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Abstract Fault reconstruction identifies fault types by seeking a particular fault subspace that can effectively eliminate the alarm

signal. A reconstruction model based on kernel independent component analysis (KICA) is proposed to address the non-Gaussian and

nonlinear characteristics in fault diagnosis. However, nonlinear faults are characterized by nonlinear subspaces, which typically exhibit

high dimensionality, contributing to increased spatial requirements and computational complexity. Moreover, commonalities among

different subspaces may cause the same alarm signal to be eliminated by multiple subspaces, introducing uncertainty into the diagnostic

process. To address these issues, a reduced KICA reconstruction modeling approach with dual attributes (RD-KICA) for fault diagnosis is

proposed in this paper. An undersampling method is investigated to construct a less numerous but informative training set, such that the

dimensionality of extracted subspaces is significantly reduced. The ideas of fault reconstruction and pattern classification are incorporated

within the same framework, allowing their advantages to be complementary. Furthermore, the fault magnitude is supplemented as another

attribute and used to train Bayesian classifiers for further diagnosis. Finally, several experiments on a numerical simulation, Tennessee

Eastman process (TEP), and a rocket servo system are performed to validate the efficiency and benefits of the proposed method.
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1 Introduction

Fault diagnosis is a key technology to ensure the safe and stable operation of complex systems. Recently, data-driven
methods have gained significant attention due to their ability to dispense with the need for precise mathematical
models and prior knowledge [1]. This approach leverages the vast amounts of process data generated by contempo-
rary distributed systems in industrial processes, offering a promising and feasible means to extract valuable fault
information [2].

Fault reconstruction is a typical data-driven approach to fault diagnosis, which originates from statistical process
monitoring (SPM). The essence of this approach lies in the consensus that the historical fault data encapsulates the
key fault characteristics. Through singular value decomposition (SVD) applied to labeled historical fault datasets,
distinctive feature vectors characterizing different failure modes can be extracted, subsequently forming fault sub-
spaces. It is noteworthy that within this framework, each fault category is mathematically represented by its
corresponding fault subspace, where the precision of this representation directly dictates diagnostic reliability. Dur-
ing online diagnosis, these fault subspaces are utilized to reconstruct fault samples. If the alarm signal of a fault
sample can be eliminated by a certain subspace, we can classify this fault sample as the type associated with this
subspace. Over the past two decades, several advances [3–5] have been made in the study of fault reconstruc-
tion, but most of them are based on principal component analysis (PCA) or projection to latent structure (PLS).
However, these methods primarily use first- and second-order information, insufficient for non-Gaussian processes.
Furthermore, PCA- and PLS-based methods require the assumption of a multi-variate Gaussian distribution for
estimating control limits, leading to potentially inaccurate limits for non-Gaussian processes [6].

In practice, process data often deviate from a strict Gaussian distribution. In such cases, ICA is a suitable
alternative because it can effectively utilize the higher-order information in non-Gaussian data to extract mutually
independent components. Moreover, there is a complex nonlinear relationship between the fault data and fault
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Table 1 The advantages and disadvantages of fault reconstruction and pattern classification.

Method Advantages Disadvantages

Fault reconstruction (1) Effective identification of unseen faults. (1) Low diagnostic accuracy for historical faults.

(2) Better interpretability.
(2) Diagnostic accuracy depends heavily on the precise fault

representation of the fault subspaces.

Pattern classification (1) High diagnostic accuracy for historical faults. (1) Unable to identify unseen faults.

(2) Numerous optional classifier models.
(2) Diagnostic accuracy depends on the completeness of the

historical fault datasets.

(3) Easy to fall into overfitting.

characteristics, so linear models may fail to capture these nonlinear characteristics [7]. Hence, kernel ICA (KICA) [8]
was investigated as an effective method for nonlinear and non-Gaussian processes. Numerous derivations of KICA
have been reported, including performance-relevant KICA [9], Fractal dimension-based dynamic kernel independent
component regression [7], and Gaussian mixture model-based weighted KICA [6]. As for the representative studies
of fault diagnosis, Azim and Sarath [10] extracted independent features using ICA, and then employed long short-
term memory (LSTM) networks and artificial neural networks for fine classification, which is suitable for machinery
fault diagnosis. Kong et al. [11] extended linear fault reconstruction to kernel dynamic ICA and developed a residual
reduced fault subspace (RRFS) extraction method. However, there are still two issues requiring further research.

