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Optimal control intends to optimize the user-defined performance

index to determine an optimal control strategy for the control sys-

tems. Note that the conventional optimal control methods rely on

precise model knowledge. This requirement presents a significant

challenge in scenarios where precise model knowledge is unavail-

able. The adaptive dynamic programming (ADP) technique has

emerged as a promising data-driven optimal control approach. In-

stead of relying on the system model, the ADP technique can learn

an optimal controller from collected system data.

Two widely used algorithms in the ADP technique are value

iteration (VI) and policy iteration (PI). The data-driven PI learn-

ing algorithm for optimal control of unknown systems is developed

in [1]. The optimal output regulation problem is addressed by the

ADP-based PI algorithm in [2]. The authors in [3] developed a

VI-based learning algorithm to derive an optimal tracking con-

troller from the system data. A robust optimal control learning

algorithm is developed to guarantee the asymptotic stability of the

power system in [4]. A data-driven event-triggered optimal control

scheme is designed in [5] to reduce data transmission.

Note that the least-squares (LS) method is usually used dur-

ing the execution of the learning algorithm. Specifically, the LS

method solves a data equation formed by the collected system

data. However, a full-rank condition is imposed on the coeffi-

cient matrix to ensure the solvability of the data equation. To

satisfy this condition, past system data at multiple time instants

are stored, consuming additional storage resources. In light of

the above discussion, this study designs a novel model-free on-

line learning algorithm to learn the optimal controller from sys-

tem data. The main contributions of this study are summarized

below. (1) Unlike existing model-free optimal control algorithms

requiring storage of historical system data across multiple time

instants, the proposed online learning algorithm leverages real-

time system data during execution, significantly reducing memory

resource consumption. (2) By constructing an invertible matrix-

based data equation, we eliminate dependence on the persistence

of excitation (PE) condition for convergence. Theoretical analysis

demonstrates that the convergence is guaranteed under the milder

interval excitation (IE) condition.

Problem description. This section presents the problem de-

scription of the H∞ optimal control of the linear system with the

following dynamics:

{

ẋ(t) = Ax(t) + Bu(t) +Dw(t),

y(t) = Cx(t),
(1)

where x(t), w(t), and y(t) are the system state, disturbance, and

system output, respectively. A, B, C and D are defined as the

system matrices.

The H∞ optimal control problem can be framed as a two-player

zero-sum game, in which u(t) and w(t) represent the two players

with opposing objectives. This problem can be formulated as a

min-max optimization problem:

max
w(t)

min
u(t)

J(y(t), u(t), w(t)) =

∫

∞

0
r(t)dt, (2)

where r(t) = yT(t)Qy(t) + uT(t)Ru(t) − γ2wT(t)w(t) is the per-

formance function. T represents the transpose symbol. Q, R and

γ are the weight parameters.

Based on the H∞ optimal control theory, the optimal control

policy and the worst disturbance policy can be designed separately

as u(t) = −Ky(t) and w(t) = γ−2DTPx(t), where K satisfies

KC = R−1(BTP + ETP ) (3)

with P being the unique solution of the following game algebraic

Riccati equation (GARE):

ATP + PA− PBR−1BTP + PER−1ETP

+ γ−2PDDTP + CTQC = 0. (4)

Note that the GARE cannot be solved directly, as it is a non-

linear matrix equation for P . Moreover, GARE is a model-based

matrix equation, which implies that solving it requires a system

model. This study proposes a model-free iterative learning algo-

rithm that adaptively derives an optimal controller without prior

model knowledge.

Main results. This section presents the main results of the

proposed data-driven iterative learning algorithm. First, a model-

based iterative scheme is presented to solve for P from the GARE

(4), which involves solving the following iterative matrix equation:

AT
i Pi+1+Pi+1Ai+ET

i Ki+1C+(Ki+1C)TEi+Qi = 0, (5)
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where Qi = CTQC + (KiC)TRKiC − ET
i KiC − (KiC)TEi −

γ−2DT
i
Di, Ai = A − BKiC + γ−2DDT

i
Pi, and Ei, Di and KiC

are updated by

Ei+1 = ETPi+1, (6)

Di+1 = DTPi+1, (7)

Ki+1C = R−1(BTPi+1 + Ei+1). (8)

Note that matrix equation (5) is based on the system model.

