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Abstract Highly reliable low-latency communication (HRLLC), a key paradigm in 6G networks, aims to meet stringent requirements

of ultra-low latency and extreme reliability, making it ideal for enabling delay-critical services. However, HRLLC faces challenges due to

traffic uncertainties—unpredictable fluctuations that degrade quality of service (QoS) in dynamic environments. Existing optimization

methods often rely on simplified network assumptions (precise knowledge of traffic arrivals) or suffer from prohibitive computational

complexity (e.g., conditional value at risk, CVaR). This paper proposes a novel robust optimization framework that integrates routing,

resource provisioning, and admission control for delay-critical services under uncertain network conditions. While leveraging the Bernstein

approximation to handle traffic uncertainty, the proposed framework integrates robust routing, resource provisioning, and admission

control into a unified architecture for large-scale HRLLC scenarios. This holistic design enables scalable and delay-aware decision-

making beyond the scope of conventional Bernstein-based methods. The framework decomposes the robust optimization problem into

subproblems, deriving closed-form solutions for resource allocation and employing a quantized dynamic programming algorithm to achieve

an [O(ǫ),O(1/ǫN+E)]-trade-off between optimality loss and computational complexity. Comprehensive packet-level simulations validate

the effectiveness of our proposed framework, which outperforms existing methods such as OSPF and greedy admission control with respect

to reliability, resource utilization, and admission control. By utilizing Bernstein approximation for resource allocation, the framework

achieves a 99.99% delay guarantee and improves the success rate of service routing and admission control by up to 33.3%, with a 25.0%

enhancement over benchmark approaches in resource utilization, demonstrating the potential of robust optimization to maintain QoS in

dynamic, mission-critical applications.
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1 Introduction

Highly reliable low-latency communication (HRLLC) is a cornerstone of 6G networks, advancing beyond 5G’s
ultra-reliable low-latency communication (URLLC) to meet stringent latency (sub-1 ms) and reliability (99.9999%)
requirements [1–4]. As 6G evolves toward hyperconnected ecosystems, HRLLC enables mission-critical applications
such as autonomous driving, industrial automation, and remote surgery, where real-time responsiveness and zero-
failure tolerance are non-negotiable [5, 6]. Its ability to adapt to dynamic environments makes it indispensable for
future smart cities and digital twins [7].

Resource allocation and routing are pivotal in achieving HRLLC’s dual mandates of ultra-low latency and extreme
reliability. Efficient resource allocation ensures optimal bandwidth and power distribution, minimizing contention
and maximizing throughput [8]. Meanwhile, adaptive routing determines the shortest-latency paths while avoid-
ing congested or degraded links [9]. Together, these mechanisms directly influence end-to-end delay, packet loss,
and service availability. However, their effectiveness hinges on addressing network dynamics and uncertainties—a
challenge unmet by conventional approaches that assume static or predictable conditions [10].

Existing approaches for delay-critical services—spanning routing protocols [10–14], resource allocation [15–17],
and admission control [18–21]—often rely on deterministic network assumptions or oversimplified models, neglecting
real-world stochasticity. While robust optimization (RO) has been applied to uncertainty management in other
domains [22], its integration with delay-bounded routing remains largely unexplored. Furthermore, traditional
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methods face prohibitive computational complexity as network scale and service diversity grow, limiting their
practicality [23].

This gap underscores the motivation behind our work. HRLLC services—such as autonomous driving, industrial
control, and remote surgery—demand strict QoS guarantees even under unpredictable traffic conditions and resource
fluctuations. Traditional optimization frameworks often fail to uphold latency and reliability constraints when
faced with such real-world uncertainties. To address these challenges, we propose a robust joint optimization
framework that integrates routing, admission control, and resource provisioning under traffic uncertainty. By
employing Bernstein approximation, we can manage distributional uncertainty in a tractable manner. To further
reduce computational complexity, we design a quantized dynamic programming (QDP) algorithm that balances
solution optimality with runtime efficiency.

To the best of our knowledge, this paper is the first to integrate routing, resource allocation, and admission
control into a unified optimization framework that is resilient to traffic uncertainty and computationally scalable
for large-scale HRLLC networks.

The key contributions of this paper are summarized as follows.

• We introduce a holistic framework that jointly optimizes routing, admission control, and resource provisioning
under network uncertainty, targeting highly reliable low-latency communication services. While Bernstein approx-
imation is employed to address chance constraints, the core novelty lies in how it is systematically embedded into
a scalable decomposition-based framework that enables closed-form resource decisions and discrete path selection
under latency and reliability guarantees.

• We propose to decompose the formulated robust joint optimization problem into two dependent subproblems.
The resource allocation subproblem admits a closed-form solution, while the remaining admission problem is trans-
formed into an integer program efficiently solvable by the proposed quantized dynamic programming algorithm. We
theoretically prove that the QDP algorithm achieves an [O(ǫ),O(1/ǫN+E)] trade-off between optimality and time
complexity.

• We validate the performance of the proposed framework through packet-level simulations. Resource allocation
based on Bernstein approximation ensures reliable distribution with a 99.99% delay guarantee. Compared to existing
baselines, our algorithm improves the success rate of service routing and admission control by up to 33.3%, and
enhances resource utilization by 25.0%.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of the related work.
Section 3 presents our system model. Section 4 formulates and reformulates the problem. Section 5 details the
proposed robust joint optimization approach. Section 6 presents simulation results, followed by the conclusion in
Section 7.

2 Related work

This section reviews optimization approaches for delay-critical services and robust optimization techniques for
handling traffic uncertainties. By comparing existing studies, we highlight our study’s novelty.

2.1 Optimization for delay-critical services

Significant advancements in network routing and resource allocation have improved delay-sensitive services, par-
ticularly through time-sensitive networking (TSN) (e.g., CBS, CQF, TAS) and software-defined traffic engineering,
such as dynamic programming, network calculus, and reinforcement learning [16–24].

Routing and admission control have been jointly optimized in various studies. Ramdhani et al. [16] designed
an algorithm maximizing network throughput while minimizing latency. Liu et al. [17] proposed a greedy routing
algorithm for MCCQF. Maile et al. [21] employed CBS-based routing with network Calculus to ensure deadline
guarantees. Zhu et al. [22] and Budhiraja et al. [24] explored SDN-based heuristic and joint optimization strategies
for video transmission. Ji et al. [25] introduced a delay-sensitive user association strategy that improves load
balancing by periodic reassociation, but the induced randomness in queueing and access delays limits its applicability
to latency-bounded traffic. Recent advances in URLLC have also focused on physical-layer optimization in the
context of massive MIMO systems [13, 14]. However, these studies do not account for traffic uncertainty, which is
critical in practical URLLC scenarios.