(1) The fault subspaces extracted from nonlinear models often exhibit excessively high dimensions, leading to
significant spatial consumption and a consequent increase in computational complexity.

(2) In practice scenarios, industrial systems often employ redundant designs for critical components. While
redundancy improves fault tolerance, it also introduces fault propagation paths and coupling effects between inter-
connected subsystems. For example, subsystems such as powertrain, braking system, and electronic control system
are functionally interdependent. A fault in one subsystem may propagate to others through energy transfer, signal
interference, or cascaded control logic, leading to cross-coupled faults. Consequently, the monitored variables (e.g.,
temperature, pressure, vibration signals) associated with different fault modes often exhibit significant overlaps [12].
These overlaps subsequently lead to commonalities among fault subspaces, introducing uncertainty in the diagnosis
process.

As pointed out by Melani et al. [13], no single fault diagnosis method can have all the desired performance,
including fast diagnosis capability, robustness, and multiple fault identifiability. The future direction is hybrid
solutions, where two or more methods are integrated to complement each other and overcome the limitations of
a single method. Motivated by this direction, we attempt to find another diagnosis solution and then integrate it
into the framework of the fault reconstruction. Pattern classification, a common type of fault diagnosis method,
is a suitable choice. These pattern classification-baseds approaches use historical measurements with different
labels to train the model, and then various classifiers, such as Bayesian inference [14, 15], minimax probability
machine [16], AdaBoost [17], discriminant function [18], and deep learning [19,20], are employed for fault diagnosis.
However, a common problem faced by pattern recognition-based methods in fault diagnosis is the inability to
identify unseen faults. Here, the “unseen faults” refers to the faults that are unprecedented in the system and, as
a result, has not been included in the model’s training process. Correspondingly, faults that have occurred and are
included in the training are referred to as “historical faults”. Fault reconstruction and pattern classification form
a complementary relationship in fault diagnosis. Their respective advantages and disadvantages and application
scenarios are summarized in Table 1.

To address the two issues abovementioned, in this study, a reduced reconstruction modeling approach with dual
attributes based on KICA (RD-KICA) is proposed for fault diagnosis of nonlinear and non-Gaussian processes. The
main innovations of this study are outlined as follows.

(1) Low-complexity reconstruction modeling with undersampling preprocessing. Unlike existing KICA variants that
directly build models on high-dimensional training data, the RD-KICA introduces an undersampling preprocessing
based on the feature vector selection (FVS), and develops a reduced reconstruction modeling, which enables efficient
online diagnosis while maintaining detection accuracy.

(2) Fault representation with dual attributes. Departing from existing KICA variants that solely rely on fault
subspaces for characterization, RD-KICA innovatively represents each fault type with dual attributes: fault subspace
and fault magnitude. Specifically, the fault subspace is used for fault reconstruction, while the fault magnitude is
used to train a Bayesian classifier. This representation allows the classifiers to re-diagnose in situations where faults
cannot be distinguished by fault subspaces.

(3) A diagnostic strategy fusing reconstruction and pattern classification. Different from existing KICA methods,
which rely solely on fault reconstruction for online diagnosis, RD-KICA designs a unified diagnosis strategy that
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fuses fault reconstruction and pattern classification. In this strategy, the fault subspace is first applied for initial
diagnosis, and the classifier is activated for re-diagnosis in the presence of uncertainty. This hierarchical diagnosis
strategy combines the strengths of both approaches, improving fault diagnosis accuracy, enhancing the ability to
deal with unseen faults, and overcoming the uncertainty of traditional KICA methods during the online diagnosis.

The remainder of this paper is structured as follows. Section 2 provides an overview of fault detection based on the
KICA. Section 3 details the undersampling and fault library building of the proposed RD-KICA methodology, along
with the diagnosis strategy and computational complexity analysis. In Section 4, the simulations and applications
conducted on a numerical example, the Tennessee Eastman process (TEP) industrial benchmark, and a rocket servo
system are presented. Finally, Section 5 summarizes the conclusion and prospects.

