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Abstract A unified controller for trajectory tracking and set-point regulation/stabilization of nonholonomic wheeled mobile robots is

designed by using the hierarchical idea popular in unmanned aerial vehicles. As a preliminary, a smooth function for solving the argument

of a rotating vector is obtained by switching between discontinuous functions, which motivates the definition of a novel function atan3.

The hierarchical control is introduced to wheeled mobile robots, which includes an attitude planner based on atan3, nominal full-actuated

position control, and planner-based attitude control, such that the exponential stability of the closed-loop system is achieved. It is easy to

extend the control of nonholonomic wheeled mobile robots (WMRs) with unknown parameters and disturbances. The simulation results

demonstrate the effectiveness of the control scheme and the necessity of introducing the function atan3.
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1 Introduction

Nonholonomic wheeled mobile robots (WMRs) are under-actuated systems with non-integrable constraints on the
speeds, which cannot be stabilized by continuous time-invariant state feedback due to Brockett’s condition [1]. The
existing literature on control for nonholonomic systems is mainly about set-point regulation/stabilization, tracking,
and unification of them [2, 3]. For the stabilization of WMRs or more general nonholonomic systems, a variety of
control methods have been proposed. A piecewise analytic strategy was provided for transferring an arbitrary initial
state of a Chaplygin system to the origin in [4], and a piecewise smooth controller was constructed for WMRs to
achieve exponential stabilization in [5]. A local exponential stability result was obtained using a continuous time-
varying control law [6]. Global asymptotic feedback controllers were proposed for a class of nonholonomic systems
by introducing time-varying terms in [7, 8]. To overcome the slow asymptotic response, Refs. [9, 10] constructed
time-varying homogeneous feedback controllers to achieve globally asymptotic and locally exponential stability
for nonholonomic systems. For other developments about the stabilization of nonholonomic systems, please refer
to [11–15].

For the trajectory tracking problem of WMRs, several controllers were also proposed. Time-varying state feedback
tracking controllers were proposed by using the backstepping technique for nonholonomic systems in [16, 17]. For
nonholonomic WMRs with uncertainties, an adaptive controller was presented in [18], a robust adaptive controller
was proposed with the aid of the learning ability of neural networks in [19], and an adaptive output feedback tracking
controller was presented in [20]. For nonholonomic WMRs using only measurements for position and velocity, a
trajectory tracking controller was designed based on a full-order observer and a filter in [21].

To the unified methods for both set-point regulation/stabilization and trajectory tracking, much attention has
been paid. A discontinuous unified control scheme was presented for the kinematic model of WMRs in [22],
and a time-varying controller with internal dynamics was designed for the kinematic model in [23]. In [24], a
unified tracking and regulation controller was presented by introducing some time-varying auxiliary signals to avoid
switching action. Do et al. [25] solved both adaptive tracking and stabilization simultaneously by introducing an
error rotation transformation for WMRs. A saturated time-varying controller was developed by applying a novel
error state modification with bounded auxiliary variables in [26].
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In the above literature on the trajectory tracking of WMRs, the desired position and attitude come from the
reference model. In reality, the tracking target often contains only position information, which requires the controller
to have the maneuverability to produce the desired attitude. This inspires us to introduce the hierarchical control
for WMRs, which is widely used in controls of unmanned aerial vehicles (UAVs); please see [27–30].

For the dynamic model of nonholonomic WMRs, a hierarchical control is designed for trajectory tracking and
stabilization in this paper. The main contribution consists of the following aspects.

(i) A discontinuous function is smoothed via switching to calculate the argument angle of a rotating vector, which
leads to the definition of atan3, regarded as a generalization of atan2.

(ii) An attitude planner is constructed with the aid of atan3 such that the trajectory tracking and stabilization
are transformed to full-actuated position controls.

(iii) A hierarchical design results in a smooth and time-invariant control, the exponential stability of the closed-
loop error system, and the convenience of an adaptive law for all unknown system parameters.

This result does not contradict Brockett’s condition because only the desirable position is tracked, and the
attitude is produced by a planner.

2 Problem formulation and mathematical preliminary

2.1 Description of nonholonomic robots

In this paper, the trajectory control problem of nonholonomic WMRs is considered, as shown in Figure 1. Po is
the middle point between the left and right wheels, and Pc is the center of the mass of the robot. Let lw be the
radius of each wheel, lb be the distance from Po to the left (right) wheel center, and ld be the distance between Po
and Pc. mc and mw are the masses of the body and wheel, respectively. Ic, Iw and Im are the moments of inertia
of the body about the vertical axis through Po, the wheel with a motor about the wheel axis, and the wheel with a
motor about its diameter, respectively. The nonnegative constant dp is the coefficient of the damping to one wheel.

Let r = (x, y)⊤ denote the coordinate of Po in XOY plane, and let ψ denote the yaw angle of the body around
the point Po. Let v and w denote the linear and angular velocities of the robot, respectively. τ1 and τ2 denote the
torques provided by direct current (DC) motors on the left and right wheels, respectively. In this paper, for the
sake of simplicity, we assume that the robot does not slip and there is no sliding between the tires and the road.