By implementing the equivalent transformation, we can obtain the

following data equation:

Ψi(t)Φi+1 = −Ωi(t), (9)

where Ψi(t) and Ωi(t) are data matrices. Φi+1 is the solution of

data equation. The specific form of Ψi(t), Ωi(t) and Φi+1, and

the detailed transformation process are provided in Appendix A.

Remark 1. To ensure the data equation admits a unique solu-

tion, conventional methods employ data storage units to construct

the coefficient matrix Ψi(t), which needs to satisfy the column full-

rank condition. Crucially, maintaining full rank demands storage

of sufficient data, potentially consuming substantial memory re-

sources.

Theorem 1. If there exists a time point t0 + T such that

det [Z(t0 + T )] > 0, where Ż(t) = z(t)zT(t) with z(t) =

[ITxx(t), I
T
ux(t), I

T
wx(t), I

T
xy(t)]

T, Ixx(t) =
∫ t

t0
x(τ) ⊗ x(τ)dτ ,

Iux(t) =
∫ t

t0
u(τ) ⊗ x(τ)dτ , Iwx(t) =

∫ t

t0
w(τ) ⊗ x(τ)dτ and

Ixy(t) =
∫ t

t0
x(τ)⊗ y(τ)dτ , then Φi+1 is uniquely solved by

Φi+1 = −Ψ−1
i

(t0 + T )Ωi(t0 + T ). (10)

Proof. The proof is presented in Appendix B.

Remark 2. Theorem 1 shows that Φi+1 is solved using (10),

where t0 + T is determined by det [Z(t0 + T )] > 0. From

Ż(t) = z(t)zT(t), we get Z(t0 + T ) =
∫ t0+T

t0
z(τ)zT(τ)dτ . Thus,

det [Z(t0 + T )] > 0 implies that

Z(t0 + T ) =

∫ t0+T

t0

z(τ)zT(τ)dτ > δI > 0, (11)

where δ > 0 is a constant. Note that Eq. (11) is an IE condition.

Different from the PE condition that requires sufficient energy over

the entire time span, the established IE condition only requires en-

ergy for a finite duration, which relaxes the restriction of the PE

condition.

Based on Theorem 1, the model-free online iterative learning

algorithm is provided in Algorithm 1 with its convergence analysis

being presented below.

First, observe that Eq. (10) is derived from (9), which itself

constitutes an equivalent reformulation of the matrix equation (5).

This matrix equation is satisfied by solutionsKi+1 and Pi+1 gener-

ated through the model-based iterative scheme (5)–(8). Theorem

1 establishes that Φi+1 admits a unique solution via (10). Con-

sequently, solving Φi+1 from (10) is mathematically equivalent to

solving Ki+1 and Pi+1 via (5)–(8). Furthermore, since Ki+1 and

Pi+1 converge to optimal values K∗ and P ∗ under this scheme, the

proposed learning method likewise attains optimal convergence.

Algorithm 1 Data-driven online iterative learning algorithm.

1: Select u(t) ← K0y(t) + ǫ(t); {K0: initial gain, ǫ: exploration

noise};

2: Find t0 + T satisfying det[Z(t0 + T )] > 0;

3: Set i← 0; Compute Φ1 via (10);

4: while ‖Φi − Φi−1‖ > ε do

5: i← i+ 1;

6: Compute Φi+1 via (10);

7: end while

Remark 3. The parameter t0 + T plays an important role in

ensuring the convergence of the iteration learning algorithm. The

theoretical results of Theorem 1 show that the data equation has

a unique solution at t0+T , which further guarantees that the con-

trol policy learned from the proposed iteration learning algorithm

converges to its optimal value.

Simulation. A power system is used to verify the effectiveness of

the proposed method. The detailed simulation result is presented

in Appendix C.

Conclusion. In this work, the H∞ optimal LFC problem is

studied in the context of an unknown power system model. A

novel online model-free iterative learning algorithm is developed

to derive the optimal control policy from system data. The su-

periority of the proposed method is demonstrated through its ap-

plication to the power system, where it is compared with existing

methods.
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