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Abstract The electronic interception system requires capturing a sufficiently long and relevant pulse traffic to determine the presence

of a radiation source. This paper originates from active countermeasures perspectives and introduces a multi-radar resource allocation

scheme in multi-target tracking scenarios to counteract pulse deinterleaving. Our study aims to enhance radar network stealth while

preserving tracking accuracy by leveraging the collaborative capabilities of networked radars. We establish and analyze the signal model

of multiple co-located multiple input multiple output radars tracking multiple targets and find that radar-controllable variables such as

radiation power, duty cycle, and dwell time can impact both tracking precision and interceptable pulse length by interception receivers.

Unlike conventional radar radio frequency stealth methods focused solely on single-pulse detection, we optimize these variables to reduce

both probabilities of individual pulse interception and pulse traffic deinterleaving or sorting, lowering overall radar interception risks.

Simulation results confirm the efficacy of our methodology in bolstering radar network resilience against reconnaissance threats while

maintaining robust target detection capabilities. This research underscores the importance of optimizing radar resource management

strategies to achieve a balanced trade-off between detection performance and stealth capability in practical deployment scenarios.

Keywords radar network, multi-radar resource allocation, multi-target tracking, radio frequency stealth, probability of interception,
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1 Introduction

Radar electronic counter-countermeasures (ECCM) work to mitigate the effects of electronic countermeasure (ECM)
on radar performance, ensure radar detection, identification, and tracking of targets effectively [1–4], and can be
categorized into active and passive countermeasures according to the purpose of use. Passive countermeasures like
sidelobe cancellation [5], sidelobe blanking [6], subspace projection [7], and blind source separation [8] perform to
identify and filter out jamming signals after being interfered with and thus may lose some helpful signal while
filtering out the interference. Active anti-jamming technology aims to increase the difficulty of jamming devices
carrying out jamming and, therefore, has received widespread attention.

From the perspective of radar ECM, the process involves intercepting radar signals, detecting the radiation source
based on parameters measurement and pulse deinterleaving, assessing the threat level of the radiation source, and
then making jamming decisions [9]. Thus, employing low probability of intercept (LPI) techniques to enhance the
difficulty of intercepting radar signals and subsequent radar emitters is the onset of active countermeasures [10].
About the quantification of radio frequency (RF) stealth performance, multiple quantitative metrics have been
proposed in [11–13], among which, the intercept probability model based on window functions has gained widespread
application for simple and precise. This model views the interception of radar signals as a probability issue of
overlaps in multiple domains, such as space, time, frequency, and energy, that is, calculating the probability of
radar signals falling into various reconnaissance windows of the intercept receiver and being detectable. Therefore,
controlling radiation to alter the distribution of radar signals across different domains can reduce the probability
of interception. For instance, controlling radar radiated power is the most direct way to achieve radar LPI [14].
In addition, controlling the spatial distribution of radar signal energy through beamforming techniques can lower
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the probability of detection from sidelobes [15, 16]. Frequency diverse array radars can also manage the energy
distribution across the range dimension, becoming another implementation of LPI radars [17, 18]. Additionally,
controlling energy distribution in the time domain, such as adjusting the radar revisit intervals and dwell times [19],
can similarly alter the radar’s LPI performance. Apart from these, optimizing the radar waveform is also an effective
way to achieve radar LPI detection [20, 21]. However, limited by finite detection resources, it is challenging for a
single radar to balance detection performance with stealth capabilities.

The radar network system is one system that links multiple spatially separated radars to achieve collaborative
detection and information fusion on targets [22–25]. Compared with single-radar systems, radar networks possess
richer detection resources, which can be flexibly configured under unified control to maximize the detection efficiency
of the system. Leveraging such superiority, numerous scholars have investigated LPI technologies for radar networks,
aiming to minimize the radiation risk while fulfilling detection tasks. For instance, sensor scheduling issues for single-
target tracking, that is, selecting the optimal sensor at each tracking time to minimize cumulative radiation risk
is explored in [26, 27] and for multi-target tracking scenarios, that is, allocating tracking radars to each target to
balance tracking accuracy and stealth performance is studied in [28–32]. When the number of radars and targets is
large, this radar-target assignment problem becomes computationally intensive, leading [33] to propose an efficient
solution based on machine learning. These sensor scheduling-based approaches for radar networks are explored when
the radar emission modes are fixed. When radiation parameters of the networked radars, like radiation power and
revisit intervals, are controllable, numerous scholars optimize them to lower the interception probability of the radar
network in different application scenarios [34,35]. Additionally, integrating radiation control with sensor scheduling
to achieve RF stealth for radar networks is also studied in [36–40], and which has extended controllable resources to
more aspects such as flight paths of node radars (in mobile radar networks like airborne radar networks), radiation
power, dwell time, waveform bandwidth, and pulse length, further enhancing the flexibility of resource allocation
within the radar network.

The basic principle of electronic reconnaissance equipment intercepting radiation sources relies on the consistent
emission of radar signal sources during operation. If the regularity of this emission pattern can be found from the
intercepted pulse traffic, the presence of the radiation source can be determined. The intercepted pulse from a
specified radiation source must not only fall within the reconnaissance window and be detectable but also avoid
losing it due to the simultaneous arrival of multiple pulses. Although there has been considerable research on radar
resource allocation strategies under LPI guidance, much of this research has primarily focused on pulse interception,
with less emphasis on subsequent pulse sorting and emitter interception. Therefore, to enhance the LPI performance
of radar systems, efforts should be directed toward reducing the length of pulse flow intercepted by the intercept
receiver by not only reducing the probability of pulse signal interception but also increasing the probability of pulse
loss and finalizing the goal of decreasing the probability of pulse sorting, which is what we do in this manuscript.

This paper proposes a resource control and beam allocation scheme for multi-radar cooperative tracking of
multiple targets under the guidance of against pulse deinterleaving. First, the signal model of multi-radar cooperative
tracking of multiple targets is established, and the mathematical expression of the posterior Cramér-Rao lower
bound (PCRLB) [41] is derived. Then, the radar radiation parameters that jointly affect the tracking accuracy
and stealth performance are determined. Based upon this foundation, an optimization model with radiation power,
duty cycle, dwell time, and beam allocation as variables constrained by target tracking precision to enhance the
stealth performance of the radar network is established, and an alternating minimization method is employed to
solve this model.