A dynamic equation of WMRs was introduced by Sarkar et al. [31], and was rewritten by Huang et al. [20, Eqs.
(5)–(8)], in the form of

η̇ = L(η)̟,

M ˙̟ = −C(ω)̟ −D̟ +Bτ,
(1)

where η = [x, y, ψ]⊤, ̟ = [v, ω]⊤, τ = [τ1, τ2]
⊤, and matrices L(η),M,C(ω), D and B are given as

L(η) =









cosψ 0

sinψ 0

0 1









, M =

[

m1 0

0 m2

]

, B = lw
2lb

[

1 1

lb −lb

]

,

C(ω) =

[

0 k0ω

−k0ω 0

]

, D =





dp
lb

0

0 lbdp





with

m1 =
1

2lb
l2w(mc + 2mw) + Iw,

m2 =
1

2lb
l2w(mcl

2
d + 2mwl

2
b + Ic) + Iw + 2Im,

k0 =
1

2lb
l2wmcld.

For the convenience of hierarchical control design, the dynamic equation is rewritten as

Position :







ṙ = vΛ(ψ),

v̇ = p1F −
k0
m1

ω2 − k1v,
(2a)
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Figure 1 Nonholonomic WMRs.

Attitude :







ψ̇ = ω,

ω̇ = p2Γ +
k0
m2

vω − k2ω,
(2b)

where

r = [x, y]⊤, Λ(ψ) = [cosψ, sinψ]⊤,

p1 =
lw
lbm1

, p2 =
lw
m2

, k1 =
dp
lbm1

, k2 =
dplb
m2

,

F =
1

2
(τ1 + τ2), Γ =

1

2
(τ1 − τ2).

Control objective. Given a reference position r∗ whose first two order derivatives are continuous and bounded
functions, the control τ in (1) is designed so that r(t) can track the desired position r∗.

Remark 1. The control objective is presented in the form of trajectory tracking, but when r∗ is a constant vector,
this problem reduces to the set-point regulation/stabilization.

2.2 Smoothed switch and atan3

For a point A with coordinate (x, y) in XOY plane, the principal argument of vector
−→
OA can be calculated

via arctangent function atan (y/x) with range (−π/2,π/2). To overcome zero division on the Y axis, function
atan2(y, x)1) is introduced as

atan 2(y, x) =







π

2
(1− sign(x))sign(y) + atan

( y

x

)

, x 6= 0,

π

2
sign(y), x = 0

with range [−π,π).

1) Function atan2 can be traced back to the FORTRAN-language [32], which is now widely used in many fields. For example, it can be

found in the math.h file of the math standard library of the C-language, the system.math file of the Java math library, and the math module of

Python.
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Figure 2 (Color online) In original coordinate axis (left) and flipped coordinate axis (right), the shaded areas are the skipped zones, the solid

lines represent the paths passed through, and the dashed lines represent the skipped paths.

Turn to the case that A moves smoothly with time-varying coordinate (x(t), y(t)), and consider the calculation

of argument ψ(t) of vector
−→
OA, which is different from the principle value

ψ̄(t) = atan2(y(t), x(t))

in general. To this end, the original coordinate XOY is rotated 180◦ around point O to the frame X ′OY ′ with
expression (x′(t), y′(t)) = (−x(t),−y(t)), and is named as the flipped coordinate, as shown in Figure 2. In order
to avoid applying atan2 to the points on negative X (or X ′)-axis, interval [−2π/3, 2π/3] (or [−3π/4, 3π/4] or
[−4π/5, 4π/5]), is chosen to define active zones:

D =

{

(x, y) : atan2(y, x) ∈

(

−
2

3
π,

2

3
π

)}

,

D′ =

{

(x′, y′) : atan2(y′, x′) ∈

(

−
2

3
π,

2

3
π

)}

,

whose complementary sets DC and D′C are called skipped zones. The first exit time from D is

τ1 = inf{t > τ0 : (x(t), y(t)) ∈ DC}, τ0 = 0

with inf ∅ = ∞ (the same is omitted below). After the finite moment τ1, coordinate system X ′OY ′ is active until
(x′(t), y′(t)) leaves [−2π/3, 2π/3], which leads to the first exit time from D′,

τ2 = inf{t > τ1 : (x′(t), y′(t)) ∈ D′C},

and recursively

τ2m−1 = inf{t > τ2m−2 : (x(t), y(t)) ∈ DC},

τ2m = inf{t > τ2m−1 : (x′(t), y′(t)) ∈ D′C}
(3)

(see Figure 2). Thus, an indicator function about the active frame is presented as

σ(t) =

{

1, t ∈ [τ2m−2, τ2m−1),

−1, t ∈ [τ2m−1, τ2m), m = 1, 2, . . . ,
(4)

which means that the active coordinate is XOY if σ(t) = 1 and X ′OY ′ if σ(t) = −1. Regarding (4) as a switching
signal, the corresponding principal argument is presented as