Despite these advancements, existing approaches fail to address traffic uncertainties, such as sudden traffic fluc-
tuations and latency jitter, which significantly affect service reliability and resource provisioning. This limitation
necessitates robust optimization techniques capable of adapting to dynamic network conditions.
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Figure 1 (Color online) The resource provisioning network with routing of providers and K different services.

2.2 Robust optimization

Robust optimization enhances network resilience against uncertainties and has been applied in areas such as com-
putation offloading [26], green communications [27], and fog networks [28]. Despite its effectiveness, CVaR-based
formulations often incur high computational complexity, typically requiring Monte Carlo sampling [29] or semi-
definite programming [30]. Rao et al. [31] analyzed delay under traffic uncertainty via shortest path routing but
relied on precise packet length distributions, which are impractical in real-world systems. Our previous work [15]
proposed a Bernstein-based method to efficiently handle traffic uncertainty with limited knowledge, offering scal-
ability in delay-aware service provisioning. However, the joint integration of robust optimization and routing for
delay-critical services remains underexplored, motivating this study.

To the best of our knowledge, this paper is the first to consider traffic uncertainties in the routing problem of
delay-critical services. Moreover, unlike previous studies, our algorithm achieves joint optimization across admis-
sion control, routing decisions, and resource allocation, while addressing the unpredictability of packet sizes. We
initially modeled this as a chance-constrained problem and then applied distributed robust optimization with the
Bernstein approximation to efficiently find feasible solutions that meet constraints. This method not only improves
computational efficiency but also enhances the adaptability of our approach, enabling it to better handle complex
requirements under uncertain network conditions.

Remark: While URLLC often requires modeling the physical-layer performance under the finite blocklength

(FBL) regime, such as using the normal approximation formula R∗(n, ǫ) ≈ C −
√

V
nQ

−1(ǫ), our work focuses on

network-level orchestration for HRLLC. Therefore, we adopt a capacity-based abstraction, which is appropriate for
IP-level packet transmission and allows tractable optimization of routing and provisioning decisions under end-to-
end QoS guarantees.

3 System model

Figure 1 illustrates a network with N nodes and E edges, where delay-critical services with uncertain traffic arrivals
require end-to-end data delivery within strict deadlines. To accommodate these delay-critical services, the network
must preemptively reserve computational resources at nodes and communication resources on edges, ensuring the
necessary infrastructure is in place before traffic arrives.

3.1 Service model with traffic uncertainty

Let K = {1, 2, . . . ,K} represent the set of services within the network. Each service k is defined by a tuple
(nksrc, n

k
dst, d

k, τk, ǫk, rk) [15]. Here, nksrc and nkdst represent the source and destination nodes of service k, respec-
tively. dk, τk, and ǫk correspond to the traffic size, service deadline, and reliability requirement, respectively. The
resource density for processing per unit traffic of service k is defined as rk = {rkc , r

k
f}, where r

k
c and rkf refer to the

number of CPU processing cycles and the size of transmitted data required to handle the traffic, respectively.

In practice, the system performs traffic prediction in advance of traffic arrival [32], yielding an estimated traffic

size d̂k [33]. Due to traffic uncertainty, however, this estimate may differ from the actual traffic size dk by an offset
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∆dk, as given by

dk = d̂k +∆dk. (1)

Various techniques, such as long short-term memory (LSTM) models and spatial-temporal cross-domain neural

network (STCNet) [34], can be employed to predict d̂k [15], aiming to minimize ∆dk and enhance prediction
accuracy. However, the estimation error ∆dk cannot be entirely eliminated given the nature of AI techniques, and
moreover, obtaining the exact distribution of ∆dk, defined as P, is challenging in practice.

Instead of relying on the exact distribution, we can leverage other available statistical properties, such as the first
and second-order moments—specifically, the mean value and covariance—of the distribution P [35]. We define the
set of distributions P as those satisfying the aforementioned range constraints, which can be given by

P =

{

P :
‖EP(∆d)‖1 6 µ,

EP[(∆d − µ)(∆d− µ)T ] � Σ

}

. (2)

This ambiguity set P is defined via moment constraints (mean and covariance) without assuming any specific
probability distribution, which enhances robustness under traffic uncertainty. Compared to AI-based predictors,
our method provides stronger worst-case guarantees under unpredictable variations, where µ = [µ1, . . . , µK ] denotes
the upper bound of the mean vector of ∆d and Σ = diag(σ1, . . . , σK) denotes the upper bound of the covariance
interval.

3.2 Network topology model and routing decision

The network topology consists of nodes n ∈ N and links e ∈ E that interconnect these nodes. This topology is
encapsulated in an N × N adjacency matrix θ = {θu,v|u, v ∈ N}, where each element θu,v ∈ {0, 1} specifies the
presence or absence of a direct link between nodes u and v. The routing decision for service k is represented by
the vector ϕk = {ϕk1 , ϕ

k
2 , . . . , ϕ

k
N , ϕ

k
N+1, ϕ

k
N+2, . . . , ϕ

k
N+E}, where ϕ

k
u ∈ {0, 1} indicates whether service k traverses

node n or link e, ϕk ∈ Φ. The routing decisions are subject to the following constraints [36]:

∑

u∈N∪E,
u6=v

ϕkuθu,vϕ
k
v −

∑

v∈N∪E,
u6=v

ϕkuθu,vϕ
k
v =











1, if u = nksrc,

−1, if v = nkdst,

0, if others.

(3)

Eq. (3) is the typical feasibility constraint of flow in graph theory, ensuring the data traverse the network without
creating any bottlenecks or disconnections at intermediate nodes. In particular, at the source node nksrc, it mandates
that there is exactly one outgoing link, indicating the start of the service’s path. Conversely, at the destination
node nkdst, there should be exactly one incoming link, signifying the end of the service’s route. For all other nodes
within the network, the equation ensures that the number of incoming links equals the number of outgoing links,
maintaining the conservation of flow.