The innovativeness of this paper is mainly reflected in the following three points.
• We establish a signal processing model for multi-target tracking in a co-located multiple input multiple output

(MIMO) radar network. Each radar emits wide beams covering the entire surveillance area and receives signals
from different targets through multiple narrow beams. Each radar locally estimates angle and Doppler parameters
using maximum likelihood estimation from observation data, followed by data fusion and global estimation using
extended Kalman filter (EKF) [42] in the information fusion center to minimize information loss.

• We develop a resource allocation model for radar network systems with LPI capabilities, combining anti-
intercept for a single pulse with anti-sorting for pulse traffic. Existing RF stealth solutions often focus solely on
low-pulse-interception performance. Building upon this foundation, we consider subsequent pulse sorting processes
to enhance RF stealth performance. Our approach involves reducing dwell time to decrease pulse train length and
optimizing the duty cycle to increase pulse loss, thereby further reducing the sorting probability of the radar pulses.

• We employ pulse sorting probability to characterize the LPI performance of the radar network. Existing
literature predominantly focuses on LPI-oriented resource optimization, with limited intuitive descriptions of LPI
performance enhancement. In simulation experiments, we use multi-radar pulse sorting probability to characterize
the stealth performance of the radar network.
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This article is structured as follows. Section 2 presents the signal model of the radar network. Section 3 introduces
the target tracking process. Section 4 derives the mathematical expression of PCRLB. Section 5 formulates resource
allocation as an optimization problem and solves it. Section 6 confirms the performance of the proposed resource
optimization scheme through numerical examples. Lastly, we conclude this paper in Section 7.

Notation. In this paper, vectors are defined in lowercase bold, and matrices in uppercase bold. (·)T, (·)†,
and (·)−1 denote transpose, conjugate transpose, and inverse, respectively. The symbol ⊗ denotes the Kronecker
product. x ∼ CN (m,Σ) denotes that x obeys a Gaussian distribution with m as the mean and Σ as the covariance.
E{·} means the mathematical expectation. RN×M denotes the set of (N ×M)-dimensional real and matrices. ℜ(·)
represents the extraction of the real part. [·]i,j stands for the i-th row j-th column element of a matrix, and [·]i
stands for the i-th element of a vector.

2 Signal model

Consider a radar network system comprising N time-synchronized radars that monitor Q moving targets. Each
radar node is the co-located MIMO radar operated in a “defocused transmit-focused receive” mode [43], where the
transmitter emits orthogonal signals from each array element to form wide beams covering the entire surveillance
area. Digital beamforming techniques are employed at the receiver to form multiple narrow beams to track different
targets.

2.1 Target motion model

Assuming Q targets undergo linear constant-velocity motion in the XOY plane, and the motion state of the q-th
target at frame k is defined as xq

k = [xq
k, ẋ

q
k, y

q
k, ẏ

q
k]

T. Thus, the motion state of the q-th target can be expressed as

x
q
k = Fx

q
k−1 + u

q
k−1. (1)

Here, F serves as the target state transition matrix, expressed as

F = I2 ⊗

[

1 ∆T

0 1

]

, (2)

and ∆T is the revisit interval. uq
k−1 is the zero-mean Gaussian process noise with covariance matrix Qq defined as

Qq = κqI2 ⊗

[

(∆T )3/3 (∆T )2/2

(∆T )2/2 ∆T

]

, (3)

where κq is the noise intensity during state transition.

2.2 Radar measurement model

Take the n-th radar node as an example. Assume it is located at [xn, yn] with Mtn transmit array elements and
Mrn receive array elements. At the k-th frame, it emits Lk,n pulses with pulse width Tdn to trace the target.
The relationship between Lk,n and the dwell time Tdwk,n is Tdwk,n = Lk,nTrk,n, where Trk,n represents the pulse

repetition interval (PRI) of radar n at frame k. Let µk,n = [µ1
k,n, . . . , µ

Q
k,n]

T denote the radar-target assignment

between radar n and the Q targets at frame k. µq
k,n ∈ {0, 1} indicates whether radar n measures target q at frame

k, with µq
k,n = 1 indicating measurement on target q, and µq

k,n = 0 indicating no measurement. If µq
k,n = 1, the

lk,n-th pulse received by radar n regarding target q at frame k can be expressed as

s
q,lk,n

k,n (t) =
√

αq
k,nPtk,n/Mtnh

q
k,nαrn

(

θqk,n

)

αT
tn

(

θqk,n

)

sn

(

t− τqk,n

)

(4)

· exp
{

−j2πf q
dk,n (lk,n − 1)Trk,n

}

.

Here, αq
k,n ∝ 1/(Rq

k,n)
4 denotes the propagation loss, Rq

k,n is the distance between target q and radar n, Ptk,n

represents the peak power of radar n at frame k, hq
k,n, θ

q
k,n, τ

q
k,n, and f q

dk,n, respectively, stands for the radar cross
section (RCS), the azimuth angle, the propagation delay, and the Doppler frequency of target q relative to radar n
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at frame k. sn(t) = [sn,1(t), . . . , sn,Mtn
(t)]T represents the transmission signal vector of radar n, where the signals

are orthogonal to each other, satisfying
∫ Tdn

0

sn(t)s
†
n(t)dt = IMtn

. (5)

αrn and αtn are the receive and transmit steering vector of radar n, respectively, satisfying

αrn

(

θqk,n

)

=
[

1 e−jφq

rk,n · · · e−j(Mrn−1)φq

rk,n

]T

(6)

and

αtn

(

θqk,n

)

=
[

1 e−jφq

tk,n · · · e−j(Mtn−1)φq

tk,n

]T

(7)

with φq
rk,n = 2πdrn sin θ

q
k,n/λn and φq

tk,n = 2πdtn sin θ
q
k,n/λn. drn and dtn represent the interval between receive

elements and transmit elements of radar n, respectively. λn stands for the wavelength of radar n. It is noted that
Eq. (4) neglects intra-pulse Doppler.