φ(t) = atan2(σ(t)y(t), σ(t)x(t)), (5)
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which is a piecewise continuous function with step ±π at discontinuities τi.
The algebraic sum of switches of the coordinate frames up to time t is

s(t) =
∑

06τi6t

sign(φ(τi)), (6)

which means that the angle lost due to switching equals s(t)π. Finally, the argument is obtained by adding the lost
angle to the principal value, i.e.,

ψ(t) = φ(t) + s(t)π. (7)

Denoting the operation of argument by a symbol atan3 gives

atan3(x(t), y(t), σ(t)) = φ(t) + π

∑

06τi6t

sign(φ(τi)), (8)

which is a generalization of atan and atan2 to the smooth case. The notion atan3 is used to emphasize the dependence
on the continuous state (x, y) ∈ R

2 and a jump model σ(t) ∈ {1,−1}. It follows from the implementation of σ(t),
φ(t) and s(t) that the last two signals depend on (x(t), y(t), σ(t)), and are not included in the final variables of
atan3, which will be presented in the next paragraph.

Now, to explore the calculation of atan3 in computers, which is equal to finding the discrete expressions of σ(t),
φ(t), and s(t). Taking the sampling interval δ and letting tk = kδ (k = 1, 2, . . .), then the implementation of σ(t) is

σ(tk+1) = σ(tk)sign

(

2π

3
− |φ(tk)|

)

,

φ(tk) = atan2(σ(tk)y(tk), σ(tk)x(tk))

with σ(0) = sign(2π/3− |atan2(y0, x0)|), and the implementation of s(t) is

s(tk+1) = s(tk) +
1

2

(

1− sign

(

2π

3
− |φ(tk)|

))

with s(0) = 0, which leads to the main body of the program. From the implementation of the signals, it can be
understood that atan3 depends on (x, y, σ) finally.

Smooth function atan3(x(t), y(t), σ(t)) is obtained via cutting and reconnecting atan2(y(t), x(t)) to eliminate
its discontinuities, which can be clarified by the following example. In Figure 3, a point moving along an ellipse
is expressed as (x(t), y(t)) = (2 cos t, sin t). Functions φ+(t) = atan2(y(t), x(t)) and φ−(t) = atan2(−y(t),−x(t))
with step 2π at discontinuities. Function s(t)π is piecewise constant with steps π. Argument function ψ(t) is
smooth because the steps in φ(t) are eliminated accurately by steps in s(t)π. To learn the efficiency of atan3
when the input with uncertainty, let us further consider the situation that A(t) is disturbed by noise w(t). Taking
w(t) = (0.01w1, 0.005w2) with w1 and w2 being independent standard white noises, the results are presented in
Figure 4, from which it can be seen that function atan3 is not sensitive to disturbances. Undesirable behavior of
atan2 function was pointed out in [33, (181)], and it is modified to atan2(y, x) + 2mπ with an integer m, while the
second result in Figure 4 indicates the non-feasibility of this direct compensation.

Consider the analytical properties of ψ(t) in t. Since atan3(x(t), y(t), σ(t)), atan2(y(t), x(t)), and atan(y(t)/x(t))
differ with only constants at discontinuous points in time of the last two functions, we have

ψ̇(t) =
1

x2(t) + y2(t)
(−y(t)ẋ(t) + x(t)ẏ(t)) ,

t ∈ {s > 0 : (x(s), y(s)) ∈ R
2/(0, 0)⊤},

(9)

which is perfectly consistent with the physical character of the smooth movement.

Remark 2. It can be seen from (9) that when a point tends to the origin, the derivative of atan3 will change
dramatically unless its speed converges to zero faster. The origin is often the equilibrium point of the closed-loop
system, which brings forth many challenges in controller design.

3 Hierarchical controller design

The hierarchical controller to be designed for a nonholonomic mobile robot is composed of a planner, a position
module (innerloop), and an attitude module (outerloop).
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Figure 3 (Color online) Example of two discontinuous functions being switched to a smooth one.

Figure 4 (Color online) The example in Figure 3 is disturbed by noise.

3.1 Planner design

Planners of yaw angle and the translational velocity are designed by introducing a transform of the translational
subsystem from under-actuated to full-actuated.
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Kinematics equation of (2a) is rewritten in the form of full-actuated

ṙ = µ (10)

with

µ = vΛ(ψ). (11)

Here µ is regarded as a virtual control for (10), and is to be designed later as µd (see (23)), which can be rewritten
as

µd = vdΛ (ψd) , (12)

where ψd is the desired yaw angle, and vd is the desired translational velocity, or expressed as

µdx = vd cosψd,

µdy = vd sinψd.
(13)

In fact, according to (13), for a given µd, we can define the desired attitude

ψd = atan3 (µdx, µdy, σ) , (14)

which is called as attitude planner and the desired speed

vd =
√

µ2
dx + µ2

dy, (15)

for all t ∈ {s > 0 : (x(s), y(s)) ∈ R
2/(0, 0)}.