Note that physical-layer transmission conditions (e.g., distance, path loss, fading) are not explicitly modeled;
instead, their effects are abstracted into the end-to-end latency and reliability constraints discussed in Section 3.3.
This abstraction enables our framework to accommodate heterogeneous link qualities in both wired and wireless
segments.

3.3 Service admission and resource provisioning model

Let fk = {fkn}n∈N and ck = {cke}e∈E represent the computation and communication resource provisioning decisions
for service k, respectively. The binary variable sk ∈ {0, 1} denotes whether service k is admitted. If sk = 1, service
k is admitted into the system; otherwise, it is rejected.

Given a service’s traffic size dk and its routing decision φk, the total end-to-end delay consists of two components:

T k = T kc + T kt =
∑

e∈E

rkc d
k

cke
φkN+e +

∑

n∈N

rkfd
k

fkn
φkn,

where rkc and rkf denote the computation and communication resource requirements per unit traffic of service k.

To guarantee that the service meets its deadline τk, we enforce the following constraint:

skT k 6 τk. (4)
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Under uncertainty in traffic size (dk = d̂k + ∆dk), the above constraint is relaxed to a probabilistic constraint
ensuring that the deadline is satisfied with high probability:

P

{

skdk

(

∑

e∈E

rkc
cke
φkN+e +

∑

n∈N

rkf
fkn
φkn

)

> τk

}

6 ǫk, ∀k. (5)

Eq. (7) enforces the capacity constraints on each communication link and computation node:

K
∑

k=1

skφkN+ec
k
e 6 Ce, ∀e ∈ E ,

K
∑

k=1

skφknf
k
n 6 Fn, ∀n ∈ N . (6)

These constraints ensure that the total allocated communication and computation resources do not exceed the
available capacity on each link Ce or node Fn. Here, φkN+e (respectively, φkn) indicates whether service k uses link

e (respectively, node n), and cke (respectively, fkn) is the corresponding resource allocated. This abstraction allows
the model to accommodate heterogeneous infrastructure while enforcing hard resource limits.

Note that our model abstracts the physical medium and focuses on end-to-end latency and reliability, enabling
unified scheduling across both wired and wireless links without relying on specific physical-layer details.

4 Problem formulation and reformulation

This section first presents the problem formulation for jointly optimizing routing, admission, and resource provi-
sioning decisions. For tractability, we reformulate the problem to reduce the search space of the routing decisions.

4.1 Problem formulation

Let pk denote the revenue generated from successfully admitting flow k. The actual profit for each admitted flow
is obtained by subtracting the associated computing and communication costs. The optimization problem can be
formulated as follows:

P : max
f,c,sk,ϕk

∑

k∈K

sk

(

pk −
∑

n∈N

Cnf
k
n −

∑

e∈E

Cec
k
e

)

s.t. (1)–(3), (6), (7).

4.2 Problem reformulation

Motivated by the fact that many routing decisions are unprofitable or suboptimal, we propose reformulating the
routing decision space—originally defined over all possible paths—into a limited set of candidate paths, defined as
ϕk, subject to the following selection conditions.

Condition 1: Profitable selection. For a path P ki associated with service k, the profit is given by pk−
∑

nk∈Nki

Cnfkn−

∑

ek∈Eki

Cecke , where Cn and Ce represent the unit costs for computing and communication resources, respectively.

Condition 2: Shortest-path selection. Among the profitable paths with positive profit, we further restrict the
selection to the x shortest paths in terms of cost. Let P kx denote the x-th shortest path for service k.

Note that Conditions 1 and 2 are not strict system constraints but rather practical simplifications introduced to
reduce the routing search space and balance computational complexity with optimality. By adjusting the parameter
X , the approximation gap introduced by the candidate path reduction can be effectively controlled, allowing the
proposed framework to scale while maintaining near-optimal performance.

According to Conditions 1 and 2, the possible routing paths φ̂k can be given by φ̂k = {P kx , ∀x 6 X |r(P kx ) > 0}.
Note that Condition 1 only excludes the paths with negative revenues and does not compromise the optimality.
Condition 2 prioritizes the paths with large revenues to further reduce the searching space. By meticulously
configuring the value of X (the number of paths for selection), we can achieve a balance between optimality loss
and computational complexity. Here, ψki ∈ {0, 1} indicates whether candidate path P ki is selected to deliver service
k. The problem P can thus be reformulated as follows:

P′ : max
f,c,s,ψ

∑

k∈K

X
∑

i=1

skpkψki , P ki ∈ ϕ̂k
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s.t. C1: P







skdk





∑

e∈Pk
i

rkc
cke

+
∑

n∈Pk
i

rkf
fkn



 6 τk







> 1− ǫk, ∀k, i, C2:
∑

k∈K

X
∑

i=1

skψki c
k
e 6 Ce, ∀e ∈ E,

C3:
∑

k∈K

X
∑

i=1

skψki f
k
n 6 Fn, ∀n ∈ N, C4:

∑

k∈K

sk 6 K,

C5:

X
∑

i=1

ψki 6 1, ∀k ∈ K, C6: sk ∈ {0, 1}, ψki ∈ {0, 1}, ∀k ∈ K, ∀i ∈ {1, . . . , X}.

5 Proposed robust joint optimization for delay-critical services

To efficiently solve the above MINLP problem P′, we adopt a two-stage decomposition strategy. Specifically, we
decompose P′ into two subproblems: P1, a resource allocation subproblem under fixed routing and admission
decisions that can be solved analytically; and P2, an integer programming problem that optimizes routing and
admission based on the resource cost derived from P1. To address P2 efficiently, we employ a QDP algorithm,
which allows a trade-off between computational complexity and solution accuracy by adjusting the quantization
interval.

By decoupling P′ into two subproblems, we isolate resource allocation into subproblem P1, which can be ef-
ficiently approximated using a closed-form solution under fixed admission and routing decisions. The remaining
discrete decision problem is formulated as subproblem P2, an integer program with a significantly reduced decision
space. This decomposition not only reduces computational complexity but also better meets the stringent latency
requirements of HRLLC services by avoiding costly dual updates.

Specifically, in problem P′, the routing and admission decisions sk are represented by binary variables ψk, while
the resource allocations f and c are continuous. This results in a typical MINLP, which is NP-hard in general. To
improve tractability, we proceed with the two-stage decomposition described below.

