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Optimal control intends to optimize the user-defined performance
index to determine an optimal control strategy for the control sys-
tems. Note that the conventional optimal control methods rely on
precise model knowledge. This requirement presents a significant
challenge in scenarios where precise model knowledge is unavail-
able. The adaptive dynamic programming (ADP) technique has
emerged as a promising data-driven optimal control approach. In-
stead of relying on the system model, the ADP technique can learn
an optimal controller from collected system data.

Two widely used algorithms in the ADP technique are value
iteration (VI) and policy iteration (PI). The data-driven PI learn-
ing algorithm for optimal control of unknown systems is developed
in [1]. The optimal output regulation problem is addressed by the
ADP-based PI algorithm in [2]. The authors in [3] developed a
VI-based learning algorithm to derive an optimal tracking con-
troller from the system data. A robust optimal control learning
algorithm is developed to guarantee the asymptotic stability of the
power system in [4]. A data-driven event-triggered optimal control
scheme is designed in [5] to reduce data transmission.

Note that the least-squares (LS) method is usually used dur-
ing the execution of the learning algorithm. Specifically, the LS
method solves a data equation formed by the collected system
data. However, a full-rank condition is imposed on the coeffi-
cient matrix to ensure the solvability of the data equation. To
satisfy this condition, past system data at multiple time instants
In light of
the above discussion, this study designs a novel model-free on-

are stored, consuming additional storage resources.

line learning algorithm to learn the optimal controller from sys-
tem data. The main contributions of this study are summarized
below. (1) Unlike existing model-free optimal control algorithms
requiring storage of historical system data across multiple time
instants, the proposed online learning algorithm leverages real-
time system data during execution, significantly reducing memory
resource consumption. (2) By constructing an invertible matrix-
based data equation, we eliminate dependence on the persistence
of excitation (PE) condition for convergence. Theoretical analysis
demonstrates that the convergence is guaranteed under the milder
interval excitation (IE) condition.

Problem description.
scription of the Hoo optimal control of the linear system with the

This section presents the problem de-
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following dynamics:

{ &(t) = Az (t) + Bu(t) + Dw(t), B
y(t) = C=(1),

where x(t), w(t), and y(t) are the system state, disturbance, and
system output, respectively. A, B, C and D are defined as the
system matrices.

The H optimal control problem can be framed as a two-player
zero-sum game, in which u(t) and w(t) represent the two players
with opposing objectives. This problem can be formulated as a
min-max optimization problem:

oo
max min J(y(t), u(t), w(t)) = / r(t)dt, (2)
w(t) u(t) 0

where 7(t) = yT(#)Qu(t) + uT () Ru(t) — v?wT (t)w(t) is the per-
formance function. T represents the transpose symbol. @, R and
7 are the weight parameters.

Based on the Hoo optimal control theory, the optimal control
policy and the worst disturbance policy can be designed separately
as u(t) = —Ky(t) and w(t) = v~ 2DT Px(t), where K satisfies

KC =R Y(BTP+ETP) (3)

with P being the unique solution of the following game algebraic
Riccati equation (GARE):

AP+ PA-PBR'BYP+ PERIETP
+~72PDDTP 4+ CTQC = 0. (4)

Note that the GARE cannot be solved directly, as it is a non-
linear matrix equation for P. Moreover, GARE is a model-based
matrix equation, which implies that solving it requires a system
model. This study proposes a model-free iterative learning algo-
rithm that adaptively derives an optimal controller without prior
model knowledge.

