it was used as
evidence input into the established RTV-DBN model to reasoning control schemes. As can be seen from
Figure 5(a), in each case study, when an abnormal condition occurred, the control schemes reasoning
using the proposed model in this paper could quickly eliminate the anomaly, ensuring the safe and stable
operation of the non-stationary dense medium coal preparation process. Compare the proposed RTV-
DBN method with the DBN-based methods and the methods proposed in References [13] and [14].By
observing the BNTLS model, the DBN model, and the BNTLOAM model, as shown in Figure 5(b),
Figure 5(c), and Figure 5(d), the algorithm proposed in this paper is significantly superior to the other
three models in terms of eliminating abnormal working conditions. In addition, as shown in Table 10,
in the safety control of the dense medium coal preparation process, the abnormal reasoning efficiency of
the algorithm in this paper reaches 98.25%, which is better than the other three models, and the method
proposed in this paper can handle dynamic processes.

Process Two: Coal Slurry Flotation Process.

In the coal slurry flotation process, the operating environment and various parameters frequently
change, causing significant fluctuations in operating conditions, which severely affect product quality and
production efficiency. Coal slurry flotation is a typical non-stationary industrial process influenced by
various production environments and operating parameters. Its stability is crucial for ensuring produc-
tion safety and improving economic benefits. Achieving safe control of the coal slurry flotation process
is essential to ensure safe and stable operations. The safety control decision-making and reasoning pro-
cess for the coal slurry flotation process relies on the RTV-DBN model to effectively manage abnormal
conditions and improve product quality. The RTV-DBN model is an enhanced method of the traditional
Bayesian network, capable of handling time series data and the temporal dynamics between variables.
This network extends the Bayesian network to handle time-related data by introducing time slices. Using
the model established in Appendix D, the coal slurry flotation process data is processed. After stabilizing
the process, the RTV-DBN is used to uncover the causal relationships between variables and learn the
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Figure 4 RTV-DBN structure for the dense medium coal preparation process.
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Figure 5 Curve of dense medium cyclone overflow ash content changes after implementing control schemes.
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Figure 6 RTV-DBN structure for the coal slurry flotation process.

network structure of the flotation process. The structure in Figure 6 contains a total of 6 variables, and
there are 50 time slices in total to display the dynamic changes of the causal structure.

By adjusting the network parameters through learning algorithms, the model can accurately reflect
the actual process. When an abnormal condition occurs, forward reasoning is performed to estimate
the probability distribution of the current state, identify the time slice when the anomaly occurs, and
determine the control variables causing the anomaly. Based on the anomaly detection results, a decision
scheme is reasoning to adjust the control variables, ensuring the safe and stable operation of the coal
preparation process. Table 8 shows the CPT for the quality variable overflow ash content S during an
abnormal condition in the coal slurry flotation process. Process variable 1 indicates normal, 2 indicates
an abnormally low value, and 3 indicates an abnormally high value. In the reasoning process for the coal
slurry flotation, the abnormal evidence state is set to 2.

Table 9 Adjustment Strategy for Control Variables in the Slurry Concentration Flotation Process

case A L M N P
o ) - ) {
2 | - 4 ; ]
3 4 4 { - {
4 - - 0 - -

Table 10 Model Comparison

Model Process Adapt Reasoning
dynamics accuracy rate

BNTLS Dense medium coal preparation " 93.8%
Coal slurry flotation 95.1%
BNTLOAM Dense medium coal preparation " 96.2%
Coal slurry flotation 97.0%
DBN Dense medium coal preparation Y 95.0%
Coal slurry flotation 96.2%
RTV.DBN Dense medium coal preparation v 98.5%
Coal slurry flotation 99.8%

After completing parameter learning, the abnormal evidence state in the coal slurry flotation rea-
soning process is input into the local network structure for reasoning. The reasoning process yields the



Sci China Inf Sci 14

st s e E E o
(a)RTV-DBN model flotation cell verflow ash control curve (b)BNTLS model flotation cell verflow ash control curve