P1: To derive P1, we fix the routing and admission variables (sk, ψki ) in P′, which effectively determines the
selected path for each admitted service. This allows us to isolate the continuous resource variables (fkn , c

k
e) and

transform the original chance constraint C1—which enforces delay and reliability guarantees—into a deterministic
inequality using the Bernstein approximation. The resulting problem P1 becomes a convex resource minimization
problem under tractable constraints, allowing closed-form solutions while preserving QoS guarantees.

P1 : min
f,c

∑

nk
i
∈Nk

Cnf
k
n +

∑

ek
i
∈Ek

Cec
k
e s.t. C1,

where the objective is to minimize the allocated resources under the feasibility constraint C1. Note that the
objective is equivalent to the Lagrangian function by incorporating constraints C2 and C3 into the objective, i.e.,

∑

k∈K

s
k
p
k
ψ

k
i +Υe

(

Ce −

K
∑

k=1

s
k
c
k
e

)

+Ψn

(

Fn −

K
∑

k=1

s
k
f
k
n

)

, P
k
i ∈ φ̂

k
.

Notably, given the admission decisions s, the profit term
∑

skpkψ
k
i is fixed, so problem P1 focuses on minimizing

resource allocation under the QoS constraint in C1.
P2: P1 is a basic linear programming problem (except that the probability constraint in C1). In the following,

we will show that P1 can be solved in a closed-form manner. By substituting the closed-form solution of P1 into
the original problem P′. Problem P′ is reduced to an integer programming problem P2 to optimize the admission
and routing decisions. Problem P2 can be given by

P2 : max
s,ψ

∑

k∈K

skpkψki , P ki ∈ φ̂k s.t. C2–C6.

In the following, we first solve P1 to find a closed-form solution for resource allocation in Section 5.1, and then
solve the integer programming to optimize the routing decisions in Section 5.2.

5.1 Robust resource provisioning

The objective of P1 is to minimize resource consumption while satisfying the QoS requirements under traffic un-
certainty. Instead of treating chance constraints in isolation, we embed the Bernstein approximation as part of a
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broader optimization framework that decouples resource provisioning from discrete admission and routing decisions.
This integration not only enables tractable optimization but also facilitates a closed-form solution that supports
real-time decision making in HRLLC scenarios.

Then, the key to solving P1 is to satisfy the chance constraint C1 to remove the Prob term. To address this
challenge, we introduce two auxiliary variables:

∑

ei∈Ek

rkc
cei

6 ĉk,
∑

ni∈Nk

rkf
fni

6 f̂k. (7)

Using Bernstein’s inequality, the transformation of C1 is as follows [15]:

(ĉk + f̂k)(µk + d̂k) +

√

2 ln
1

ǫk

√

σk
2
(ĉk + f̂k)2 6 τk, ∀k. (8)

By substituting (11) to replace C1, problem P1 can be reformulated as

P1′ : min
f,c

∑

nk
i
∈Nk

Cnf
k
n +

∑

ek
i
∈Ek

Cer
k
e

s.t. (12)–(14).

P1′ is a convex problem that satisfies Slater’s condition, ensuring strong duality [37]. We can derive a closed-form
solution for robust service provisioning decisions by analyzing its Lagrangian dual. The Lagrangian dual of P1′ is
formulated by introducing a vector of Lagrange multipliers for each constraint:

L(F, c,Λ,Ξ,Φ) =
∑

k∈K

∑

ni∈N

Cnf
k
ni

+
∑

k∈K

∑

ei∈E

Cec
k
ei +

∑

k∈K

Λk

(

(

ĉk + f̂k
)

(

µk + d̂k + σk
√

2 ln
1

ǫk

)

− τk

)

+
∑

k∈K

Ξk

(

∑

ei∈Ek

rkc
ckei

− ĉk

)

+
∑

k∈K

Φk

(

∑

ni∈Nk

rkf
fkni

− f̂k

)

.

By setting the partial derivatives of (12) with respect to all variables equal to zero, the closed-form solution can
be derived, as given by

fkin =





∑

d∈E

rkic

√

Cdr
ki
f

Cnr
ki
c

+
∑

m∈N

rkif

√

Cm
Cn



A, ckie =





∑

d∈E

rkic

√

Cd
Ce

+
∑

m∈N

rkif

√

√

√

√

Cmr
ki
c

Cer
ki
f



A, (9)

where A =
d̂k+µk+σk

√

2 ln 1

ǫk

τk for notation clarity. We define the optimal resource usage according to (11) for each

path P ki of service k as fki = [fki1 , fki2 , . . . , f
ki
N ]T for nodes, and cki = [cki1 , c

ki
2 , . . . , c

ki
E ]T for links.

5.2 Quantized DP algorithm and extensions

By substituting the resource allocations fki and cki in Section 5.1 into the original problem P′, problem P2 becomes
an integer programming problem, i.e.,

P2′ : max
s,ψ

∑

k∈K

pkψki , ∀k ∈ K

s.t. C2:

K
∑

k=1

ψki c
ki
e 6 Ce, e ∈ E, C3:

K
∑

k=1

ψki f
ki
n 6 Fn, n ∈ N, C5:

Îk
∑

i=1

ψki 6 1, C7: ψki ∈ {0, 1}.

Here, sk is removed from P′, since sk =
∑

φki . Note that P2′ is integer programming with large searching spaces
of all the possible routing paths. The time-complexity is still non-polynomial. For solving efficiency, we propose to
solve the integer programming problem via dynamic programming and meticulously design the quantization interval
to achieve a flexible tradeoff between time-complexity and optimality loss.

Quantized DP algorithm. The solution to P2′ can be efficiently constructed by leveraging dynamic program-
ming (DP) techniques, which build the overall solution from solutions to its sub-problems. Specifically, the solution



Ren Y L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112305:8

for minimizing the resource usage for the first k services depends on whether service k is admitted or not, and which
path the admitted service selects, given the solutions to the sub-problems for the first (k − 1) services.

Let Rk(α,β) represent the maximum revenue for the sub-problem defined in P2′, where α = [α1, α2, . . . , αN ]
denotes the units of resources allocated to each node, and β = [β1, β2, . . . , βE ] represents the resources allocated

to each link in the system. The Bellman function is expressed as Rk(α,β) = max
ψk

{

k
∑

k=1

pkψki

∣

∣

∣

∣

∣

∑N
n=1 ψ

k
i f

ki
n =

αn,
∑E

e=1 ψ
k
i c
ki
e = βe, ∀n ∈ N, ∀e ∈ E

}

.

