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Appendix A The transformation process from matrix equation to data equation

By multiplying both sides of the matrix equation (5) on the left and right by the vectors T (¢) and z(t), respectively, we
obtain

QmT(t)P¢+1[i‘(t) — Bu(t) — Dw(t) — BKZCm(t) + 'y_zDDix(t)] — xT(t)(P¢+1Ai + A¢Pi+1):v(t) =0, (Al)

where z(t) is consistent with system (1).
Substituting (6)-(8) into (Al) and integrating both sides of (A1) yield

t t
2T () Pip12(t) — 2T (to) Pip12(to) + /t 2T (1) Qix(r)dr — 2/t 2T () (RK;11C — Ei1)(u(r) + Ky(7))dr

t t
— 2/ a:T(T)D;f_,_l(w(T) — v 2D;a(7))dr — / 2T () (B Kiy1C + (K1 C) T EDa(r)dr = 0. (A2)
to to
For the convenience of subsequent derivation, define following two operators: vec(A) = [a;r, RN a%]T with a; being the
ith column of A; vech a2 = [a1, a2, a3]T.
ag as

Using the Kronecker product, (A2) can be expressed in the following compact form:
P ()®ig1 = — I, (t)vec(Q), (A3)
where
i) = @), 0 @), 0l (@), o1 (1), 85 1= [veeh T(Pry1), veeT(Kiy1), veeT(Eig1), vecT(Dig1)] T,
Pl () = x(8) = x(to), w" (8) = 21T, (t) + 21T, () ks, 11 (1) = 217, (D)es — 20, (t)r — 20, ()b,
W) = —20T, (1) + 215, (1) fi, aa (1) = / " 2(r) ® 2(r)dr, Loy (r) = / "a(r) ® y(r)ar,

to to
t

t
u(7) @ x(7)dr, Lz (t) = /t w(T) @ x(T)dT, Iy (t) = /t y(7) ® y(r)dr,

t t

Ly(® = [ um) © y(n)dr La () = [
to to

e =Ef@Lr=I0Rk=IQK b;=IQ KR, f; =1Q~2D},x(t) = vech(2z(t)zT (t) —diag?(z(t))).

Rather than storing historical system data and using the LS method, we construct a data equation based on online
system data and propose a new method to solve it. To achieve this objective, multiplying both sides of the data equation
(A3) by v;(t) yields

i) (i1 = =i () [, (t)vec(Qi). (A4)
Then, integrating both sides of data equation (A4) yields
V() Pipr = —Qu(t), (A5)

where

t t
Vi(t) = ) Yi(r)y (T)dr, Qi(t) = ) $i(1) Loy (T)vec(Q;)dr.
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Appendix B Proof of Theorem 1
Consider the data equation (A5) with ¢t = tg + T, i.e.,

\lf,'(to + T)(I)H-l = —Qi(to + T) (Bl)

If W;(to + T) is invertible, then (10) can be obtained by multiplying both sides of (B1) by \I/,L-_l(to + T'). We now prove
this, which is equivalent to proving that ¢ = 0 is the only solution of the following equation:

TP (tg +T)¢C =0, (B2)

where ¢ = [vechT (U),vecT (V),vecT (W), vecT (X)|T with U, V, W and X being arbitrary matrices.
This statement is proven by contradiction. Assume that ¢ is a nonzero solution of (B2).
Substituting 1, (t) into W, (¢) yields

t = =
(1) = / Al (B3)
0

where Zmm = w[lm] (T)(w[lm] ()T, m=1,2,3,4.

7 7

Moreover, by the property of the Kronecker product, it follows from (A1) that

[x(t) — x(to)] " vech(Pit1)
=17, (tvec(Piy1Ai + AT Piy1) + 2[Lp, (Db + I, (t)ds + I, (6) f — I, (t)gilvec(Pig1), (B4)

where d; = I, ® KT BT, b= 1, ® BT, f = I, ® DT and g; = I, ® DI DT.
Combining with (B2)-(B4), we can get

T /t O T (M =0, (B5)

where Y = [YT, YT, YT YTIT. T = vec(UA; + ATU) + 27?vec(DF X — DIDTU), T2 = 2vec(BTU — RV + W),
T3 = 2vec(DTU — X) and T4 = 2vec(KIBTU + EfV + KIW — KTRV).