2 Preliminaries

KICA is an extension of ICA that accounts for nonlinearity. A training sample matrix with N samples and m
variables is

X = [x1,x2, ...,xN ] ∈ R
m×N . (1)

The core of KICA is mapping the sample matrix X into the high-dimensional feature space Φ = [φ(x1), φ(x2), ...,
φ(xN )], where φ(·) is a nonlinear mapping function. Due to the difficulty of explicitly expressing φ(·), the radial
basis kernel function is generally used to compute the Gram matrix K = ΦTΦ, the (i, j)th element of which can

be computed as k(xi,xj) = exp(−‖xi − xj‖2/σ), where σ is the kernel parameter.

After mean centering and scaling, for decorrelation purposes, the Gram matrix K is eigenvalue decomposed as

µivi = Kvi, (2)

where µi and vi are eigenvalue and eigenvector, respectively. Typically, the largest p eigenvalues and their cor-
responding eigenvectors, which satisfy the condition µi/

∑N
j=1 µj > 0.0001, are used to construct the whitening

matrix as

P =
√
NΦHΛ−1, (3)

where H = [v1,v2, ...,vp] and Λ = diag(µ1, µ2, ..., µp). Thus, the whitened score matrix can be defined as

Z = PTΦ =
√
NΛ−1HTΦTΦ =

√
NΛ−1HTK. (4)

To maximize the non-Gaussianity of independent components, FastICA [21] is implemented to calculate the
direction matrix W , and the specific procedure can be found in [8]. The ICs of a certain sample x can be expressed
as

s = WTz = WT
√
NΛ−1HT[k(x1,x), ..., k(xN ,x)]

T
= Qkx, (5)

where Q =
√
NWTΛ−1HT is the demixing matrix, z and kx is whiten score vector and kernel vector, respectively.

To monitor the systematic and nonsystematic changes in nonlinear processes, two statistics are defined as follows:

{

I2(x) = kT
xQ

TQkx =
∥

∥Σ1/2kx

∥

∥

2
,

SPE(x) = zT(I −WWT)z,
(6)

where Σ = QTQ is a coefficient matrix, and I is a unit matrix. Kernel density estimation (KDE) is utilized to
determine the control limits I2limit and SPElimit due to not being limited to any particular distribution.

3 Methodology

In this section, the motivations and implementations of undersampling and fault representation with dual attributes
are detailed, along with the fault diagnosis strategy and computational complexity analysis.
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Figure 1 (Color online) Schematic diagram of the FVS.

3.1 Problem statements and motivations

In response to the two issues mentioned in Section 1, it is necessary to investigate a fault diagnosis method that
can both reduce computational complexity and improve accuracy, and we may need to delve into the following two
questions.

(1) What is the primary factor contributing to the high complexity? How can it be effectively alleviated?

The nonlinear fault subspaces are extracted from the kernel matrix by SVD in the Hilbert space. This manner
of extraction makes the fault subspace computationally as large as the number of all training samples even at the
testing phase [22], leading to high complexity. Knowing that the kernel matrix is spanned by the raw data, it is
reasonable to believe that the kernel matrix is rank-deficient. Thereby, does there exist a basis that approximates
all samples in the Hilbert space?

Motivated by the consensus that the generalization capacity relies on the geometric properties of the training
data rather than their dimensionality [23], we seek feature vectors (FVs) that can adequately represent all other
data. As depicted in Figure 1, in the two-dimensional X-Y plane, any two non-collinear pairs of vectors (e.g., u1

and u4) are sufficient to form a basis representing all other vectors. When the space expands from two-dimensional
to three-dimensional X-Y -Z space, it is necessary to combine u1, u4, and a new vector u5 to form a new basis.
In this manner, by utilizing these chosen FVs to span a reduced kernel matrix, we can extract subspaces within it,
significantly reducing the dimensionality of the subspaces.

(2) When the fault subspace is insufficient for accurate fault diagnosis, are there any other fault attributes that
can aid in fault identification?

For different fault types with serious overlap, such as IDV(4) and IDV(11) in TEP, their associated faulty variables
also remain consistent [12]. This serious overlap leads to significant commonalities among different subspaces. As
a result, the fault effect of one sample can be eliminated by multiple subspaces, as depicted in Figure 2. These
samples are known under ill conditions, and their statistics effectively indicate the presence of the fault, as marked
by the black line. From Figure 2, it can be found that fault samples can be recovered by both subspaces A and
B. This situation leads to uncertainty as to whether these samples belong to fault A or B. In this situation, are
there any other fault attributes, apart from the subspace, that can aid in fault identification? Inspired by the fault
geometric depiction in [24], i.e., x = x∗ +Ξf , where x∗ and Ξf refer to fault-free and faulty-parts, respectively,
we can find that there are two key factors responsible for the fault: Ξ and f . From the perspective of physical
properties, the fault subspace is a low-dimensional feature extracted from fault samples, consisting of multiple
singular vectors. Therefore, it indicates the direction information of the fault. The fault magnitude indicates the
strength or degree, providing quantitative information to help distinguish the different severity levels of the fault.
The combination of the two is complementary, retaining both directional information and increasing magnitude
quantification information, thereby improving the accuracy of classification or detection.