According to the Bellman equation, Rk(α,β) can be computed recursively from the results of the previous
sub-problems, Rk−1(α,β), as follows:

Rk(α,β) = max

{

max
i∈Ik

{

Rk−1{α− fki ,β − cki}+ pk
}

, Rk−1(α,β)

}

, (10)

where Ik = |P kx | denotes the number of paths in the path selection of service k.
The solution for Rk(α,β) is selected between the result for the first (k − 1) services, Rk−1(α,β), and the task

offloading to the available maximum-revenue path i for service k, processed as Rk−1(α− fk,β− ck). The Bellman
equation leverages the optimal substructure property, reducing time complexity by solving the sub-problem of the
smallest possible size [38].

The path selection parameter of service k is expressed by

ψki(α,β) =







1, if φk(α,β) = max
i∈Ik

{

ψk−1{α− fki ,β − cki}+ ℓki

}

,

0, if others.
(11)

The admission control parameter sk is calculated as sk =
∑

i ψ
k(α, β). For the k-th sub-problem in (16), we

observe that α and β can assume up to
k
∏

k=1

(Ik + 1) discrete values. Enumerating all these possible values can be

computationally infeasible, especially when K is large. To address the computational burden of enumerating all
possible discrete values, we propose initially relaxing α and β to continuous variables, with bounds (0 6 α 6 F, 0 6

β 6 C).
When αn ∈ [0, Fn] and βe ∈ [0, Ce] are large and continuous, enumerating all possible values of α and β can

result in an infinite number of sub-problems and excessive computational complexity. To limit the number of sub-
problems and improve the tractability of (15) and (16), we propose further discretizing the resource allocation and
constraining the number of sub-problems to be finite. We optimize the quantization interval to balance optimality
loss and computational complexity, achieving a trade-off of [O(ǫ),O(1/ǫN+E)], as discussed in Section 5. The
uniform quantizer for α and β is given by

qδ([α,β]) = M, if δ ⊙M < [α,β] 6 δ ⊙ (M + 1). (12)

Let δ = [δn1
, δn2

, . . . , δnN
, δe1 , δe2 , . . . , δeE ] represent the quantization interval for each node n and link e. The

resource utilization for each path i of service k is also discretized, where αkin = qδn(f
kin) and βkie = qδe(c

kie)
denote the quantized resources at each node and link, respectively. Similarly, the available resources of nodes and
links are discretized as αn = qδn(Fn)− δn and αe = qδe(Ce)− δe. Consequently, the upper bound of total resource
utilization across nodes and links can be computed using the following equation:

[α̂n, β̂e] = max

{⌈

∑K
k=1 ψ

k
i [f

ki
n , c

ki
e ]

δ

⌉

+K, [αn,βe]

}

, (13)

where ⌈
∑

K
k=1

ψk
i [f

ki
n ,c

ki
e ]

δ
⌉ represents the upper bound of the quantized total resource utilization for each node and

link when all services k ∈ K are admitted. As noted in (18), the proposed quantizer may overestimate resource
utilization by no more than δn for node n and δe for link e, i.e., 0 6 δnα

ki
n − fkin 6 δn, 0 6 δeβ

ki
e − ckie 6 δe. Given

the constraint on the number of services K, the system cannot admit more than K services. Consequently, the
quantization error due to the discretization of

∑K
k=1 f

ki
n cannot exceed δkin K, while the error for

∑K
k=1 c

ki
e cannot

exceed δkie K, respectively.
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The total number of sub-problems φk(α,β) is given byK
∏N
n=1 α̂n

∏E
e=1 β̂e, determined by the number of services

K, nodes N , links E, and the quantized resources α and β. After solving all sub-problems, the optimal solution is
given by

pk
∗
= max
k=0,...,K

{

p
∣

∣ φK(α,β), δ ⊙ [α,β] 6 [α̂n, β̂e]
}

,

where p∗ denotes the maximum achievable revenue. Let K∗, α∗, and β∗ represent the number of admitted services
and the corresponding resource usage.

Asymptotically optimal quantized interval. The choice of the quantized interval affects the optimality
of the final results. In the following, we optimize the quantization interval δ to be implemented in the uniform
quantizer in (17). We will prove that, by meticulously designing the quantization interval, we can achieve an
[O(ǫ),O(1/ǫN+E)]-tradeoff between the optimality loss and time complexity. Here, ǫ is an adjustable co-efficient,
and the optimality loss is the gap between the solution achieved by the proposed algorithm and the optimum by
enumerating all the possible path selections.

To further distinguish our approach from traditional Bernstein-based optimization, we rigorously analyze the
approximation gap introduced by quantization. The following theorem establishes a performance-complexity trade-
off that bounds the suboptimality of the proposed framework, thus ensuring its practical applicability in large-scale
HRLLC deployments.

Theorem 1. Given any ǫ > 0, we can set the quantization intervals as

δn =
fkin,min

pkimax

pf ǫ

K
, δe =

ckie,min

pkimax

pfǫ

K
.

Given the quantization intervals above, the proposed algorithm can achieve an [O(ǫ),O(1/ǫN+E)]-tradeoff between
the optimality loss and time complexity, where pf is the lower bound of the objective and K is the amount of
services.

Proof. Please see Appendix A for details.
To efficiently solve the integer programming problem while maintaining scalability, we propose a QDP algorithm

that significantly reduces computational complexity and enables a flexible trade-off between optimality and runtime.
By tuning the quantization granularity, the algorithm achieves an [O(ǫ),O(∞/ǫN+E )] balance, ensuring tractable
computation with bounded sub-optimality—an essential feature for large-scale HRLLC scenarios. The trade-off is
distinct from traditional iterative methods such as Lagrangian or dual decomposition, as our quantized DP ap-
proach achieves near-optimality without iterative updates, offering faster convergence for latency-sensitive HRLLC
scenarios.

The QDP algorithm can converge with following features.
(1) Monotonic utility improvement: At every iteration t, the accumulated system profit U(t) =

∑K
k=1 s

k(t)pk is
non-decreasing, i.e., U(t + 1) > U(t), where sk(t) denotes whether service k is admitted in iteration t, pk denotes
the profit of service k. The monotonicity is due to the Bellman Equation. In particular, in each step of the QDP
algorithm, the update rule for Rk(α, β) follows the Bellman recursion:

Rk(α, β) = max

{

Rk−1(α, β),max
i∈Ik

{

Rk−1(α− fki , β − cki ) + pk
}

}

.