3.2 Position module design

For the given reference signal r∗ and the desired velocity vd, translational error variables are introduced as

r̃ = r − r∗,

ṽ = v − vd.
(16)

From (10) and (2a), the derivative of (16) is derived as

˙̃r = µd − ṙ∗ + µ̃+∆,

˙̃v = p1F −
k0
m1

ω2 − k1v − v̇d,
(17)

where ∆ = µ̄d − µd, µ̃ = µ− µ̄d, and µ̄d = vdΛ (ψ). It can be verified that

∆ = 2vd





− sin
(

ψ+ψd

2

)

cos
(

ψ+ψd

2

)



 sin

(

ψ̃

2

)

(18)

and

r̃⊤∆ 6
1

4d1
|r̃|2 + d1(vd)

2ψ̃2, (19)

where ψ̃ = ψ − ψd, d1 > 0 is a design parameter, and that

µ̃ = (v − vd)Λ (ψ) = ṽΛ (ψ) . (20)

Define Lyapunov function for the translational subsystem as

V1 =
1

2
r̃⊤r̃ +

1

2p1
ṽ2, (21)
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whose derivative along (17) with respect to time satisfies

V̇1 = r̃⊤ (µd − ṙ∗ + µ̃+∆)

+ ṽ
1

p1

(

p1F −
k0
m1

ω2 − k1v − v̇d

)

6 r̃⊤
(

µd − ṙ∗ +
1

4d1
r̃

)

+ d1(vd)
2ψ̃2

+ ṽ

(

F + r̃⊤Λ(ψ)−
1

p1
v̇d −

k0
m1p1

ω2 −
k1
p1
v

)

,

(22)

where Eqs. (19) and (20) are used. By selecting translational control

µd =−

(

cr +
1

4d1

)

r̃ + ṙ∗,

F =− cvṽ − r̃⊤Λ(ψ) +
1

p1
v̇d +

k0
m1p1

ω2 +
k1
p1
v,

(23)

where cr > 0 and cv > 0 are design parameters such that (22) becomes

V̇1 6− cr|r̃|
2 − cv ṽ

2 + d1(vd)
2ψ̃2. (24)

Remark 3. By introducing µd, position control is transformed into a form of full-actuated control with ∆ regarded
as a disturbance that is separated into two terms |r̃|2/4d1 and d1(vd)

2ψ̃2. The first term leads to linear damping
(−r̃/4d1) in (23), and the second term will be dealt with by introducing damping in the attitude controller in the
next subsection.

3.3 Attitude module design

Regarding the output ψd of the attitude planner as a reference signal, the error variables are introduced as follows:

ψ̃ = ψ − ψd,

ω̃ = ω − ωd,
(25)

where ωd is the desired angular velocity to be designed. Taking the derivative of (25) along with (2) yields

˙̃
ψ = ωd − ψ̇d + ω̃,

˙̃ω = p2Γ +
k0
m2

vω − k2ω − ω̇d.
(26)

Select Lyapunov function for subsystem (25) as

V2 =
1

2
ψ̃2 +

1

2p2
ω̃2 (27)

whose derivative along (26) satisfies

V̇2 =ψ̃(ωd − ψ̇d + ω̃) + ω̃

(

Γ−
1

p2
ω̇d +

k0
m2p2

vω −
k2
p2
ω

)

. (28)

By designing controller

ωd = −cψψ̃ + ψ̇d − d1(vd)
2ψ̃,

Γ = −cωω̃ − ψ̃ +
1

p2
ω̇d −

k0
m2p2

vω +
k2
p2
ω,

(29)

where cψ > 0 and cω > 0 are the design parameters, Eq. (28) becomes

V̇2 =− cψψ̃
2 − cωω̃

2 − d1(vd)
2ψ̃2. (30)

Remark 4. The reference position r∗ ∈ R
2 in (16) can be specified by the customer, but the desired attitude

ψd ∈ R is generated by the controller itself using (14). This means that the proposed scheme has maneuvering
ability on attitude, and the under-actuated robot is controlled in a manner of a full-actuated form.
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Figure 5 (Color online) Framework of the hierarchical control for WMRs.

3.4 The synthesis of torques

Summarizing planners (14) and (15), translational module (23) and rotational module (29) give the framework of
hierarchical control for WMRs, as shown in Figure 5, and then torques as the true controls are synthesized as

τ1 = F + Γ, τ2 = F − Γ. (31)

A closed-loop error system for stability analysis can be obtained by summarizing (2), (23), (26), and (29) as
follows:































˙̃r = −

(

cr +
1

4d1

)

r̃ + µ̃+∆,

˙̃v = −p1(cv ṽ + r̃⊤Λ(ψ)),
˙̃
ψ = −cψψ̃ − d1(vd)

2ψ̃ + ω̃,

˙̃ω = −p2(cωω̃ + ψ̃)

(32)

whose state is lumped together as χ = [r̃⊤, ṽ⊤, ψ̃, ω̃]⊤.

4 Performance analysis

By the aid of hierarchical design, we obtain the closed-loop error system whose stability and robustness are to be
analyzed based on Lyapunov function in the case of trajectory tracking and stabilization, respectively.

4.1 Stability analysis of trajectory tracking

According to (9) and (14), the analytical properties of vd are uncertain at the origin, which motivates the following
assumption on the trajectory reference signal.
Assumption 1. There exists a positive number ν such that |ṙ∗| > ν for all t ∈ [0,∞).