Upon receiving the signal, radar n performs matched filtering with sn,m(t − τqk,n), m = 1, . . . ,Mtn to obtain an
observation vector of dimension MtnMrn × 1, expressed as

z
q,lk,n

k,n = ξqk,n exp
{

−j2πf q
dk,n (lk,n − 1)Trk,n

}(

αtn

(

θqk,n

)

⊗αrn

(

θqk,n

))

, (8)

where ξqk,n =
√

αq
k,nPtk,n/Mtnh

q
k,n. The same process is applied to Lk,n pulses, and then {z

q,lk,n

k,n }
Lk,n

lk,n=1 are stacked

into an observation vector of dimension Lk,nMtnMrn × 1, which can be written as

z
q
k,n =

[

(

z
q,1
k,n

)T

, . . . ,
(

z
q,Lk,n

k,n

)T
]T

= ξqk,nαdn

(

f q
dk,n

)

⊗
(

αtn

(

θqk,n

)

⊗αrn

(

θqk,n

))

, (9)

where αdn(f
q
dk,n) denotes the Doppler steering vector of target q relative to radar n at frame k, defined as

αdn

(

f q
dk,n

)

=
[

1 e−jφq

dk,n · · · e−j(Lk,n−1)φq

dk,n

]T

(10)

with φq
dk,n = 2πf q

dk,nTrk,n. If the presence of additive Gaussian noise is considered in observation duration, the

covariance matrix of which is assumed to be Cn = σ2
nILk,nMtnMrn

with σ2
n the noise intensity, we have

z
q
k,n ∼ N

(

µ
q
k,n,Cn

)

, (11)

where µ
q
k,n = ξqk,nαdn(f

q
dk,n) ⊗ (αtn(θ

q
k,n) ⊗ αrn(θ

q
k,n)). As inferred from (9), both θqk,n and f q

dk,n can be directly

estimated from the observation vector zq
k,n. Let ζ

q
k,n = [θqk,n, f

q
dk,n]

T, and then the maximum likelihood estimation

of ζq
k,n, denoted as ζ̂q

k,n, can be obtained from the following equations:
{

ζ̂
q
k,n, ξ̂

q
k,n

}

= argmax
ζ
q

k,n
,ξq

k,n

ln p
(

z
q
k,n|ζ

q
k,n, ξ

q
k,n

)

= argmin
ζ
q

k,n
,ξq

k,n

1

σ2
n

∥

∥

∥
z
q
k,n − µ

q
k,n

∥

∥

∥

2

. (12)

Since the target states xq
k and ζ

q
k,n can be related by the following nonlinear equation:

ζ
q
k,n = gn (x

q
k) =













arctan

(

yqk − yn
xq
k − xn

)

−
2 (ẋq

k (x
q
k − xn) + ẏqk (y

q
k − yn))

λn

√

(xq
k − xn)

2
+ (yqk − yn)

2













, (13)

the measurement model of radar n on target q can be expressed as

ζ̂
q
k,n ∼ N

(

gn (x
q
k) ,R

q
k,n

)

, (14)

where R
q
k,n is the estimation error covariance matrix, which can be approximated to the Cramér-Rao lower bound

(CRLB) matrix under high SNR conditions.
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3 Target tracking process

For target q, let ̟q
k = {n|µq

k,n = 1} be the set of radars tracking it at frame k. When target q is tracked by multiple

radars simultaneously, i.e., |̟q
k| > 1, information fusion is required. Here |̟q

k| represents the cardinality of the set
̟q

k. Each radar directly sends local measurements to the central fusion center for global fusion to enhance tracking

accuracy and reduce information loss. The global measurement ζ̂q
k of target q is constructed by concatenating local

measurements ζ̂q
k,n from the radars involved in tracking the target at that frame, and can be written as

ζ̂
q
k =

[

ζ̂
q T
k,̟q

k
(1)

, ζ̂qT
k,̟q

k
(2)

, . . . , ζ̂q T
k,̟q

k
(|̟q

k
|)

]T

, (15)

where ̟q
k(n) denotes the n-th element of the set ̟q

k. Correspondingly, the global measurement model for target q
can be expressed as

ζ̂
q
k ∼ N (g (xq

k) ,R
q
k) , (16)

where

g (xq
k) =

[

gT̟q

k
(1) (x

q
k) , g

T
̟q

k
(2) (x

q
k) , . . . , g

T
̟q

k(|̟
q

k
|) (x

q
k)
]T

, (17)

and

R
q
k = blkdiag

{

R
q
k,̟q

k
(1)

,Rq
k,̟q

k
(2)

, . . . ,Rq
k,̟q

k
(|̟q

k
|)

}

. (18)

For the nonlinear measurement models illustrated in (16) and (17), nonlinear filters can be employed to estimate
the target state. EKF is an extension of the Kalman filter, which handles nonlinear systems by employing Taylor
series expansions in the state transition and measurement models. Compared with particle filter [44], EKF based on
analytical solutions typically has lower computational complexity. Considering the conservation of computational
resources, this paper opts for EKF to estimate the target state. The estimates of the target state x̂

q
k and its

covariance matrix Σ
q
k at each frame can be sequentially calculated as follows:

x̂
q
k|k−1 = F x̂

q
k−1, (19a)

Σ
q
k|k−1 = Qq + FΣ

q
k−1F

T, (19b)

x̂
q
k = x̂

q
k|k−1 +K

q
k

(

ζ̂
q
k − g

(

x̂
q
k|k−1

))

, (19c)

Σ
q
k = Σ

q
k|k−1 −K

q
kG

q
kΣ

q
k|k−1, (19d)

where K
q
k is the Kalman gain, calculated by

K
q
k = Σ

q
k|k−1G

qT
k

(

G
q
kΣ

q
k|k−1G

qT
k +R

q
k

)−1

. (20)

Note that Gq
k ∈ N

2|̟q

k
|×4 is the Jacobian matrix of the function g(xq

k) with respect to x
q
k, defined as

G
q
k =















G
q
k,̟q

k
(1)

G
q
k,̟q

k
(2)

...

G
q
k,̟q

k
(|̟q

k
|)















, (21)

and G
q
k,n ∈ N

2×4 is the Jacobian matrix of the function gn(x
q
k) with respect to x

q
k, defined as

G
q
k,n =

[

∂θqk,n
/

∂xq
k ∂θqk,n

/

∂ẋq
k ∂θqk,n

/

∂yqk ∂θqk,n
/

∂ẏqk

∂f q
dk,n

/

∂xq
k ∂f q

dk,n

/

∂ẋq
k ∂f q

dk,n

/

∂yqk ∂f q
dk,n

/

∂ẏqk

]

. (22)
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Figure 1 Closed-loop tracking procedure.