This formulation ensures that at every stage k, the utility value is non-decreasing compared to the previous stage
k − 1.

(2) Finite termination: Due to the finite quantized resource space, the total number of dynamic programming
(DP) states is bounded. Thus, the algorithm converges to a local optimum in finite steps. Quantization discretizes
(α, β) into intervals of size ǫ. This proves that our optimization-based method has guaranteed convergence with
monotonic utility improvement.

6 Simulation results

We conduct experiments on a custom-developed packet-level simulation platform running on a Linux system with
an event-driven Python implementation. The network topology is based on the TOTEM dataset [39].

The service arrivals are modeled as a Poisson process [40], which is a classical and analytically tractable model
widely used in communication networks to represent random and memory-less arrivals. Packet sizes are assumed to
follow a normal distribution, approximating the aggregated behavior of multiplexed flows in large-scale networks,
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Figure 2 (Color online) The comparison of packet arrival rate as the packet number increases from 103 to 107.

as validated in prior studies [41, 42]. Origin and target nodes are randomly selected [15]. The traffic consists of six
types of flows, each with specific deadlines, reliability demands, and packet size variations [43]. The computational

and communication resources per unit data are standardized as
rkc

rkc ref

= 1 and
rkf

rk
f ref

= 1, where rkc ref and rkf ref are

reference resource costs. Node and edge usage costs are set to 1 [15].

6.1 Compared algorithms

We compare the proposed RROS scheme with the following baseline algorithms.

• Bernstein OSPF [15]: OSPF-based routing with Bernstein resource provisioning and DP admission control.
• Greedy x [15, 24]: Greedy-based admission control and routing, using the proposed resource allocation

method.
• Greedy OSPF [15, 17]: OSPF routing with greedy admission control.
• Gurobi Solver [44]: Solves the problem optimally for comparison.

6.2 Service robustness

Figure 2 evaluates six traffic flows with reliability requirements of 80%, 90%, 95%, 99%, 99.9%, and 99.99%. These
flows are processed via distributed robust optimization (DRO) using Bernstein approximation for chance constraints.
Resources are allocated across multiple paths via DP, Quantized DP, and Quantized Greedy. Admission control
and path planning are then performed using DP in our packet-level simulator. The x-axis represents the number of
packets (ranging from 103 to 107), while the y-axis is the negative logarithm (base 10) of the error term ǫ. Higher
values indicate greater reliability. Dashed lines denote target reliability requirements. Quantized resource allocation
enhances reliability over unquantized methods while meeting reliability constraints. The proposed approach guar-
antees 99.99% reliability, with Bernstein approximation introducing resource redundancy, enabling 99.9% reliability
flows to reach 99.99%. Pre-quantization further boosts reliability.

6.3 Admission control under increasing system capacity

Figures 3 and 4 compare RROS, RROS OSPF, Greedy x, and Greedy OSPF, with x = 2. Increasing capacity
enables more services to be supported. In Figure 3, when capacity exceeds 2, RROS outperforms RROS OSPF.
This suggests traffic can utilize non-shortest paths, with DP scheduling more services than the greedy approach.
At capacity 4, RROS achieves full scheduling, whereas RROS OSPF, Greedy x, and Greedy OSPF require capacity
5, improving resource utilization by 25%. Figure 4 (with 20 services) highlights greater performance differences.
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Figure 3 (Color online) Success rate vs. resource capacity (K =

10, x = 2).

Figure 4 (Color online) Success rate vs. resource capacity (K =

20, x = 2).

Figure 5 (Color online) Arrival rate vs. service count (K = 10, x = 2).

RROS achieves the highest success rate, followed by Greedy x, RROS OSPF, and Greedy OSPF. At capacity 2,
RROS improves success rates by 9.1% over Greedy x, 20% over RROS OSPF, and 33.3% over Greedy OSPF. At
capacity 6, RROS supports all services, while Greedy x requires capacity 7, and RROS OSPF and Greedy OSPF
require capacity 8, yielding 14.3% and 25% higher resource efficiency, respectively. Compared to Figure 3, where 10
services were fully scheduled at capacity 4, only a 0.5× capacity increase enables 2× scheduling capacity, emphasizing
improved resource utilization. These results confirm that RROS achieves optimal traffic support while minimizing
resource demand.

6.4 Admission control under varying service numbers

Figure 5 evaluates the impact of increasing service numbers on different algorithms, with x = 2 and system capacity
fixed at 2. As demand grows, all methods schedule more services. When demand exceeds 10, RROS selects
non-shortest paths, improving traffic accommodation. At 11 services, RROS schedules 14.3% more traffic than
RROS OSPF, Greedy x, and Greedy OSPF. At 15 services, it outperforms both RROS OSPF and Greedy OSPF
by 25%. When demand reaches 20, RROS schedules 12 flows, compared to 11 (Greedy x), Bernstein OSPF, and 9
(Greedy OSPF). These results highlight RROS’s ability to enhance resource utilization by leveraging non-shortest
paths and prioritizing overall service count over high-revenue services.
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Figure 6 (Color online) Success rate and runtime vs. the x-th short-

est path (K = 20, capacity=2).

Figure 7 (Color online) Computation time and profit comparison

between RROS and Gurobi (K = 20, x = 2).

6.5 Robustness in delay-critical services

Figure 6 examines the impact of varying x on scheduling efficiency and computation time. With x = 1, RROS and
RROS OSPF (likewise Greedy x and Greedy OSPF) perform identically, each scheduling 10 flows. As x increases,
both RROS and Greedy x schedule more flows. At x = 2, selecting the second-shortest path increases the maximum
scheduled services to 12, while x = 3 results in 11 scheduled services using a greedy revenue-based approach. While
larger x improves scheduling, it also increases computation time. Selecting an optimal x balances scheduling
efficiency and runtime.

6.6 Runtime comparison

Figure 7 compares the runtime of RROS and Gurobi as node capacity varies from 1 to 8. At capacity 1, RROS
incurs slightly higher latency due to the comparable complexity of solving P2 via QDP, combined with the additional
overhead from P1’s closed-form resource allocation and the quantization process. In contrast, for larger capacities,
RROS consistently outperforms Gurobi in terms of runtime. Specifically, RROS reaches its peak runtime of 2.38 s
at capacity 3 and decreases thereafter, while Gurobi peaks at 4.11 s at capacity 4. At capacity 4, RROS achieves
a 97.4% reduction in runtime with a 26.1% profit loss; at capacity 1, the runtime reduction is 33.8% with a 14.2%
profit loss. These results validate that RROS offers substantial computational savings while maintaining competitive
profit, particularly in latency-sensitive scenarios.