As we know, the magnitude f has never received attention in existing research. In this study, we supplement
magnitude f as another attribute to assist fault diagnosis, and propose a novel fault representation method with
dual attributes.
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Figure 2 (Color online) The uncertainty situation in fault reconstruction.

3.2 Undersampling the training set using FVS

FVS [25] iteratively selects the samples that are farthest from the span of the current FVs as the next FV, until all
samples can be represented as linear combinations of the selected FVs. Such that the information contained in the
original training set X = [x1, ...,xN ] is maximally preserved. By doing so, the representative samples, i.e., FVs,
can be screened and form a reduced training set XS = [xS

1 , ...,x
S
NS

] (NS 6 N). For given FVs XS = [xS
1 , ...,x

S
NS

],
the kernel vector of any other samples xi can be estimated as a linear combination:

ϕ̂(xi) = ΦS · ai, (7)

where ΦS = [φ(xS
1 ), ..., φ(x

S
Ns

)] is the kernel matrix of the XS, and ai = [ai1, ..., aiNs]
T is the coefficient vector.

Next, a factor δi [21] is defined to measure collinearity between real kernel vector ϕ(xi) and estimated kernel vector
ϕ̂(xi):

δi =
‖ϕ(xi)− ϕ̂(xi)‖2

‖ϕ(xi)‖2
=

(ϕ(xi)−ΦS · ai)
T
(ϕ(xi)−ΦS · ai)

‖ϕ(xi)‖2
. (8)

Notably, a smaller value of δi indicates a smaller angle between ϕ(xi) and ϕ̂(xi), implying a stronger collinearity.
Hence, the goal is to find the coefficient vector ai that minimizes the δi. Setting the derivation of δi to zero yields:

∂δi
∂ai

=
2(ΦT

SΦS)ai − 2ΦT
Sϕ(xi)

ϕ(xi)
Tϕ(xi)

= 0, (9)

∂δi
∂ai

= 0 ⇒ ai = (ΦT
SΦS)

−1
ΦT

Sϕ(xi), (10)

where (ΦT
s ΦS)

−1
exists if the FVs are linearly independent. Substituting (10) into (8), it holds that

min δi = 1− ϕ(xi)
T
ΦS

(

ΦT
SΦS

)−1
ΦT

Sϕ(xi)

‖ϕ(xi)‖2
. (11)

Let

KS,S = ΦT
SΦS = {k(xS

p ,x
S
q )}, (12)

kS,xi
= ΦT

Sϕ(xi) = {k(xS
p ,xi)}, (13)
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where 1 6 p 6 NS, 1 6 q 6 NS , KS,S refers to the matrix of dot products of FVs, and kS,xi
refers to the vector of

dot products between xi and FVs. Thus, Eq. (11) can be rewritten as

min δi = 1−
kT
S,xi

K−1S,SkS,xi

kxi,xi

. (14)

The goal is to find the set XS that minimizes (14) over all samples xi ∈ X :

min
XS

(

∑

xi∈X

(

1−
kT
S,xi

K−1S,SkS,xi

kxi,xi

)

/N

)

. (15)

Define the global fitness J∗S and local fitness JS(xi) for a given XS as

J∗S =
1

N

∑

xi∈X

JS(xi), (16)

JS(xi) =
kT
S,xi

K−1S,SkS,xi

kxi,xi

. (17)

Then, the goal of (15) can be transformed as

max
XS

(J∗S) . (18)

The selection of the set XS is iterative and follows a sequential forward selection, which tends to select FVs that
are close to orthogonality. The pseudo-code of this procedure is provided in Algorithm 1. In the first iteration, we
look for the sample that yields the maximum J∗S . For all subsequent iterations, the next FVs are determined by
selecting the sample that provides the minimum JS(xi). The iterative selection procedure terminates when KS,S

is not invertible, indicating that the current XS is a good approximation basis for the original training set X [25].
Since FVS significantly reduces the data size, it is used for undersampling the training data without losing the

informative data, therefore reducing the computational complexity.