The elements in the first row are

∂θqk,n
∂xq

k

=
yn − yqk

(xq
k − xn)

2
+ (yqk − yn)

2 , (23a)

∂θqk,n
∂yqk

=
xq
k − xn

(xq
k − xn)

2
+ (yqk − yn)

2 , (23b)

∂θqk,n
∂ẋq

k

=
∂θqk,n
∂ẏqk

= 0, (23c)

and in the second row are

∂f q
dk,n

∂xq
k

= −
2 (yqk − yn) (ẋ

q
k (y

q
k − yn)− ẏqk (x

q
k − xn))

λn

(

(xq
k − xn)

2
+ (yqk − yn)

2
)3/2

, (24a)

∂f q
dk,n

∂yqk
= −

2 (xq
k − xn) (ẏ

q
k (x

q
k − xn)− ẋq

k (y
q
k − yn))

λn

(

(xq
k − xn)

2
+ (yqk − yn)

2
)3/2

, (24b)

∂f q
dk,n

∂ẋq
k

= −
2 (xq

k − xn)

λn

√

(xq
k − xn)

2
+ (yqk − yn)

2
, (24c)

∂f q
dk,n

∂ẏqk
= −

2 (yqk − yn)

λn

√

(xq
k − xn)

2
+ (yqk − yn)

2
. (24d)

Figure 1 depicts the closed-loop tracking framework of the proposed radar network in a multi-target scenario. The
target tracking accuracy F

q
k and the resource allocation strategy will be described in Sections 4 and 5, respectively.

4 Target tracking accuracy characterization

To ensure the effectiveness of radar detection, we must analyze the relationship between radiation parameters and
radar performance (target tracking accuracy in tracking scenarios). Therefore, it is imperative first to establish a
mathematical model that quantitatively characterizes target tracking accuracy. PCRLB describes the lower bound
for parameter estimation accuracy given prior information and observed data and, therefore, is commonly used as a
performance metric in dynamic parameter estimation problems such as target tracking. The definition of PCRLB
matrix CPCRLB is [41]

Exq

k
,zq

k

{

(x̂q
k (z

q
k)− x

q
k) (x̂

q
k (z

q
k)− x

q
k)

T
}

� J−1 (xq
k) , CPCRLB (xq

k) . (25)



Zhang L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112302:7

Here, zq
k = {zq

k,n|n ∈ ̟q
k} represents all observation for target q at frame k, and J(xq

k) is the Fisher information
matrix (FIM), computed as

J (xq
k) = −Exq

k
,zq

k

{

∆
x

q

k

x
q

k

ln p (xq
k, z

q
k)
}

, (26)

where ∆θψ = ∇ψ∇T
θ , and ∇θ means the first-order partial derivative of the vector θ. Since p(xq

k, z
q
k) can be written

as

p (xq
k, z

q
k) = p (xq

k) p (z
q
k|x

q
k) , (27)

J(xq
k) can also be further written as

J (xq
k) = Jp (x

q
k) + JD (xq

k) , (28)

where

JP (xq
k) = −Exq

k

{

∆
x

q

k

x
q

k

ln p (xq
k)
}

, (29a)

JD (xq
k) = −Exq

k
,zq

k

{

∆
x

q

k

x
q

k

ln p (zq
k|x

q
k)
}

, (29b)

and they represent the parts of the FIM from prior knowledge and observed data, respectively. According to [41]
and the linear motion model depicted in (1), JP(x

q
k) can be recursively computed as

JP (xq
k) = D

q,22
k−1 −D

q,21
k−1

(

J
(

x
q
k−1

)

+D
q,11
k−1

)−1

D
q,12
k−1, (30)

where


















D
q,11
k−1 = −Exq

k−1
,xq

k

{

∆
x

q

k−1

x
q

k−1

ln p
(

x
q
k|x

q
k−1

)

}

= FTQ−1
q F ,

D
q,12
k−1 = −Exq

k−1
,xq

k

{

∆
x

q

k−1

x
q

k

ln p
(

x
q
k|x

q
k−1

)

}

= −FTQ−1
q =

(

D
q,21
k−1

)T

,

D
q,22
k−1 = −Exq

k−1
,xq

k

{

∆
x

q

k

x
q

k

ln p
(

x
q
k|x

q
k−1

)

}

= Q−1
q .

(31)

Therefore, JP(x
q
k) can be expressed as

JP (xq
k) =

[

Qq + FJ−1
(

x
q
k−1

)

FT
]−1

. (32)

For JD(x
q
k), when the observations of target q by each radar are mutually independent, we have

JD (xq
k) = −Exq

k

{

Ezq

k
|xq

k

{

∆
x

q

k

x
q

k

ln p (zq
k|x

q
k)
}}

=
∑

n∈̟q

k

Exq

k

{

−Ezq

k,n
|xq

k

{

∆
x

q

k

x
q

k

ln p
(

z
q
k,n|x

q
k

)}}

,
∑

n∈̟q

k

Exq

k
{Jn

D (xq
k)} . (33)

Since z
q
k is directly associated with ζ

q
k,n rather than x

q
k, applying the chain rule can transform Jn

D(x
q
k) into

Jn
D(x

q
k) = G

qT
k,nJ

n
D

(

ζ
q
k,n

)

G
q
k,n, (34)

where G
q
k,n can be calculated with (22), and Jn

D(ζ
q
k,n) is expressed as

Jn
D

(

ζ
q
k,n

)

= −Ezq

k,n
|ζq

k,n

{

∆
ζ
q

k,n

ζ
q

k,n

ln p
(

z
q
k,n|ζ

q
k,n

)}

. (35)

After some algebraic calculations, the approximate expression of Jn
D(ζ

q
k,n) can be given by

Jn
D

(

ζ
q
k,n

)

≈ Ptk,nDck,nJn

(

ζ
q
k,n, Tdwk,n

)

, (36)
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where Dck,n = Tdn/Trk,n is the duty cycle of radar n at frame k, and Jn(ζ
q
k,n, Tdwk,n) is defined as

Jn(ζ
q
k,n, Tdwk,n) ,

[

Tdwk,nA
q
k,n T 2

dwk,nC
q
k,n

T 2
dwnC

q
k,n T 3

dwk,nB
q
k,n

]

. (37)

The derivative process and the expression of Aq
k,n, B

q
k,n, and Cq

k,n can be seen in Appendix A.