7 Conclusion

In this paper, we propose an algorithm for robust optimization of routing, resource allocation, and admission
control for delay-sensitive services under traffic uncertainty. Packet-level experiments were conducted to validate the
reliability of the algorithm, and the results demonstrate its robustness in meeting delay requirements. Additionally,
comparative simulations between the proposed algorithm, OSPF, and greedy scheme show that, under the same
resource conditions, the proposed algorithm is able to schedule a greater amount of traffic than the existing method.
Furthermore, given a specified traffic volume to be scheduled, the proposed algorithm achieves complete scheduling
with lower resource consumption compared to the existing method.
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Appendix A Proof of Theorem 1

Algorithm 1’s energy quantization balances time complexity and optimality loss (Eq. (15)). A smaller quantization interval ǫ reduces

loss but increases complexity. This section analyzes this tradeoff by deriving upper and lower bounds for P2 using its LP relaxation.

P3 : max
s,ω

∑

k∈K

skpkψ
k
i , ∀k ∈ K

s.t. C2,C3,C4,C5,C8: sk ∈ [0, 1],∀k ∈ K,C9: ψk
i ∈ [0, 1],∀k ∈ K,∀i ∈ Îk.

Here, the binary constraint C6 is relaxed to be C8 and C7 is relaxed to C9. Clearly, P3 gives the upper bound for system revenue.

The Lagrangian problem of P3 can be written as

L(λ,µ, γ) = max
s∈C8

ω∈C5,C9

∑

k∈K

skpkψ
k
i + γ

(

K −
K
∑

k=1

sk

)

+
E
∑

e=1

λe

(

Ce −
K
∑

k=1

skψ
k
i c

ki
e

)

+
N
∑

n=1

µn

(

Fn −
K
∑

k=1

skψ
k
i f

ki
n

)

. (A1)

After restructure, the Lagrangian function can be maximized if and only if Lk(λ,µ, γ) is maximized for all k = 1, 2, . . . . The

maximization of Lk(λ,µ, γ) can be efficiently solved as

s∗k(λ,µ, γ) =

{

1, if ζ(k,λ,µ, γ) > 0,

0, if ζ(k,λ,µ, γ) < 0,
(A2)

where ζ(k, i,λ,µ, γ) =
∑Îk

i=1 pkωki
−
∑E

e=1 λeψ
k
i c

ki
e −

∑N
n=1 µnψ

k
i c

ki
e − γ for notational simplicity. It is also separable, and can be

restructured as ζ(k, i,λ,µ, γ) = −γ +
∑Îk

i=1 ωki
(pk −

∑E
e=1 λec

ki
e −

∑N
n=1 µnc

ki
e ). In the similar way, the function can be maximized

if and only if

ψk
i

∗
(λ,µ, γ) =

{

1, if ι(i,λ,µ, γ) > 0,

0, if ι(i,λ,µ, γ) < 0,
(A3)

where ι(i,λ,µ, γ) = ℓki −
∑E

e=1 λec
ki
e −

∑N
n=1 µnc

ki
e for notation simplicity. Strong duality holds in LP problems1). By substituting

(21) and (22) into (20), the dual problem of (20) can be given by

min
λ>0,µ>0,
γ>0,η>0

∑

e

λeCe +
∑

n

µnFn + γK +
∑

k

ηk +
∑

k∈K

s∗k

(

− γ +

Îk
∑

i

ψk
i

∗

(

pk −
∑

e

λec
ki
e −

∑

n

µnf
ki
n

))

, (A4)

where the optimal Lagrangian multipliers λ∗, µ∗ and γ∗, subject to a hyperplane search problem, can be obtained through multidi-

mensional search at a linear complexity of O(
∏

Îk).

According to (23) and the optimal Lagrangian multipliers, K can be divided into three subsets: K+ = {k | ζ(k, i,λ,µ, γ) > 0},

K0 = {k | ζ(k, i,λ,µ, γ) = 0} and K− = {k | ζ(k, i,λ,µ, γ) < 0}. From (36), clearly, sk = 1 for k ∈ K+; and sk = 0 for k ∈ K−.

Case1 : k ∈ K
+. The function of Lagrangian function for s∗k(λ,µ, γ) in set K

+ is expressed as follows:

max
k∈K+

ζ(k, i,λ,µ, γ) = −γ +max
∑

i

ψk
i ι(i,λ,µ, γ). (A5)

1) Boyd S P. Convex Optimization. Cambridge: Cambridge University Press, 2004.
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In this proposition, as ζ(k,λ,µ, γ) > 0 and dual variable are positive, and variables ωki
satisfy C5. The maximization of Lk,i(λ,µ, γ)

can be efficiently solved as

ψk
i

∗
(λ,µ, γ) =

{

1, if arg max
i∈Îk

ι(i,λ,µ, γ),

0, if others.
(A6)

In this position of sk ∈ K
+, if the service is admitted, sk = 1, and path i is chosen ψk

i = 1.

Case2 : k ∈ K−. When sk ∈ K−, if the service is refused, ωki
satisfy C5. Consequently, ω∗

ki
= 0, ∀i ∈ (̂Ik).

Case3 : k ∈ K
0.When sk ∈ K

0 6= ∅ and (λ,µ, γ) = 0, the service k0 that maximizes revenue, i.e., k0=argmaxk0∈K0

(

sk0

∑

i∈Îk

ψk
i pk

)

,

is partially admitted based on the remaining resources
[

C−
∑

k∈K+ c
ki ,F−

∑

k∈K+ f
ki
]

. Since the remaining resources cannot fully

accommodate any unsatisfied request in K
0, the fraction sk0 ∈ (0, 1) is optimized to maximize total revenue, providing an LP upper

bound: pLP =
∑

k∈K+,i∈Îk
pk + sk0ψk

0p
k0 .

For the lower bound, setting sk = 0 for all k ∈ K+ results in unused remaining resources, yielding pf =
∑

k∈K+ pk. Since this

integer solution is not optimized, it provides a lower bound for P1. The relationship among the lower bound pf , the optimal solution

popt, and the LP upper bound pLP is established in the following Lemma.

