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Appendix A The transformation process from matrix equation to data equation

By multiplying both sides of the matrix equation (5) on the left and right by the vectors xT(t) and x(t), respectively, we

obtain

2xT(t)Pi+1[ẋ(t)−Bu(t)−Dw(t)−BKiCx(t) + γ−2DDix(t)]− xT(t)(Pi+1Ai +AiPi+1)x(t) = 0, (A1)

where ẋ(t) is consistent with system (1).

Substituting (6)-(8) into (A1) and integrating both sides of (A1) yield

xT(t)Pi+1x(t)− xT(t0)Pi+1x(t0) +

∫ t

t0

xT(τ)Qix(τ)dτ − 2

∫ t

t0

xT(τ)(RKi+1C − Ei+1)(u(τ) +Kiy(τ))dτ

− 2

∫ t

t0

xT(τ)DT
i+1(w(τ)− γ−2Dix(τ))dτ −

∫ t

t0

xT(τ)(ET
i Ki+1C + (Ki+1C)TEi)x(τ)dτ = 0. (A2)

For the convenience of subsequent derivation, define following two operators: vec(A) = [aT1 , . . . , a
T
N ]T with ai being the

ith column of A; vech

([
a1 a2

aT2 a3

])
= [a1, a2, a3]T.

Using the Kronecker product, (A2) can be expressed in the following compact form:

ψT
i (t)Φi+1 = −ITxx(t)vec(Qi), (A3)

where

ψi(t) = [ψ
[11]
i (t), ψ

[12]
i (t), ψ

[13]
i (t), ψ

[14]
i (t)],Φi+1=[vechT(Pi+1), vecT(Ki+1), vecT(Ei+1), vecT(Di+1)]T,

ψ
[11]
i (t) = χ(t)− χ(t0), ψ

[13]
i (t) = 2ITux(t) + 2ITxy(t)ki, ψ

[12]
i (t) = 2ITxy(t)ei − 2ITuy(t)r − 2ITyy(t)bi,

ψ
[14]
i (t) = −2ITwx(t) + 2ITxx(t)fi, Ixx(t) =

∫ t

t0

x(τ)⊗ x(τ)dτ, Ixy(τ) =

∫ t

t0

x(τ)⊗ y(τ)dτ,

Iuy(t) =

∫ t

t0

u(τ)⊗ y(τ)dτ, Iux(t) =

∫ t

t0

u(τ)⊗ x(τ)dτ, Iwx(t) =

∫ t

t0

w(τ)⊗ x(τ)dτ, Iyy(t) =

∫ t

t0

y(τ)⊗ y(τ)dτ,

ei = ET
i ⊗ I, r = I ⊗R, ki = I ⊗KT

i , bi = I ⊗KT
i R, fi = I ⊗ γ2DT

i , χ(t) = vech(2x(t)xT(t)−diag2(x(t))).

Rather than storing historical system data and using the LS method, we construct a data equation based on online

system data and propose a new method to solve it. To achieve this objective, multiplying both sides of the data equation

(A3) by ψi(t) yields

ψi(t)ψ
T
i (t)Φi+1 = −ψi(t)I

T
xx(t)vec(Qi). (A4)

Then, integrating both sides of data equation (A4) yields

Ψi(t)Φi+1 = −Ωi(t), (A5)

where

Ψi(t) =

∫ t

t0

ψi(τ)ψT
i (τ)dτ,Ωi(t) =

∫ t

t0

ψi(τ)ITxx(τ)vec(Qi)dτ.
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Appendix B Proof of Theorem 1

Consider the data equation (A5) with t = t0 + T , i.e.,

Ψi(t0 + T )Φi+1 = −Ωi(t0 + T ). (B1)

If Ψi(t0 + T ) is invertible, then (10) can be obtained by multiplying both sides of (B1) by Ψ−1
i (t0 + T ). We now prove

this, which is equivalent to proving that ζ = 0 is the only solution of the following equation:

ζTΨP
i (t0 + T )ζ = 0, (B2)

where ζ = [vechT(U), vecT(V ), vecT(W ), vecT(X)]T with U , V , W and X being arbitrary matrices.

This statement is proven by contradiction. Assume that ζ is a nonzero solution of (B2).

Substituting ψi(t) into Ψi(t) yields

Ψi(t) =

∫ t

t0


Ξ11 Ξ12 Ξ13 Ξ14

∗ Ξ22 Ξ23 Ξ24

∗ ∗ Ξ33 Ξ34

∗ ∗ ∗ Ξ44

 dτ, (B3)

where Ξmm = ψ
[1m]
i (τ)(ψ

[1m]
i (τ))T,m = 1, 2, 3, 4.