According to (33), computing JD(x
q
k) entails calculating the mathematical expectation, which can be achieved

through Monte Carlo methods. However, to meet the real-time requirements of target tracking and reflect the
proactive nature of resource allocation, the zero-process noise prediction x̂

q
k|k−1 = F x̂

q
k−1 can be substituted for

x
q
k. Summing up the above, J(xq

k) can be defined as

J(xq
k) =

[

Qq + FJ−1
(

x
q
k−1

)

FT
]−1

+

N
∑

n=1

µq
k,nPtk,nDck,nG

qT
k,nJn

(

ζ
q
k,n, Tdwk,n

)

G
q
k,n

∣

∣

∣

x̂
q

k|k−1

. (38)

5 Problem formulation and solving

Simultaneous operation under unified control of multiple radars not only reduces the radiated power of each radar
but also creates a complex pulse stream that increases the difficulty of sorting by the intercepting receiver, further
reducing the probability of the radar being intercepted.

5.1 Two assumptions

Assumption 1. Electronic intercept receiver passively intercepts non-cooperative radar signals. Due to cost,
size, power constraints, and the need to address unknown sources and the response time requirements, electronic
intercept receivers resort to single-channel wide-open receivers to capture all types of radar signals across frequency,
spatial, and temporal domains. Thus, the first assumption is that radar pulse signals will inevitably fall within the
reconnaissance window of the intercept receiver. At this point, only the detection probability for individual pulses
needs to be considered [45, 46]:

Pd =
1

2
erfc

(

√

− lnPfa −
√

SNRI + 0.5
)

, (39)

where

erfc(z) = 1−
2

π

∫ z

0

e−v2

dv. (40)

Here SNRI represents the output SNR of a single pulse at the intercept receiver, expressed as

SNRI =
PtGtGrGpλ

2
tF

2
p

(4π)2R2LpkBT0BNF
, (41)

where Pt denotes the radar radiated power, Gt, Gr, and Gp represent the transmit gain of the radar in the direction
of the intercept receiver, the receive gain of the intercept receiver in the direction of the radar, and the processing
gain of the intercept receiver, respectively, λt stands for the wavelength, Fp signifies the propagation factor, R
indicates the distance from the radar to the intercept receiver, Lp accounts for polarization loss, kB represents
the Boltzmann constant, with a value of 1.38 × 10−23 J/K, T0 denotes the noise temperature, B stands for the
bandwidth of the intercept receiver, and NF signifies the noise figure of the intercept receiver. It can be observed
that reducing the radar radiated power can decrease the probability of radar pulses being detected by the intercept
receiver.

Assumption 2. When multiple radiation sources are simultaneously operational, the electronic intercept equip-
ment receives multiple interleaved pulse streams, leading to a high likelihood of pulse loss. For instance, if the
arrival time of two pulses is less than the width of the first pulse, these two pulses will overlap, resulting in devia-
tions in parameter measurements and causing pulse loss. The specific pulse loss or the loss of both pulses depends
on the degree of overlap and the amplitude difference between the two pulses. Furthermore, for an instantaneous
frequency measurement receiver, there exists a recovery period after completing the parameter measurement of one
pulse, during which newly arriving pulses are not processed and thus discarded. To quantitatively describe the
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probability of pulse loss, we simplify the model by making the second assumption that one pulse will be lost when
it enters the intercept receiver while the previous pulse is still being processed, and the processing duration is equal
to the pulse width. Therefore, the capture process of pulses by the wide-open intercept equipment can be described
using the single-server loss system model from queueing theory [47], and the probability of pulse loss Pl can be
approximated as

Pl =
λpτp

1 + λpτp
, (42)

where λp denotes the pulse density and τp signifies the average processing duration of a single pulse. In the scenario
of multiple radars emitting simultaneously, λpτp can also be regarded as the total duty cycle of the pulse traffic.
As seen, a higher duty cycle results in higher pulse loss; therefore, it is possible to increase the probability of pulse
loss by adjusting each radar’s duty cycle and increasing the pulse traffic’s total duty cycle.

5.2 Problem formulation

From (38), it is evident that Fq
k is related to Ptk, Dck, Tdwk, and Uk. From (39), it is understood that the probability

of a radar signal being detected by the intercept receiver is associated with the respective radar radiated powers
Ptk,n. According to (42), the probability of pulse loss is dependent on the total duty cycle of the pulse traffic
∑N

n=1 Dck,n. Furthermore, the total number of pulses emitted by each radar at each frame is related to the dwell
time Tdwk,n, duty cycle Dck,n, and pulse width Tdn of each radar, as Lk,n = Tdwk,nDck,n/Tdn. Therefore, to achieve
active countermeasures, the radar network system should strategically optimize the radiation parameters like Ptk,n,
Dck,n, and Tdwk,n of each radar at every tracking frame, along with their assignment with targets, to reduce the
length of the pulse traffic intercepted by the intercept receiver and ultimately reduce the probability of sorting the
radiation source from it.

Let Ptk = [Ptk,1, . . . , Ptk,N ]T, Dck = [Dck,1, . . . , Dck,N ]T, and Tdwk = [Tdwk,1, . . . , Tdwk,N ]T denote the radiated
power, duty cycle, and dwell time vector for the radar network at frame k, respectively, and Uk = [µk,1, . . . ,µk,N ]
represent the radar-target assignment matrix. The objective function of the aforementioned resource optimization
problem can be formulated as

F (Ptk,Dck,Tdwk,Uk) =

N
∑

n=1

Tdwk,nDck,n

Tdn
+ α1

N
∑

n=1

Ptk,n − α2

N
∑

n=1

Dck,n, (43)

where α1 and α2 are weighting coefficients. In the above objective function, the first term is intended to control the
length of the burst emitted by each radar, the second term is intended to control the probability of interception of
each radar pulse, and the third term is intended to control the probability of pulse loss for the entire pulse traffic.
In addition, let

F
q
k =

√

Tr [CPCRLB (xq
k)] (44)

denote the measure of target tracking accuracy. The aforementioned resource optimization problem can be expressed
as

min
Ptk,Dck,Tdwk,Uk

F (Ptk,Dck,Tdwk,Uk) ,

s.t.







































