Lemma A1. pf 6 popt 6 pLP 6 2pf .

Proof. Note that pf is a lower bound for P1, while the LP relaxation provides the upper bound ℓLP . We can obtain that pf 6 popt 6

pLP . Besides, pLP =
∑

k∈K+,i∈Îk
pki + sk0ψk

0p
k0 6 2max

∑

k∈K+,i∈Îk
pkisk0ψk

0p
ki

k0 = 2pf .

Let sopt
k

and s∗k denote the optimal admission decision for P1 and the decision obtained by the proposed quantized DP algorithm,

respectively. Define the original and quantized revenue as p(s) =
∑

k skp
ki(f , c) and x(s) =

∑

k skp
ki(α,β). The original resource

utilization is given by ρn(s) =
∑

k skψ
k
i f

ki
n and ρe(s) =

∑

k skψ
k
i c

ki
e , while the quantized resource utilization is χn(s) =

∑

k skψ
k
i α

ki
n

and χe(s) =
∑

k skψ
k
i β

ki
e . Thus, the optimal revenue is popt = p(sopt), and the RROS solution is p∗ = p(s∗). The resource utilization

for the original and quantized problems is foptn = ρn(sopt), c
opt
e = ρe(sopt), α∗

n = χn(s∗), and β∗
n = χe(s∗).

According to [5], we have

δe(β
ki
e − 1) 6 cki

e 6 δe(β
ki
e ), δn(α

ki
n − 1) 6 fki

n 6 δn(α
ki
n ). (A7)

Hence, we can obtain that ρe(sopt) < δeχe(sopt), ρn(sopt) < δnχn(sopt) and ρe(s∗) > δe[χe(s∗) − |s∗|], ρn(s∗) > δn[χn(s∗)− |s∗|],

and therefore, we have

popt − p∗ =
∑

k

sopt
k

∑

i

ψk
0
opt
pk −

∑

k

s∗
∑

i

ψk
i

∗
pk 6 pkmax

(

∑

k

sopt
∑

i

ψk
0
opt

−
∑

k

s∗
∑

i

ψk
i

∗

)

6 pki max

(

∑

i

ψk
i

opt
−
∑

i

ψk
i

∗

)

. (A8)

For resource quantization, we can obtain

foptn − f∗n < δn[χn(s
opt + |s∗| − χn(s

∗))], copte − c∗e < δe[χe(s
opt + |s∗| − χe(s

∗))]. (A9)

For each node or link, the gap between original and quantized resource utilization satisfies

fki
n min

(

∑

k

∑

i

ψk
i

opt
−
∑

k

∑

i

ψk
i

∗

)

6
∑

k

∑

i

ψk
i s

opt
k ψk

i

opt
fki
n −

∑

k

∑

i

ψk
i s

∗
kψ

k
i

∗
fki
n = foptn − f∗n, (A10)

cki
e min

(

∑

k

∑

i

ψk
i

opt
−
∑

k

∑

i

ψk
i

∗

)

6
∑

k

∑

i

ψk
i s

opt
k
ψk
i

opt
cki
e −

∑

k

∑

i

ψk
i s

∗
kψ

k
i

∗
cki
e = copte − c∗e. (A11)

As a result, popt − p∗ < pkmax min(
δn[χn(sopt+|s∗|−χn(s∗))]

f
ki
n min

,
δe[χe(s

opt+|s∗|−χe(s
∗))]

c
ki
e min

).

As δn =
f
ki
n min

pkmax

pf ǫ

K
, δe =

c
ki
e min

pkmax

pf ǫ

K
, then we proof the lemma: popt − p∗ < minn,e{(pf ǫ/K)|s∗|} 6 pf ǫ 6 poptǫ. We have

popt − p∗ < poptǫ. Hence, for any ǫ > 0, the proposed quantized DP algorithm can achieve 1 − ǫ-approximation of the optimum, i.e.,

p∗ > (1− ǫ)popt.

In this section, we analyze the complexity.

The following Lemma exhibits the trade-off between the performance and time-complexity of the proposed RROS.

Lemma A2. RROS is able to achieve (1− ǫ)-approximation of the optimum at the complexity of O(K
N+E

ǫN+E

∏K
k=1 Î

k).

Proof. Recall that α̂, β̂ and Îk are the quantized resource amount of nodes and links, the available links number of service k. The

time-complexity of RROS depends on the number of subproblems to be solved. As mentioned in Section 4.2, the number of subproblems

is O(
∏N

n=1 α̂
n
∏E

e=1 β̂
e), where the time-complexity for each subproblem using (17) is O(

∏K
k=1 Î

k). The time-complexity of backward

induction is O(K) [28]. Thus, the overall time-complexity of RROS is O(
∏N

n=1 α̂
n
∏E

e=1 β̂
e
∏K

k=1 Î
k).
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We can further tighten the upper bound of quantized energy saving in (20) by replacing α̂ and β̂ with the upper bound given by

α̂ = ⌈Fn

δn
⌉ − 1 and β̂ = ⌈Ce

δe
⌉ − 1. Therefore, we have O((

∏N
n=1 α̂

n
∏E

e=1 β̂
e
∏K

k=1 Î
k)) = O(

∏N
n=1(

Fn

δn
)
∏E

e=1(
Ce

δe
)
∏K

k=1 Î
k). From

Lemma A1, we show that (1 − ǫ)-approximation of the optimum can be achieved by using δn =
f
ki
n min
pkmax

pf ǫ

K
, δe =

c
ki
e min
pkmax

pf ǫ

K
. By

substituting this into (51), the time-complexity of RROS is

O

((

N
∏

n=1

α̂n

E
∏

e=1

β̂e

K
∏

k=1

Îk

))

= O

(

N
∏

n=1

FnpkK

fki
n minpf ǫ

E
∏

e=1

CepkK

cki
e minpf ǫ

K
∏

k=1

Îk

)

= O

(

KN+E

ǫN+E

K
∏

k=1

Îk

)

.

Additional measures can be taken to further reduce the complexity and overhead.

Lemma A2 dictates an [O(ǫ), O(1/ǫN+E)]-tradeoff between the optimality loss and time-complexity of the proposed quantized DP

algorithm. This gives the system an opportunity to reduce the resource consumption of the network by leveraging its hardware capability.

In practice, an MEC server can choose the smallest ǫ value based on its capability, thereby attaining the minimum achievable energy

consumption of the system.
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