Algorithm 1 Iterative selection procedure of the FVS.

Input: original training set X = [x1, ...,xN ], reduced training set XS = [ ], temporary vector JS all = [ ].

Steps:

First FV :

1. for i = 1 to N ;

2. XS = {xi}, calculate J∗

S with respect to the present XS , and restore it into a vector: JS all(i)← J∗

S ;

3. endfor

4. Select the sample xk that yields the maximum J∗

S as the first FV, and add it into XS : XS = [xk : J∗

S(xk) = max({JS all(j)})];

5. Delete the FVs from X: X = X\XS ;

Subsequent FVs:

6. while KS,S is invertible;

7. Calculate the JS(xi) for all samples xi in X with respect to the present XS ;

8. Select the sample xk that provides the minimum JS(xi): JS(xk) = min({JS(xi)}),xi ∈ X;

9. Add xk into set XS : XS = {XS ,xk};

10. Delete FVs from X: X = X\XS ;

11.endwhile.

Output: reduced training set XS .

3.3 Fault library building with dual attributes

When different fault types encounter serious overlap, there exists uncertainty in identifying the specific fault type.
To tackle this issue, a fault library with dual attributes is built in this subsection. In contrast to traditional
reconstruction-based methods, we not only extract the fault subspace for each fault type, but also the fault magni-
tudes, which are utilized to train a classifier. In this study, we choose Bayesian binary classifier (BBC) due to its
simple implementation and high interpretability. It also allows us to dynamically adjust candidate fault types based
on the reconstructed results during online diagnosis. This adaptability makes it particularly suitable for the fault
re-diagnosis task in our study. This approach endows each fault type with dual diagnostic bases: fault subspace
and BBC. When it is difficult to make an accurate diagnosis only relying on fault subspace, BBC can be used for
re-diagnosis, so as to enhance the accuracy and reliability of fault diagnosis.
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3.3.1 Extraction of fault subspaces

Supposing the kth type fault set is X
(k)
f (k = 1, ..., c), and its kernel matrix is K

(k)
f , then the independent subspace

can be expressed as

K̂
(k)
f = AQK

(k)
f , (19)

where A = HΛW /
√
N is the mixing matrix. Perform SVD on K̂

(k)
f as follows:

K̂
(k)
f = UDS, (20)

where U = [u1, ...,uNS
] is the left singular matrix. Notably, ui is arranged in descending order according to singular

values. D and S are the singular value matrix and the right singular matrix, respectively. Fault subspace consists
of the ui corresponding to the first θk singular vectors, i.e., Ξk = [u1, ...,uθk ]. For the fault sample x, its kernel
vector can be formulated as a sum of fault-free part k∗ and faulty part Ξkf :

k = k∗ +Ξkf , (21)

where Ξk ∈ R
NS×θk and f ∈ R

θk×1 are the fault subspace and magnitude, respectively. Due to the assumption
that k∗ is the fault-free part, its statistic should be as small as possible. In this study, we take the I2 statistic as
an example, and the estimation of f can be regarded as an extremum problem:

J(f) = argmin
f

{I2(k∗)} = argmin
f

{

∥

∥

∥
Σ1/2(k −Ξkf)

∥

∥

∥

2
}

, (22)

which is an unconstrained least-squares issue with the following analytical solution [3]:

f = (ΞT
k
ΣΞk)

†
ΞT

k
Σk. (23)

θk should be set to the minimum dimension that makes the fault reconstruction rate (FRR) up to a default ς , and
the FRR is defined as

FRR = Nfn/Nf × 100%, (24)

where Nfn represents the number of fault samples recovered, and Nf refers to the total number of fault samples.