The explicit solution to Z(t) = z(t)zT(t) is Z(t) = ftto z(7)zT (T)dr. Since det [Z(to + T)] > 0 (where det[:] represents
the determinant), it follows that Z(to + T') is positive definite, implying Z(to + T') = fttoo"'_T 2(1)2T(1)dT > 6I > 0, where
& > 0 is constant. Thus, the unique solution of (B5) is T1 =0, T2 =0, T3 =0, and T4 = 0. With T2 =0 and T4 = 0, we
get EiTV = 0, implying that V = 0 since E; # 0. Note that the Hurwitz property of A; is guaranteed in the model-based
iterative scheme and consequently preserved in the data-driven approach, as it constitutes an equivalent formulation of
the model-based approach. Additionally, with Y1 = 0 and Y3 = 0, we get UA; + A;FU = 0, implying that U = 0 since
A; is Hurwitz. Since V = 0 and U = 0, it follows from Yo = 0 and Y3 = 0 that W = 0 and X = 0. Thus, we have
¢ = [vechT(U), vecT (V), vecT (W), vecT (X)]T = 0, which contradicts the assumption that ¢ is a nonzero solution to (B2).
Therefore, ¥;(tg + T') is invertible.

Appendix C Simulation

A power system is used to verify the effectiveness of the proposed method and demonstrate its superiority by comparing
it with existing methods. The framework diagram of power system under the proposed data-driven learning method is
illustrated in Figure C1, where the power system with the following dynamics [2]:

AJ(0) = S IAPw () = APi(t) - FAF(D)
AP (t) = T%[APU (t) — AP (8)] -

AP(t) = Ti[u(t) - %A F(t) — AP (8)]

ACE(t) = BAF (1)

where the physical meaning and values of power parameters refer to [2]. Defining system state x(t) = [Af(t), AP (t), AP, (t)]T,
the disturbance w(t) = APy(t), and the system output y(t) = ACE(t), a state space representation of the power system
(C1) can be described as

_F 1 _
 wm Y 0 51
at)y=| 0 FH A lz@®+| 0 [u@®+| 0 |w)
1o Zh 1 (C2)
0 = — 0
ST‘] Tq TQ

y(t) =[50 0] ).
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Figure C1 The framework diagram of power system under the proposed data-driven learning method.
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Appendix C.1 Simulation Results

The learning algorithm parameters are set to R =1, Q = diag{1,1,1}, vy =4, Ko =0, and ¢ = 1073, The design of explo-
ration noise poses a significant challenge for data-driven learning, especially in high-dimensional systems. Commonly used
profiles include random noise (convenient but potentially suboptimal), exponentially decaying probing signals (balancing
ease and effectiveness), and sinusoidal signals (providing directional, periodic forces). For our simulations, we implement
composite exploration noise €(t) = e~!(—sin(6.7¢) + cos(15.2t)) combining exponentially decaying probing and sinusoidal
signals to facilitate more efficient strategy exploration. By checking the condition det{Z(top + T')} > 0, it can be confirmed
that det{Z(1)} > 0, which indicates that the time point to + T" is determined as tg + T = 1s. The optimal control gain
derived at t = 1,s is K = [—0.8177,0.3821,0.5069]. Figures C2 and C3 depict the learning process: Figure C2 shows
||K; — K*|| gradually converging to zero, while Figure C3 demonstrates the performance function V;(t) = 2T (¢)P;z(t)
reaching its optimal value through iterative learning. The learned optimal controller is then implemented in the power
system to stabilize the system, with state/input trajectories in Figures C4 and C5. Here, learning occurs during ¢ € [0, 1]s,
after which the system switches to control mode ensuring asymptotic stability.
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Figure C2 Trajectory of the learning error |K; — K™||. Figure C3 Evolution of performance function.
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To examine the impact of parameters on algorithm performance, we select different values and compare the learning
error ||K190 — K*|| after 10 iterations, as shown in Table C1. Notably, the algorithm achieves excellent convergence after
10 iterations. Table C1 demonstrates that the learning error decreases with increasing parameters R and <, while increases
with larger Q. These findings indicate that higher R and -y values combined with smaller () enhance algorithm performance.