Theorem 1. For system (2) and r satisfying Assumption 1, smooth control (31) with appropriate design param-
eters is selected such that the closed-loop system (32) is exponentially stable, and all signals are bounded, with the
exception of the angle signals ψd and ψ being finite in [t0,∞).

Proof. The proof is presented in 4 steps.
(i) Stability of the error system. Lyapunov function of the closed-loop error system (32) is

V = V1 + V2, (33)

whose derivative satisfies
V̇ 6 −cr|r̃|

2 − cvṽ
2 − cψψ̃

2 − cωω̃
2
6 −cV (34)

by combining (24) and (30), where c = 2min{cr, p1cv, cψ, p2cω}. From (33) and (34), it is easy to obtain that the

closed-loop system is exponentially stable, and r̃, ṽ, ψ̃ and ω̃ exponentially converge to zero.
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(ii) Boundedness of F . The boundedness of r, vd, and µd follows from the definitions themselves and the
boundedness of r∗ and r̃. It can be concluded from (32) and (31) that ˙̃r and µ̇d are bounded, respectively. It comes
from the definition of vd that

v̇d =
1

√

µ2
dx + µ2

dy

[µdx, µdy]µ̇d. (35)

Then we have

|v̇d| 6 |µ̇d| , (36)

which together with the boundedness of ṽ leads to the same property of v. Finally, from the boundedness of ω to
be proved in (iii), we can verify that F is bounded by its definition.

(iii) Boundedness of Γ. First, we show vd is lower bounded by a positive number. Since |r̃| exponentially converges
to zero, there exist constants ̺1 > 0 and ̺2 > 0 such that |r̃| 6 ̺1e

−̺2t, and then

vd = |µd| = | −

(

cr +
1

4d1

)

r̃ + ṙ∗| > |ṙ∗| −

(

cr +
1

4d1

)

̺1e
−̺2t.

According to the assumption |ṙ∗| > ν > 0, small enough cr and large enough d1 can be selected such that

vd > ν −

(

cr +
1

4d1

)

̺1 > 0; (37)

i.e., the positive lower boundedness of vd can be guaranteed.
It is deduced from the derivative of (13) that

µ̇dx = v̇d cosψd − vdψ̇d sinψd,

µ̇dy = v̇d sinψd + vdψ̇d cosψd,

which gives

ψ̇d =
1

vd
Λ̄⊤(ψd)µ̇d, (38)

where Λ̄(ψd) = [− sinψd, cosψd]
⊤. The lower boundedness of vd and the boundedness of µ̇d can guarantee the

boundedness of ψ̇d and ψ̈d, from which it can be seen that ωd, ω and ω̇d are all bounded. Finally, the boundedness
of Γ can be verified by its definition; therefore, τ1 and τ2 are bounded.

(iv) Finiteness of angle signals. For any finite-time T , ψd is bounded in [t0, T ], then from the boundedness of ψ̃
it is obtained that ψ is bounded on [t0, T ].

Remark 5. The finiteness of angle signals in Theorem 1 can be understood by a simple case. When system (2)
rotates around the origin with a constant angular velocity ρ on a circle, argument angle ψ = ρ(t− t0) is finite rather
than bounded while r = (x, y)⊤ is bounded on [t0,∞).

4.2 Stability analysis of position stabilization

Position stabilization (or the slight general case of set-point regulation) is discussed. It should be pointed out that
position stabilization is not performed on the overall system since the desired angle is the output of the planner.
Although the stabilization problem naturally does not satisfy the requirements of Assumption 1, it does not mean
that the controller designed for the trajectory cannot be used for stabilization problems.

Theorem 2. For system (2), in the case of ṙ∗ ≡ 0, smooth control (31) with appropriate parameters is chosen
such that closed-loop error system (32) is exponentially stable, and all signals are bounded, with the exception of
the angle signals ψd, ψ̃, and ψ being finite in [t0,∞).

Proof. The general idea is similar to the proof of the Theorem 1 with the difference in how to prove the
boundedness of ψ̇d by (38) without lower boundedness of vd. Without loss of generality, χ̃(t0) 6= 0 is assumed,
then the measure of {r̃ : r̃ = 0} equals zero in R

2, so it is possible to assume that r̃ 6= 0 during the stabilization
process. In fact, from the local Lipschitz condition and the exponential stability of the error closed loop system,
the set S = {χ̃ : χ̃ = 0} cannot be reached in finite time, according to the existence and uniqueness of the solution.
The set Sr = {r̃ : r̃ = 0} is the equilibrium of r̃-subsystem without input, then r̃ cannot remain in Sr in any finite
interval of time, since its inputs (other states of χ̃-system) are not zero.
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According to the proof of Theorem 1, the closed-loop system is exponentially stability and r̃, ṽ, ψ̃, and ω̃ expo-
nentially converge to zero. To get the conclusion of Theorem 2, we only need to focus on the situation near the
equilibrium point, i.e., the limit case. Letting the right-hand side of (32) (ṙ∗ ≡ 0) equal zero, the convergence rate
towards equilibrium of the related variables can be verified. In particular, we have

lim
t→∞

|ṽ|

|r̃|
6

1

cv
, (39)

which, together with

vd = |µd| =

(

cr +
1

4d1

)

|r̃|, (40)

and the definition of µ̃, implies

lim
t→∞

|µ̃|

vd
6

4d1
4d1cr + 1

lim
t→∞

|ṽ|

|r̃|
6

4d1
cv(4d1cr + 1)