(c)DBN model flotation cell verflow ash control curve (d)BNTLOAM model flotation cell verflow ash control curve
Figure 7 Curve of flotation cell overflow ash content changes after implementing control schemes.

decision adjustment scheme for the coal slurry flotation process, as shown in Table 9. Four cases were
selected to verify the effectiveness of the model and control schemes in the coal slurry flotation process.
In the table, ”]” indicates an increase in the adjustment direction, ”1” indicates a decrease in the ad-
justment direction, and ”-” indicates no change. For example, if the stirring speed of the flotation cell is
too high, it will increase the turbulence intensity in the liquid, causing bubbles to break easily. Bubble
breakage reduces the number of bubbles and the surface area of the bubbles in the flotation process,
thereby reducing the contact opportunities between mineral particles and bubbles, leading to abnormal
conditions. In this case, the stirring speed of the flotation cell needs to be reduced.

To validate the effectiveness of the control schemes for the coal slurry flotation process, this paper
simulated the above four cases on the simulation platform shown in Figure 8. After the occurrence of
abnormal conditions, the overflow ash content of the flotation cell was observed to determine whether it
could return to the normal range. As shown in Figure 7(a), based on the guidance of on-site operators, the
threshold for the premium ore grade in the coal slurry flotation process is set to 6.6. When the threshold
was exceeded, it was used as evidence input into the established resiliently time-varying dynamic Bayesian
network model to reasoning control schemes. If the anomaly is not eliminated, the phenomenon variable
data of the abnormal condition is re-collected and used as evidence input into the model to reasoning
new control schemes until the anomaly is eliminated. In addition, the method RTV-DBN proposed in
this paper is compared with the BNTLS model, the DBN model, and the BNTLOAM model, as shown
in Figure 7(b), Figure 7(c), and Figure 7(d), with the overflow ash content of the flotation cell as the
quantitative index. The comparative methods, the BNTLS model, are from Reference [13], and the
BNTLOAM model is from Reference [14]. The algorithm proposed in this paper is significantly superior
to the other three models in eliminating the abnormality of the overflow ash content of the flotation cell.
When an abnormality occurs in the industrial process, the method proposed in this paper can eliminate
the abnormality in a timely manner. Among all the comparison experiments, the BNTLS model has the
worst effect. When facing the abnormal working conditions of the non-stationary process, it can barely
eliminate the abnormality only in Case 4. In addition, as shown in Table 10, in the safety control of
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Figure 8 Coal preparation full-process simulation platform.

the coal slurry flotation process, the abnormal reasoning efficiency of the algorithm in this paper reaches
99.8%, which is better than the other three models, and the method proposed in this paper can handle
dynamic processes.

6 Appendix F

This paper addresses the issue of frequent abnormal operating conditions caused by the non-stationary
characteristics of complex industrial processes and proposes a safety control method for non-stationary
complex industrial processes based on RTV-DBN. The model uses a VAR model to describe the temporal
dynamics between multiple variables. By dynamically adjusting the model structure and parameters, it
reflects process changes in real time, ensuring an accurate representation of process behavior. Data from
a coal preparation plant is collected, and the ADF square root algorithm is used to test the stationarity of
the coal selection process. For non-stationary process data, a differencing method is employed to remove
non-stationarity, and the stationary data is fused with the original stationary data for correlation analy-
sis. This helps determine the strength and direction of relationships between variables, allowing for more
accurate decision-making during abnormal events. After data preprocessing, a global information-based
elastic time-varying dynamic Bayesian network model is established to capture the causal relationships
between multiple variables in the time-varying process and identify potential abnormal operating con-
ditions. Temporal data is projected into a finite-dimensional space, and after learning the structure
and parameters of the RT'V-DBN model using the probability density function, abnormal time slices are
accurately located, identifying the process variables that cause abnormal conditions. Finally, abnormal
data is input as evidence into the network model, which reasoning decision-making schemes that can
eliminate abnormal conditions and translates them into robust control actions. The effectiveness of the
proposed method is validated in the dense medium coal preparation and coal slurry flotation processes,
demonstrating the potential application of RTV-DBN models in non-stationary industrial processes.
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