Moreover, by the property of the Kronecker product, it follows from (A1) that

[χ(t)− χ(t0)]Tvech(Pi+1)

=ITxx(t)vec(Pi+1Ai +AT
i Pi+1) + 2[ITux(t)b+ ITxy(t)di + ITwx(t)f − ITxx(t)gi]vec(Pi+1), (B4)

where di = In ⊗KT
i B

T, b = In ⊗BT, f = In ⊗DT and gi = In ⊗DT
i D

T.

Combining with (B2)-(B4), we can get

ΥT

∫ t0+T

t0

z(τ)zT(τ)dτΥ = 0, (B5)

where Υ = [ΥT
1 ,Υ

T
2 ,Υ

T
3 ,Υ

T
4 ]T. Υ1 = vec(UAi + AT

i U) + 2γ2vec(DT
i X − DT

i D
TU), Υ2 = 2vec(BTU − RV + W ),

Υ3 = 2vec(DTU −X) and Υ4 = 2vec(KT
i B

TU + ET
i V +KT

i W −KT
i RV ).

The explicit solution to Ż(t) = z(t)zT(t) is Z(t) =
∫ t
t0
z(τ)zT(τ)dτ . Since det [Z(t0 + T )] > 0 (where det[·] represents

the determinant), it follows that Z(t0 + T ) is positive definite, implying Z(t0 + T ) =
∫ t0+T
t0

z(τ)zT(τ)dτ > δI > 0, where

δ > 0 is constant. Thus, the unique solution of (B5) is Υ1 = 0, Υ2 = 0, Υ3 = 0, and Υ4 = 0. With Υ2 = 0 and Υ4 = 0, we

get ET
i V = 0, implying that V = 0 since Ei 6= 0. Note that the Hurwitz property of Ai is guaranteed in the model-based

iterative scheme and consequently preserved in the data-driven approach, as it constitutes an equivalent formulation of

the model-based approach. Additionally, with Υ1 = 0 and Υ3 = 0, we get UAi + AT
i U = 0, implying that U = 0 since

Ai is Hurwitz. Since V = 0 and U = 0, it follows from Υ2 = 0 and Υ3 = 0 that W = 0 and X = 0. Thus, we have

ζ = [vechT(U), vecT(V ), vecT(W ), vecT(X)]T = 0, which contradicts the assumption that ζ is a nonzero solution to (B2).

Therefore, Ψi(t0 + T ) is invertible.

Appendix C Simulation

A power system is used to verify the effectiveness of the proposed method and demonstrate its superiority by comparing

it with existing methods. The framework diagram of power system under the proposed data-driven learning method is

illustrated in Figure C1, where the power system with the following dynamics [2]:

∆ḟ(t) =
1

M
[∆Pm(t)−∆Pd(t)− F∆f(t)]

∆Ṗm(t) =
1

Tt
[∆Pv(t)−∆Pm(t)]

∆Ṗv(t) =
1

Tg
[u(t)−

1

S
∆f(t)−∆Pv(t)]

ACE(t) = β∆f(t)

(C1)

where the physical meaning and values of power parameters refer to [2]. Defining system state x(t) = [∆f(t),∆Pm(t),∆Pv(t)]T,

the disturbance w(t) = ∆Pd(t), and the system output y(t) = ACE(t), a state space representation of the power system

(C1) can be described as 
ẋ(t) =


−F
M

1
M

0

0 −1
Tt

1
Tt

−1
STg

0 −1
Tg

x(t) +


0

0
1
Tg

u(t) +


−1
M

0

0

w(t)

y(t) =
[
β 0 0

]
x(t).

(C2)
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Figure C1 The framework diagram of power system under the proposed data-driven learning method.

Appendix C.1 Simulation Results

The learning algorithm parameters are set to R = 1, Q = diag{1, 1, 1}, γ = 4, K0 = 0, and ε = 10−3. The design of explo-

ration noise poses a significant challenge for data-driven learning, especially in high-dimensional systems. Commonly used

profiles include random noise (convenient but potentially suboptimal), exponentially decaying probing signals (balancing

ease and effectiveness), and sinusoidal signals (providing directional, periodic forces). For our simulations, we implement

composite exploration noise ε(t) = e−t(− sin(6.7t) + cos(15.2t)) combining exponentially decaying probing and sinusoidal

signals to facilitate more efficient strategy exploration. By checking the condition det{Z(t0 + T )} > 0, it can be confirmed

that det{Z(1)} > 0, which indicates that the time point t0 + T is determined as t0 + T = 1s. The optimal control gain