. (41)

From the definition of ∆ and ψ̃ tending to zero, we have

lim
t→∞

|∆|

vd
= 0. (42)

Reviewing (38), (23) and (32), one can get

ψ̇d =
1

vd
Λ̄⊤µ̇d = −

(

cr +
1

4d1

)

1

vd
Λ̄⊤ ˙̃r

=

(

cr +
1

4d1

)

Λ̄⊤

((

cr +
1

4d1

)

r̃

vd
−

∆

vd
−
µ̃

vd

)

.
(43)

Substituting (40)–(42) into (43) yields

limt→∞ |ψ̇d| 6 cr +
1

4d1
+

1

cv
. (44)

The rest is the same as Theorem 1.

4.3 Robust against disturbances

The robustness analysis is also performed in two cases: trajectory tracking and stabilization.
When system (1) is disturbed by noise, the dynamic equation (2) is turned to

ṙ = vΛ(ψ),

ψ̇ = ω,

v̇ = p1F −
k0
m1

ω2 − k1v + dv,

ω̇ = p2Γ +
k0
m2

vω − k2ω + dω ,

(45)

where unknown functions dv and dω are bounded; i.e., there exist constants d̄v and d̄ω such that

|dv| 6 d̄v, |dω| 6 d̄ω.

Adding nonlinear damping terms to (31) results in a robust controller

τ1 = F + Γ, τ2 = F − Γ,

F = −(cv + d2)ṽ − r̃⊤Λ(ψ) +
1

p1
v̇d +

k0
m1p1

ω2 +
k1
p1
v,

Γ = −(cω + d3)ω̃ − ψ̃ +
1

p2
ω̇d −

k0
m2p2

vω +
k2
p2
ω,

(46)

where d2, d3 > 0 are design parameters.
With respect to the trajectory tracking, the robust adaptive controller possesses the following properties.
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Theorem 3. For system (45) and r∗ satisfying Assumption 1, a smooth control (46) with appropriate design
parameters is selected such that all signals are bounded except that the angle signals ψd and ψ are finite in [t0,∞).
The tracking error can be made arbitrarily small by tuning design parameters.

Proof. The derivative of (33) satisfies

V̇ 6 −cV + d, (47)

where d = d̄2v/4d2 + d̄2ω/4d3. According to the assumption |ṙ∗| > ν > 0, as in (37), a small enough cr and a large
enough di (i = 1, 2, 3) can be chosen such that

vd > ν −

(

cr +
1

4d1

)

̺1 − d̄ > 0, (48)

where d̄ depends on d/c; i.e., the positive lower boundedness of vd can be guaranteed by selecting controller
parameters.

With respect to the set-point regulation/stabilization, the robust adaptive controller has the following properties.

Theorem 4. For system (2), in the case of ṙ∗ ≡ 0, a smooth control (46) with appropriately designed parameters
is selected such that in the closed-loop system,

(1) signals r, vd, v, and F are bounded,

(2) the tracking error can be made arbitrarily small by tuning design parameters, and

(3) the angle signals ψd, ψ, ωd, and Γ are finite.

Proof. Proof of (1) and (2) is similar to the tracking case and is omitted, and only outline (3) is presented.
Without loss of generality, it can be assumed that the existence of disturbance will avoid the state staying at the
origin for a finite interval; i.e., the measure of vd = 0 equals zero. Therefore, in any finite interval, the existence of
ψd can be guaranteed, then ψ is finite, which means the variables in Γ are finite, then Γ is finite.

Remark 6. Compared with Theorem 3, no lower boundedness of vd can be obtained in Theorem 4, then only
finiteness of Γ is proved in the case of stabilization and regulation. In practice, for a short interval [t0, t0 + T ], the
finiteness can be seen as the boundedness.

Remark 7. By replacing the discontinuous function atan2 with the smooth function atan3, the under-actuated
problem can be changed into the full-actuated problem, and a smooth and time-invariant controller is designed.
Brockett’s condition in [34] shows that nonholonomic systems cannot be stabilized by continuous time-invariant
state feedback. The topological obstacles given by [35] indicate that a mechanical system with rotational degrees
of freedom does not have a globally asymptotically stable equilibrium point. This result does not contradict with
these two references because only position r = (x, y) of configuration (x, y, ψ)⊤ is regulated to r∗, and attitude ψ is
required to follow the output of the planner.

Consider the realization of some derivative signals in the controller: ψ̇d, v̇d and ω̇d. Although the analytic expres-
sions of these signals can be presented by using partial differential operators, such expressions have a complicated
structure. This prompts us to introduce filters to obtain satisfactory approximate results. As in [36, 37], three
commanding filters are presented as follows:

ψ̇cd = κ1(−ψcd + ψd),

v̇cd = κ2(−vcd + vd),

ω̇cd = κ3(−ωcd + ωd),

(49)

where sufficiently large κi (i = 1, 2, 3) is required, then ψd, vd, and ωd in controller can be replaced respectively by
ψcd, v

c
d, and ω

c
d, respectively, therefore results in Theorems 3 and 4 are still valid.