F
q
k 6 F

q
max, ∀q = 1, . . . , Q,

Pmin
tn 6 Ptk,n 6 Pmax

tn , ∀n = 1, . . . , N,

Dmin
cn 6 Dck,n 6 Dmax

cn , ∀n = 1, . . . , N,

Tmin
dwn 6 Tdwk,n 6 Tmax

dwn , ∀n = 1, . . . , N,

Q
∑

q=1

µq
k,n 6 µn, ∀n = 1, . . . , N,

1 6

N
∑

n=1

µq
k,n 6 N, ∀q = 1, . . . , Q,

(45)
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where the constraint F
q
k 6 F

q
max ensures that the tracking error of each target does not exceed the upper bound

F
q
max; P

min
tn 6 Ptk,n 6 Pmax

tn , Dmin
cn 6 Dck,n 6 Dmax

cn , and Tmin
dwn 6 Tdwk,n 6 Tmax

dwn respectively constrain the radiation

power, duty cycle, and dwell time of each radar within certain intervals;
∑Q

q=1 µ
q
k,n = µn indicates that each radar

can simultaneously form up to µn receive beams; 1 6
∑N

n=1 µ
q
k,n 6 N requires that each target is tracked by at

least one radar. By reducing the number of radiated pulses per radar and increasing pulse loss (by controlling
the radiated power to reduce the probability of detection and managing the total duty cycle to increase the pulse
overlap), it is possible to reduce the length of the pulse traffic intercepted by the intercepting receiver and increase
the difficulty of pulse sorting.

5.3 Model solution

Due to the existence of the 0-1 variables µq
k,n, the aforementioned problem constitutes a non-convex, non-linear

mixed-integer programming problem. One exhaustive search approach involves enumerating all possible assignment
relationships between radar beams and targets based on the constraints

∑Q
q=1 µ

q
k,n 6 µn and 1 6

∑N
n=1 µ

q
k,n 6 N ,

and then optimizing Ptk, Dck, and Tdwk to minimize the objective function. At this point, the problem can be
reformulated as

min
Uk

{

min
Ptk,Dck,Tdwk

F (Ptk,Dck,Tdwk;Uk)

}

,

s.t.























F
q
k 6 F

q
max, ∀q = 1, . . . , Q,

Pmin
tn 6 Ptk,n 6 Pmax

tn , ∀n = 1, . . . , N,

Dmin
cn 6 Dck,n 6 Dmax

cn , ∀n = 1, . . . , N,

Tmin
dwn 6 Tdwk,n 6 Tmax

dwn , ∀n = 1, . . . , N.

(46)

Given Uk, for such a constrained nonlinear programming problem, the interior-point method is employed for a
solution.

However, this exhaustive search approach is time-consuming and unsuitable for real-time processing. Therefore,
relaxing µq

k,n to continuous values within the interval [0, 1] should be considered. Since Uk is actually independent

of the objective function F (Ptk,Dck,Tdwk,Uk) but only influences tracking accuracy F
q
k, Uk and other variables

can be alternatingly solved. Specifically, initializing Ptk, Dck, and Tdwk, solving for Uk can follow the model below:

min
Uk

Q
∑

q=1

F
q
k,

s.t.



























Q
∑

q=1

µq
k,n = µn, ∀n = 1, . . . , N,

1 6

N
∑

n=1

µq
k,n 6 N, ∀q = 1, . . . , Q.

(47)

That is, given Ptk, Dck, and Tdwk, optimizing Uk to minimize the tracking error of each target as much as possible.
This optimization problem is solved using the interior-point method. Assuming the obtained relaxed solution is
Uk0, a feasible solution Uk conforming to the original problem needs to be constructed. The specific approach
is as follows: setting Uk to be a zero matrix, first arranging each column of Uk0 in ascending order and finding
the position of the maximum value, assigning 1 to that position in Uk to ensure each target is tracked; second,
arranging each row of the matrix Uk0 in ascending order, selecting the largest µn elements (subtracting the count
of elements already selected or too small like below 0.1), assigning 1 to the corresponding positions in Uk to ensure
that each radar’s receive beams are tracking targets. Once the feasible solution Uk is obtained, solving the following
optimization problem yields feasible solutions for Ptk, Dck, Tdwk:

min
Ptk,Dck,Tdwk

F (Ptk,Dck,Tdwk;Uk) ,

s.t.























F
q
k 6 F

q
max, ∀q = 1, . . . , Q,

Pmin
tn 6 Ptk,n 6 Pmax

tn , ∀n = 1, . . . , N,

Dmin
cn 6 Dck,n 6 Dmax

cn , ∀n = 1, . . . , N,

Tmin
dwn 6 Tdwk,n 6 Tmax

dwn , ∀n = 1, . . . , N.

(48)
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Table 1 Simulation parameters for targets.

Target Position (km) Velocity (m/s) RCS (m2)

1 [11, 17] [−78,−31] 4

2 [20, 24] [10, 38] 4

3 [7, 12] [−57,−87] 2

4 [19, 10] [−70, 8] 4

Table 2 Simulation parameters for radars.

Radar Position (km) Pt (W) Dc (%) Tdw (ms) Td (µs) µ

1 [0, 15] [1477, 7341] [1.7, 9] [48, 260] 19 3

2 [0, 30] [1641, 7267] [0.8, 14] [35, 390] 20 3

3 [15, 30] [1056, 7934] [1.2, 13] [20, 290] 16 3

4 [30, 15] [1126, 4754] [1.7, 5] [24, 130] 11 3

5 [30, 0] [1151, 7007] [0.6, 6] [36, 440] 12 3

6 [15, 0] [1348, 4059] [0.6, 18] [39, 390] 20 2

This alternating process continues until the absolute difference between the objective function values F(Ptk,Dck,Tdwk;
Uk) of two consecutive iterations is less than a predetermined threshold. Then, the final Ptk, Dck, Tdwk, and Uk

are output.

6 Simulation results

This section is devoted to designing simulation experiments to validate the effectiveness of the proposed resource op-
timization and beam allocation scheme in reducing the probability of intercepting radiation sources by the intercept
receiver.