Table C1 Comparison of learning error ||K19 — K*|| under different parameters

(a) Different parameter R

(b) Different parameter Q

(c) Different parameter ~y

R=1|153x10"*

R=21]954x10°

R=3| 738x107°

Q = diag{2,2,2} | 1.77 x 1074 vy=4| 247 x10~*
Q = diag{3,3,3} | 3.67 x 1074 y=6 | 1.46 x 1074
Q = diag{4,4,4} | 6.90 x 10~* y=81]122x10"*

We further validate the robustness of the learned controller against external disturbances. Figures C6 and C7 depict the
trajectories of external disturbances, disturbance-corrupted control inputs, and perturbed system states, with disturbances
generated by step signals and random signals. Figure C7 confirms that the perturbed states exhibit bounded fluctuations,
demonstrating robust disturbance rejection. Moreover, the results in Figures C8 and C9 verify the Hoo performance
requirement. Figure C8 shows the energy consumption fot(mTQw + uT Ru)dt and disturbance energy fot wTwdt. Figure

C9 displays the energy ratio trajectory T wTwdt
0

performance requirement.
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Figure C6 Trajectories of control input and external dis-
turbance.
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Figure C8 Trajectory of the energy consumption.

Appendix C.2 Comparison Results

fot (2T Qe+uT Ru)dt

, which remains below 42, confirming satisfaction of the Hoo
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Figure C7 Trajectory of system state under the influence
of external disturbance.
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Figure C9 Trajectory of energy consumption ratio.

To validate the superiority of the proposed method, we conduct comparative simulations against existing data-driven
approaches: the concurrent learning algorithm [1] and model-free iterative learning method [2]. Table C2 provides theoretical
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comparisons across three critical aspects: full-rank condition, historical data storage, and PE condition. It is worth noting
that the advantage of [2] over [1] is that it gets rid the limitation of PE condition. However, both the full-rank condition and
data storage are necessary prerequisites to ensure the learning algorithm convergence in [1] and [2]. In contrast, our method
constructs a novel data equation structure using real-time system data and establishes an online verification condition, which
eliminates the full-rank requirement, obviates the historical data storage and relaxes PE condition to interval excitation
(IE) condition. Furthermore, the numerical quantitative comparison result is shown in Figures C10-C12. Note that the
numerical validation is examined by single-input systems (m = 1) of varying dimensions (n = 1, 2, 3), where a stable system
is generated via MATLAB’s rss command. Figure C10 presents the comparative data utilization results, where our method
demonstrates superior data efficiency by eliminating reliance on data storage. We evaluate computational efficiency by
measuring the average time required for algorithms to complete 10 iterations. It is noteworthy that accurate controller
parameters are attained after 10 iterations for all methods owing to their quadratic convergence rates. Figure C11 reveals
that our approach consumes significantly less computation time than the other two methods. This efficiency stems primarily
from eliminating repeated verification of full-rank conditions and avoiding historical data storage. Although our method
eliminates the requirements (full-rank condition, data storage, and PE condition), it maintains convergence speed without
significant reduction, as demonstrated in Figure C12.

Table C2 Comparison for different methods

Our Method Ref. [1] Ref. [2]
Need Full-Rank Condition X v v
Need Data Storage X v v
Need PE Condition X X v
T [ our method 25
700 —@~— Our method | | 0.6/| B Ref. [1] 0:568 ﬁ -0 -Ref.[1]
—l Ref. [1] Ref. [2] \ -O-Ref.[2]
Ref. [2] ® 05 2ny = - our method
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Figure C11 Comparison of computa-
tional efficiency under different meth-
ods.

Figure C12 Comparison of conver-
gence speed under different methods.

Figure C10 Comparison of data us-
age under different methods.
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