5 Adaptive control

In system (2), parameters p1, p2, k1, and k2 are determined by the radius and the inertia of the wheel, the mass,
the inertia and the width of the vehicle, the resistance coefficient, which often change from the normal values. In
an extreme case of all system parameters of WMRs being unknown, an adaptive controller is designed to perform
stabilization and trajectory tracking.

Assumption 2. For system (45), p1, p2, k1, and k2 are all unknown constants.
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In (31), the controller τ = (τ1, τ2)
⊤ can be rewritten as

τ1 = F + Γ, τ2 = F − Γ,

F = −cvṽ − r̃⊤Λ(ψ) + θ⊤1 Φ1,

Γ = −cωω̃ − ψ̃ + θ⊤2 Φ2,

(50)

where Φ1 = [ω2, v, v̇d]
⊤, Φ2 = [−vω, ω, ω̇d]⊤, and the lumping parameters θ1 and θ2 are

θ1 =

[

k0
m1p1

,
k1
p1
,
1

p1

]⊤

, θ2 =

[

k0
m2p2

,
k2
p2
,
1

p2

]⊤

which prompt us to construct adaptive laws for θ1 and θ2 when they are unknown.
Lyapunov function can be obtained by adding the adaptive error terms to the original form as

V =
1

2
r̃⊤r̃ +

1

2p1
ṽ2 +

1

2
γ1θ̃

⊤
1 θ̃1 +

1

2
ψ̃2 +

1

2p2
ω̃2 +

1

2
γ2θ̃

⊤
2 θ̃2, (51)

where θ̃1 = θ̂1 − θ1, θ̃2 = θ̂2 − θ2, θ̂1 and θ̂2 are estimates of θ1 and θ2, respectively, and γ1 > 0, γ2 > 0 are design
parameters. The derivative of (51) along with (32) satisfies

V̇ = r̃⊤ (µd − ṙ∗ + µ̃+∆)

+ ṽ

(

F +
k0
m1p1

ω2 −
k1
p1
v −

1

p1
v̇d

)

+ γ1θ̃
⊤
1
˙̂
θ1 + ψ̃(ωd − ψ̇d + ω̃)

+ ω̃

(

Γ−
k0
p2
vω −

k2
m2p2

ω −
1

p2
ω̇d

)

+ γ2θ̃
⊤
2
˙̂
θ2.

(52)

Following a similar line as that in the last section, one can derive

V̇ 6 r̃⊤
(

µd − ṙ∗ +
1

4d1
r̃

)

+ ṽ(F + r̃⊤Λ(ψ)− θ⊤1 Φ1)

+ d1(vd)
2ψ̃2 + γ1θ̃

⊤
1
˙̂
θ1 + ψ̃(ωd − ψ̇d)

+ ω̃(Γ + ψ̃ − θ⊤2 Φ2) + γ2θ̃
⊤
2
˙̂
θ2.

(53)

Select a robust adaptive control as

F = −(cv + d2)ṽ − r̃⊤Λ(ψ) + θ̂⊤1 Φ1,

Γ = −(cω + d3)ω̃ − ψ̃ + θ̂⊤2 Φ2,

˙̂
θ1 = −σ1θ̂1 + ṽγ−1

1 Φ1,

˙̂
θ2 = −σ2θ̂2 + ω̃γ−1

2 Φ2,

(54)

where σ1, σ2 > 0, γ1, γ2 > 0 are design parameters, such that Eq. (53) can be rewritten as

V̇ 6 −cr|r̃|
2 − cvṽ

2 − cψψ̃
2 − cωω̃

2

−
1

2
σ1γ1|θ̃1|

2 −
1

2
σ2γ2|θ̃2|

2 +
1

4d2
d̄2v

+
1

4d3
d̄2ω +

1

2
σ1γ1|θ1|

2 +
1

2
σ2γ2|θ2|

2

6 −cV + d, (55)

where c = min{2cr, 2p1cv, 2cψ, 2p2cω, σ1, σ2} and d =
d̄2
v

4d2
+

d̄2
ω

4d3
+ 1

2σ1γ1|θ2|
2 + 1

2σ2γ2|θ2|
2.



Wu Z J, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112208:14

Figure 6 Drive WMRs along a prescribed trajectory.

Closed-loop error system for stability analysis can be summarized as follows:



















































˙̃r = −

(

cr +
1

4d1

)

r̃ + µ̃+∆,

˙̃v = −cvṽ + r̃⊤Λ(ψ) + θ̃⊤1 Φ1,
˙̃ψ = −cψψ̃ − d1(vd)

2ψ̃ + ω̃,

˙̃ω = −cωω̃ − ψ̃ + θ̃⊤2 Φ2,
˙̃
θ1 = −σ1θ̂1 − ṽγ−1

1 Φ1,
˙̃
θ2 = −σ2θ̂2 − ω̃γ−1

2 Φ2.