Main results. This section presents the main results of the
proposed data-driven iterative learning algorithm. First, a model-
based iterative scheme is presented to solve for P from the GARE
(4), which involves solving the following iterative matrix equation:

AT P+ P A+ EF K1 CH(Ki 1 O) Y Ei+Q; =0, (5)
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where Q; = CTQC + (K;C)TRK,C — EFK;,C — (K;C)TE; —
¥ 2DID;, A; = A— BK;C+~v72DDTP;, and E;, D; and K;C
are updated by

Eiy1=E"Piy, (6)
Diy1=D" Py, (7)
Kit1C =R " (B"Pi11 + Eifa). (8)

Note that matrix equation (5) is based on the system model.
By implementing the equivalent transformation, we can obtain the
following data equation:

\I/i(t)@prl = —Qi(t), (9)

where U,;(¢t) and Q;(¢) are data matrices. ®;41 is the solution of
data equation. The specific form of ¥;(¢), Q;(¢t) and ®;41, and
the detailed transformation process are provided in Appendix A.
Remark 1. To ensure the data equation admits a unique solu-
tion, conventional methods employ data storage units to construct
the coefficient matrix W;(¢), which needs to satisfy the column full-
rank condition. Crucially, maintaining full rank demands storage
of sufficient data, potentially consuming substantial memory re-
sources.

Theorem 1. If there exists a time point tg + T such that
det [Z(to +T)] > 0, where Z(t) = z(t)zT(t) with z(t) =
[I;cm(t)v I;{zc(t)v I?}?:c(t)v I:cTy(t)]Tv wa(t) = ftto SC(T) ® SC(T)dT,
Lua(t) = [} u(r) ® a(r)dr, Twa(t) = [ w(r) ® a(r)dr and
I.y(t) = ftto z(7) ® y(7)dr, then ®; 1 is uniquely solved by

ipq =~ (to + T)Q(to + T). (10)
Proof.  The proof is presented in Appendix B.
Remark 2. Theorem 1 shows that ®;1; is solved using (10),

where t9 + T is determined by det[Z(¢to +T)] > 0. From
Z(t) = 2(t)2T (1), we get Z(to +T) = [[0FT 2(7)2T (r)dr. Thus,
det [Z(to + T)] > 0 implies that

to+T
Z(to+T) = / 2(7)2T (r)dr > 61 > 0, (11)
to

where § > 0 is a constant. Note that Eq. (11) is an IE condition.
Different from the PE condition that requires sufficient energy over
the entire time span, the established IE condition only requires en-
ergy for a finite duration, which relaxes the restriction of the PE
condition.

Based on Theorem 1, the model-free online iterative learning
algorithm is provided in Algorithm 1 with its convergence analysis
being presented below.

First, observe that Eq. (10) is derived from (9), which itself
constitutes an equivalent reformulation of the matrix equation (5).
This matrix equation is satisfied by solutions K; 1 and P;{ gener-
ated through the model-based iterative scheme (5)—(8). Theorem
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1 establishes that ®;41 admits a unique solution via (10). Con-
sequently, solving ®;41 from (10) is mathematically equivalent to
solving K;41 and P41 via (5)—(8). Furthermore, since K; 1 and
P; 11 converge to optimal values K* and P* under this scheme, the
proposed learning method likewise attains optimal convergence.

Algorithm 1 Data-driven online iterative learning algorithm.

1: Select u(t) < Koy(t) + €(t); {Ko: initial gain, e:
noise};

: Find to + T satisfying det[Z(to + T)] > 0;

: Set i + 0; Compute @1 via (10);

: while ||®; — ®;_1]| > ¢ do

Qi1

Compute ®;41 via (10);

: end while

exploration

Remark 3. The parameter tg + 7T plays an important role in
ensuring the convergence of the iteration learning algorithm. The
theoretical results of Theorem 1 show that the data equation has
a unique solution at tg+7", which further guarantees that the con-
trol policy learned from the proposed iteration learning algorithm
converges to its optimal value.

Simulation. A power system is used to verify the effectiveness of
the proposed method. The detailed simulation result is presented
in Appendix C.

Conclusion. In this work, the Ho optimal LFC problem is
studied in the context of an unknown power system model. A
novel online model-free iterative learning algorithm is developed
to derive the optimal control policy from system data. The su-
periority of the proposed method is demonstrated through its ap-
plication to the power system, where it is compared with existing
methods.
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