6.1 Simulation parameters

Assuming 6 co-ocated MIMO radars are monitoring 4 moving targets on a two-dimensional plane. The simulation
parameters like initial position and velocity for each target are provided in Table 1. The position and other
simulation parameters of each radar are listed in Table 2, where the transmit power, duty cycle, and dwell time are
controllable variables distributed within certain ranges, while pulse width and the number of simultaneous beams
are invariant parameters. The radar revisit interval ∆T = 1 s, and the tracking process lasts for 50 frames. Other
parameters are set as λn = 0.3 m, κq = 10−4, and σn = 1.

There are two points to be clarified. One is that the preset upper bound of tracking error is not always constant
but decreases linearly with the tracking process to realize the gradual improvement of the tracking accuracy, and
the initial values are 65, 175, 105, and 85 m, respectively; and the second is that the initial FIM of all the targets

is replaced by Qq, i.e., F
q
0 =

√

Tr[Q−1
q ] = 566 m for all the targets.

6.2 Tracking validation

Figure 2 illustrates the radar distribution and target trajectories during the tracking process. The dashed lines in
Figure 2 represent the target trajectories estimated from one Monte Carlo test, while the solid line represents the
actual trajectories. It can be observed that the proposed resource allocation scheme ensures real-time and accurate
target tracking by the networked radars.

Figure 3 presents the optimized radiated power, duty cycle, and dwell time during the tracking process. Note
that these values have been normalized. Taking the radiated power as an example, assume that the optimization
yields a power of P̂tk,n, which after normalization becomes

P̄tk,n =
P̂tk,n − Pmin

tn

Pmax
tn − Pmin

tn

. (49)

Therefore, when the value of P̄tk,n is 1, it indicates maximum power radiation and a value of 0 indicates minimum
power radiation.

As seen, when the targets move, their distances from each radar vary, necessitating dynamic adjustments to the
emission parameters of radars to maintain tracking accuracy. In particular, the values of all radiation parameters are
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Figure 2 Scene diagram. The left figure shows the radar distribution, target tracks, and estimated trajectories. The 4 figures on the right are

zoomed-in views of each target’s trajectory.

Figure 3 Variation of the radar radiation parameters. (a) Radiated power; (b) duty cycle; (c) dwell time.

significant at the beginning of the tracking (first five frames) and become small from the sixth frame onwards, and
the variation trend of radiated power overlaps with dwell time to a greater extent. This is because the system needs
to increase the radiated power and the number of pulses to enhance the tracking accuracy due to the significant
tracking error at the beginning of the tracking phase, while the LPI requirement makes the duty cycle of each radar
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Figure 4 Beam distribution scheme of each radar.

Figure 5 PCRLB obtained by different resource allocation schemes. Here, let threshold+i denote the preset tracking accuracy requirement

for the i-th target and PCRLB+i denote the PCRLB of the i-th target. (a) CM; (b) MTEM; (c) MIPM; (d) RM.

increase to increase the pulse loss and shorten the length of the pulse string intercepted by the interceptor receiver.
When the system enters the stable tracking phase, the LPI requirement reduces the radiated power and the number
of pulses significantly, thus eliminating the need for excessive modulation of the duty cycle to increase pulse loss,
so the value of the duty cycle becomes small after the sixth frame. Regarding the value of radiated power and
dwell time of the sixth radar, which is always large, one possible explanation is that radar 6 has a smaller number
of simultaneously trackable targets and contributes less to tracking the entire target population, thus requiring an
increase in radiated power and dwell time.

Figure 4 illustrates the beam allocation throughout the process. It is evident that each radar dynamically adjusts
its selection of tracked objects rather than fixedly tracking specific targets. Moreover, most of the time, each radar
assigns all available beams to targets while only a few times tracks the target less than the available beams.

To quantitatively describe the tracking accuracy under the proposed resource allocation scheme, Figure 5 depicts
the Fq

k curves for each target. For comparison purposes, Figure 5 also separately illustrates the impact of three other
resource allocation schemes on target tracking accuracy. The first comparative strategy is the minimum tracking
error mode (MTEM), which disregards the stealth performance of the radar network system and only optimizes
resource allocation to minimize tracking errors at each frame. The solving process of MTEM is similar to the alter-



Zhang L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112302:14

Figure 6 Variation of the RMSE of each target. Here, let RMSE+i denote the RMSE of the i-th target.

nating minimization method used in this paper but transforms the objective function into min
∑Q

q=1 F
q
k. The second

comparative strategy is the minimum interception probability mode (MIPM), which disregards tracking errors at
each frame, optimizing resource allocation to reduce the interception probability of the radar network system. The
optimization variables Ptk, Dck, and Tdwk are solved in a manner similar to (48), while the beam allocation matrix

Uk is randomly generated subject to meeting
∑Q

q=1 µ
q
k,n 6 µn, ∀n = 1, . . . , N . The third comparative method

is the random power + random duty cycle + random dwell time mode, where the beam allocation matrix Uk is
also randomly generated, referred to as the random mode (RM). All three comparative methods assume radars
randomly track targets up to the beam bound. This section calls our resource allocation strategy a comprehensive
mode (CM), i.e., balancing tracking accuracy and stealth performance. In the MTEM and our CM, the tracking
error consistently remains below the preset threshold, meeting the radar network system’s accuracy requirements
for multi-target tracking. In contrast, in the MIPM and RM, the tracking accuracy of the remaining targets fails
to meet the task requirements except for the second target.

The Fq
k used in Figure 5 represents the computed or predicted tracking accuracy. Therefore, the root mean square

error (RMSE) for each target, namely RMSEq
k, is adopted to characterize the actual tracking accuracy, which is

defined as

RMSEq
k =

√

√

√

√

1

NMC

NMC
∑

n=1

‖x̂q
k,n − x

q
k‖

2
F , (50)

where x̂
q
k,n denotes the estimated target state obtained from the n-th Monte Carlo test, while x

q
k represents the

true target state. From Figure 6, it can be observed that, over time, RMSEq
k gradually converges to the PCRLB.

Note here NMC = 1000.