(56)

The following theorem shows that controller (54) satisfies the certain equivalence principle.

Theorem 5. For system (45) under Assumption 1 (or ṙ∗ ≡ 0) and Assumption 2, a smooth control (54) with
appropriate design parameters is selected such that all signals of the closed-loop system (56) are bounded except for
the angle signals ψd and ψ are finite in [t0,∞). The tracking error can be made arbitrarily small by tuning design
parameters.

Proof. From (51) and (55), the results can be proved by following the same steps as Theorems 1–4.

6 Simulation

In order to demonstrate that the efficiency of the controller proposed, 3 simulations are presented for the same
WMRs. The system parameters of system (1) are lb = 0.4, ld = 0.1, lw = 0.1, mc = 4, mw = 0.5, Ic = 1, Iw =
0.001, Im = 0.001 and damping coefficient dp = 0.1, which mean that k0 = 0.005, k1 = 3.937, k2 = 2.2222, p1 =
3.937, p2 = 5.5556, θ1 = [0.02, 1, 0.254]⊤, and θ2 = [0.05, 0.4, 0.18]⊤.

To verify the effectiveness of the adaptive tracking control, we conduct the first simulation.

Simulation 1. As shown in Figure 6, the coordinate system is established as XOY , and the WMR is driven
along a prescribed trajectory. Control tasks: The vehicle starts from S to A parallel to the X-axis, then turns to
B, through C,D,E, F,G,H in turn, and reaches I. Every turning radius is r0, the angles of the four corners are

φ1 to φ4, and the linear velocity in any stage equals vs. The travel times in
−→
SA,

−−→
AB,

−−→
BC,

−−→
CD,

−−→
DE,

−−→
EF ,

−−→
FG,

−−→
GH ,

−→
HI are T1 to T9, respectively. All parameters of the system are unknown for the designer of the controller.

Controller (54) as well as commanding filters in (49) are chosen to achieve the task. During simulation, we take the
parameters of trajectory vs = 5, r0 = 5.2, φ1 = φ2 = π

2 , φ3 = 5π
12 , φ4 = 7π

12 , T1 = T3 = T5 = 10, T7 = 6.3, T9 = 7.3,
and figure out the time of the turn T2 = T4 = π

10 , T6 = π

12 , T8 = 7π
60 . Controller parameters: cr = 0.01, cv = 10,
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Figure 7 (Color online) Results of Simulation 1: adaptive trajectory tracking control.

cψ = 0.01, cω = 10, κ1 = κ2 = κ3 = 10, d1 = 0.5, d2 = d3 = σ1 = σ2 = 0, γ1 = γ2 = 103. Initial values: x0 = −28.4,
y0 = −12, vx0 = 0, vy0 = 0, ψ0 = 0, ω0 = 0 and take initials θ1(0), θ2(0) as 60% of the true values.

The simulation results are shown in Figure 7. The torque is larger in the initial stage and at the turning points,
which is completely consistent with the experience of human driving.

To verify the necessity of introducing atan3, we present the second simulation.
Simulation 2. In Simulation 1, atan3 in control (54) is replaced with atan2; i.e., let

ψd = atan2 (µdy(t), µdx(t)) ,

the rest remains unchanged, and the simulation results are shown in Figure 8. When ψ first reaches π at about
moment 23.5, the robot begins trapping in intense oscillations. This shows the necessity of introducing atan3 to
replace the traditional function atan2.

To show the compatibility of the controller on trajectory tracking and stabilization, we perform the third simu-
lation.
Simulation 3. A new task is added to Simulation 1: once the vehicle reaches point I, it is further stabilized at the
origin O during the time interval T10. Let T10 = 4 and set controller parameters to be the same as in Simulation
1. Simulation results are shown in Figure 9, and it can be seen that there are overshoots of torques in the initial
stage of the stabilization. This means that we can perform the trajectory tracking and stabilization with the same
control.

Other simulations, such as robustness, can be performed and are omitted due to space limitations.

7 Conclusion

In this paper, the unified design of a trajectory tracking and stabilization controller for nonholonomic WMRs based
on an attitude planner is studied. To this end, via switching between two discontinuous functions with 180◦ phase
difference, a smooth argument function atan3 with range (−∞,∞) is obtained, as the generalization of atan2 with
range (−π,π) and atan with (−π/2,π/2). The attitude planner is constructed based on atan3, such that the yaw
angle becomes a maneuvering variable and under-actuated control turns into a full-actuation form, which results
in a hierarchical control, a standard modular design. As one advantage of the modular design, the controller can
be retrofitted for WMRs with unknown parameters and disturbances. Wide applications of the mathematical tool
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Figure 8 (Color online) Results of Simulation 2: performance degradation due to replacing atan3 with atan2.

Figure 9 (Color online) Results of Simulation 3: trajectory tracking is augmented by adding a regulating procedure (last for 4 s).

atan3 are to be found in the future, such as exploring to resolve topological obstacle problems, such as the deadlock
and the unwind in attitude control researched in [38, 39].
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