derived at t = 1, s is K = [−0.8177, 0.3821, 0.5069]. Figures C2 and C3 depict the learning process: Figure C2 shows

||Ki − K∗|| gradually converging to zero, while Figure C3 demonstrates the performance function Vi(t) = xT(t)Pix(t)

reaching its optimal value through iterative learning. The learned optimal controller is then implemented in the power

system to stabilize the system, with state/input trajectories in Figures C4 and C5. Here, learning occurs during t ∈ [0, 1]s,

after which the system switches to control mode ensuring asymptotic stability.
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Figure C2 Trajectory of the learning error ‖Ki −K∗‖.
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Figure C3 Evolution of performance function.
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Figure C4 Trajectory of system state under different

stages.
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Figure C5 Trajectory of optimal control input.
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To examine the impact of parameters on algorithm performance, we select different values and compare the learning

error ||K10 −K∗|| after 10 iterations, as shown in Table C1. Notably, the algorithm achieves excellent convergence after

10 iterations. Table C1 demonstrates that the learning error decreases with increasing parameters R and γ, while increases

with larger Q. These findings indicate that higher R and γ values combined with smaller Q enhance algorithm performance.

Table C1 Comparison of learning error ||K10 −K∗|| under different parameters

(a) Different parameter R

R = 1 1.53× 10−4

R = 2 9.54× 10−5

R = 3 7.38× 10−5

(b) Different parameter Q

Q = diag{2, 2, 2} 1.77× 10−4

Q = diag{3, 3, 3} 3.67× 10−4

Q = diag{4, 4, 4} 6.90× 10−4

(c) Different parameter γ

γ = 4 2.47× 10−4

γ = 6 1.46× 10−4

γ = 8 1.22× 10−4

We further validate the robustness of the learned controller against external disturbances. Figures C6 and C7 depict the

trajectories of external disturbances, disturbance-corrupted control inputs, and perturbed system states, with disturbances

generated by step signals and random signals. Figure C7 confirms that the perturbed states exhibit bounded fluctuations,

demonstrating robust disturbance rejection. Moreover, the results in Figures C8 and C9 verify the H∞ performance

requirement. Figure C8 shows the energy consumption
∫ t
0 (xTQx + uTRu)dt and disturbance energy

∫ t
0 w

Twdt. Figure

C9 displays the energy ratio trajectory
∫ t
0 (xTQx+uTRu)dt∫ t

0 wTwdt
, which remains below γ2, confirming satisfaction of the H∞

performance requirement.
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Figure C6 Trajectories of control input and external dis-

turbance.
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Figure C7 Trajectory of system state under the influence

of external disturbance.
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Figure C8 Trajectory of the energy consumption.
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Figure C9 Trajectory of energy consumption ratio.

Appendix C.2 Comparison Results

To validate the superiority of the proposed method, we conduct comparative simulations against existing data-driven

approaches: the concurrent learning algorithm [1] and model-free iterative learning method [2]. Table C2 provides theoretical
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comparisons across three critical aspects: full-rank condition, historical data storage, and PE condition. It is worth noting

that the advantage of [2] over [1] is that it gets rid the limitation of PE condition. However, both the full-rank condition and

data storage are necessary prerequisites to ensure the learning algorithm convergence in [1] and [2]. In contrast, our method

constructs a novel data equation structure using real-time system data and establishes an online verification condition, which

eliminates the full-rank requirement, obviates the historical data storage and relaxes PE condition to interval excitation

(IE) condition. Furthermore, the numerical quantitative comparison result is shown in Figures C10-C12. Note that the

numerical validation is examined by single-input systems (m = 1) of varying dimensions (n = 1, 2, 3), where a stable system

is generated via MATLAB’s rss command. Figure C10 presents the comparative data utilization results, where our method

demonstrates superior data efficiency by eliminating reliance on data storage. We evaluate computational efficiency by

measuring the average time required for algorithms to complete 10 iterations. It is noteworthy that accurate controller

parameters are attained after 10 iterations for all methods owing to their quadratic convergence rates. Figure C11 reveals

that our approach consumes significantly less computation time than the other two methods. This efficiency stems primarily

from eliminating repeated verification of full-rank conditions and avoiding historical data storage. Although our method

eliminates the requirements (full-rank condition, data storage, and PE condition), it maintains convergence speed without

significant reduction, as demonstrated in Figure C12.

Table C2 Comparison for different methods

Our Method Ref. [1] Ref. [2]
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Figure C10 Comparison of data us-

age under different methods.
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Figure C11 Comparison of computa-

tional efficiency under different meth-

ods.
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