6.3 Low intercept verification

This subsection verifies the low interception of the networked radar under the proposed resource allocation scheme in
this paper through simulation experiments. We measure the radar network’s resistance to interception by assessing
the ease of deinterleaving pulse sequences emitted by each radar from the pulse traffic. The technique of pulse
deinterleaving based on pulse repetition interval (PRI) information is widely used, and in this section, we employ
the PRI transformation method [48] to perform pulse deinterleaving. The PRI transformation method involves
converting the differences in arrival times of a pulse sequence into the PRI spectrum through a complex-valued
autocorrelation integral transformation. The position of the peak on the spectrum’s horizontal axis corresponds to
the estimated PRI value of the pulse sequence. In other words, if the PRI transformation value at a certain point on
the PRI spectrum exceeds the detection threshold, the corresponding horizontal axis coordinate is considered the
PRI estimate. For quantitative comparison, we assume the existence of intercept receivers at the center of the scene,
namely at [15, 15] km. Under the resource allocation scheme proposed in this paper, the low interception of the
radar network will manifest in three aspects: First, each radar emits short bursts by controlling dwell time and duty
cycle. Second, reducing radiated power decreases the probability of individual pulses being detected. Assuming at
frame k, the interception receiver can intercept the maximum power pulse with Pfa = 10−4 and Pd = 0.999. Here,
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Figure 7 PRI spectra at frame 10 for four resource allocation strategies. The black solid line indicates the detection threshold, and the gray

vertical line indicates the location of the true PRI. (a) CM; (b) MTEM; (c) MIPM; (d) RM.

Figure 8 PRI spectra at frame 30 for four resource allocation strategies. (a) CM; (b) MTEM; (c) MIPM; (d) RM.

the maximum power refers to the maximum of Ptk,n/RIn, where RIn is the distance between the interception device
and radar n. Assume all other parameters are the same. By applying (39) and (41), the detection probability for
pulses of each radar can be calculated, and these pulses are selectively intercepted according to this probability.
Here, interception refers to detection. Third, pulse overlap leads to an increase in lost pulses. As analyzed earlier,
pulse loss occurs when the interval between the arrival times of the two pulse fronts is less than the width of the
first pulse. In this simulation, we assume that the second pulse is lost. As the total duty cycle of the pulse traffic
increases, the number of lost pulses due to overlap also increases.

Figures 7 and 8 depict the PRI spectra for the four resource allocation schemes at the 10-th and 30-th frames,
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Figure 9 Sorting probability of each radar for four resource allocation strategies. (a) CM; (b) MTEM; (c) MIPM; (d) RM.

Figure 10 Pulse traffic length for four resource allocation strategies.

Note that strategies 1, 2, 3, and 4 refer to CM, MTEM, MIPM, and

RM, respectively.

Figure 11 Variation of the number of pulses at frames 2, 20, and

40.

respectively. It can be observed that due to the significant loss of pulses (either undetected or lost due to overlap),
the PRI spectra for our strategy and the MIPM exhibit smaller values of pulse counts compared with the other two
schemes, and only one PRI can be estimated. In other words, only one radar is detected or intercepted, while the
MTEM can intercept all 6 radars and RM can intercept 3 or 4 radars.

To quantitatively compare the anti-interception performance of those resource allocation schemes, 1000 Monte
Carlo tests are conducted. The probabilities of sorting each radar are plotted separately in Figure 9. It can be seen
that under MTEM, each radar has a high sorting probability throughout the whole process. In contrast, under
our strategy and MTEM, the sorting probability most of the time is very low except for the beginning period;
for example, under our strategy, radars 4 and 5 realize the whole process of stealth after 12-th frame, whereas
under MTEM, radars 3, 4, and 5 can be regarded as almost the entire process of stealth. Under RM, the sorting
probability of each radar has both high and low undulation, and there is no regularity to be found, but the overall
is still higher than that under our strategy and MTEM.

The LPI performance of the four strategies can be measured by the number of pulses intercepted by the intercept
receiver. When the number of pulse sources is determined, the longer the intercepted pulse, the greater the likelihood
of finding a radar radiation pattern like PRI. It can be seen from Figure 10 that MTEM radiates a large number
of pulses throughout the whole track process. In contrast, the strategy in this paper and MIPM emit a large
number of pulses only at the beginning of the tracking and drastically reduce the number of pulses at the later
stages. Figure 11 then shows how the strategy proposed in this paper controls the length of the pulse traffic. At the
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beginning of the tracking, the number of pulses and the radiated power are significant, and relatively few pulses are
lost due to detection, while relatively many pulses are lost due to overlap; at the later stage, the number of emitted
pulses itself is minimal, and there is no need to further increase the pulse loss through radiation power and duty
cycle control.

In conclusion, the resource allocation scheme proposed in this paper endows the radar network system with
low interception performance. Comprehensively comparing these four resource allocation strategies, although the
proposed strategy is not optimal in a single comparison of the tracking accuracy and interception resistance metrics,
it can take both metrics into account and thus has a wider range of applications.

7 Conclusion

Radar faces the risk of interception by reconnaissance devices while detecting targets. From the perspective of active
countermeasures, the paper designed a multi-radar resource allocation scheme in a multi-target tracking scenario
to reduce the probability of interception. By building and analyzing the signal model of multi-radar collaborative
tracking of multiple targets, the study discovered that radar-controllable variables such as radiation power, dwell
time, duty cycle, and radar beam allocation scheme simultaneously affected both the radar’s tracking accuracy
of targets and the reconnaissance device’s interception probability of the radar. By optimizing these variables, a
balance between detection performance and stealth performance was achieved. In contrast to existing RF stealth
methods that only considered single pulse detection problems, the paper took into account pulse deinterleaving,
which was more closely related to the detection of radiation sources. Thus, it fully exploited the potential of the
radar network in countering interception.

In analyzing low interception probability, this paper only performed pulse sorting based on PRI information on
the received pulse traffic. In reality, electronic interception devices first conduct clustering preprocessing based on
relatively stable inter-pulse characteristic parameters, such as arrival angle and carrier frequency before pulse dein-
terleaving, to achieve sparsity of the pulse traffic. Subsequently, PRI information or other intra-pulse characteristic
parameters are utilized for signal selection. As the sorting process in this paper is simplified, further improvement
is needed in subsequent research to fit actual scenarios better. In addition, the modeling should be more relevant to
the actual situation; for example, radar detection requirements such as the maximum unambiguous distance should
also be considered when optimizing the PRI. Optimizing the solution algorithm to fit the real-time tracking process
will also be the next research focus.
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The aforementioned approximations utilize Lk,n − 1 ≈ Lk,n, 2Lk,n − 1 ≈ 2Lk,n, Tdwk,n = Lk,nTrk,n, and Dck,n = Tdn/Trk,n. Thus,
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) can be expressed in simplified form like (36).
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