3.3.2 Construction of Bayesian binary classifiers

After extracting the fault subspace, this subsection details how to construct a BBC based on fault magnitudes,
taking the kth fault as an example. First, we reconstruct all historical faulty samples with the kth fault subspace
Ξk according to (23), and record their corresponding magnitudes into two vectors. The fault magnitudes for the
kth and non-kth fault samples are defined as follows:

Fk = [fk,1, ...,fk,Nk
] ∈ R

θk×Nk , (25)

Fnk = [fnk,1, ...,fnk,Nnk
] ∈ R

θk×Nnk , (26)

where fk,i denotes the fault magnitude corresponding to the Ξk of the ith sample labeled as the kth fault, and
fnk,i denotes that of the ith sample labeled as non-kth fault; Nk and Nnk represent the number of historical
labeled samples of the kth and non-kth fault, respectively. Second, to ensure the balance of the positive and
negative samples, we randomly select min{Nk, Nnk} samples from Fk/Fnk as positive/negative samples, which
are still defined as Fk and Fnk for ease of presentation. Such a treatment can avoid the degradation of classifier
performance caused by imbalance. Finally, Fk and Fnk are used as positive and negative samples to construct the
BBC, which can provide a probability of belonging to the kth fault for each sample.

Assuming that the fault magnitude of sample x reconstructed by subspace Ξk is f , the probability of which
belongs to the kth fault can be expressed as

p(x ∈ ck) =
p(f |ck)p(ck)

p(f |ck)p(ck) + p(f |cnk)p(cnk)
, (27)

where p(ck) and p(cnk) denote the prior probabilities of positive and negative samples, respectively, which are equal
to 0.5 in this study since samples have been balanced as described in the previous paragraph. The p(f |ck) and
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p(f |cnk) denote the conditional probability density of positive and negative samples, respectively. Since the specific
distributions of Fk and Fnk are unknown, we employ the Parzen window [26], a nonparametric KDE method, to
estimate the probability density as follows:

p(f |ck) =

N∗

k
∑

i=1

exp
(

− 1
2 (f − fk,i)

T
S−1Fk

(f − fk,i)
)

N∗k ×
√

(2π)θk ×
∣

∣SFk

∣

∣

, (28)

p(f |cnk) =

N∗

k
∑

i=1

exp
(

− 1
2 (f − fnk,i)

T
S−1Fnk

(f − fnk,i)
)

N∗k ×
√

(2π)
θk ×

∣

∣SFnk

∣

∣

, (29)

where N∗k = min{Nk, Nnk}, SFk
and SFnk

are the covariance matrices of Fk and Fnk, respectively. Thus, we can
construct a BBC for the kth fault, defined as Πk.

Up to this point, each type of fault has a fault subspace and a BBC associated with it, and a complete fault library,
denoted as {{Ξ1,Π1}, ..., {Ξc,Πc}}, can be built. This enhanced fault library will further guide the subsequent
online fault diagnosis.

3.4 Online fault diagnosis strategy

For a given fault sample xnew, its centered and scaled kernel vector is defined as knew. For Ξk, according to (23)
and (6), its fault magnitude and the reconstructed statistic can be calculated as

fnew,k = (ΞT
k ΣΞk)

†
ΞT

k Σknew, (30)

I2(k)(k
∗
new) =

∥

∥

∥
Σ1/2(knew −Ξkfnew,k)

∥

∥

∥

2

. (31)

Following (30) and (31), we reconstruct knew in turn with {Ξ1, ...,Ξc}, and record all reconstructed I2 statistic
as

Inew =
[

I2(1)(k
∗
new), ..., I

2
(c)(k

∗
new)

]

. (32)

To determine the fault type, it is necessary to count the number of subspaces in which the sample xnew can be
reconstructed below the I2limit:

Cnew =

c
∑

k=1

I

(

I2(k)(k
∗
new) < I2limit

)

, (33)

where I(·) is an indicator function. If it holds that I2(k)(k
∗
new) < I2limit, then I

(

I2(k)(k
∗
new) < I2limit

)

= 1, otherwise,

I

(

I2(k)(k
∗
new) < I2limit

)

= 0.

There are following three cases when analyzing Cnew.
(1) Cnew = 0. This means that these subspaces cannot effectively reflect the fault information of xnew. In this

case, we can consider the sample xnew as an unseen fault. In order to ensure the completeness of the fault library,
the system should trigger an “unseen fault” alert. It is then necessary to remind the practitioner to collect fault
samples and extract the corresponding fault subspaces and fault magnitudes, which are then integrated into the
fault library, enabling dynamic updates and progressive improvement.

(2) Cnew = 1. This means that only one subspace can reconstruct xnew below the control limit I2limit, which
indicates that this subspace can uniquely reflect the fault characteristics. Therefore, we can classify xnew as the
fault type corresponding to this subspace, i.e.,

Γ (xnew) =
{

k
∣

∣

∣
I

(

I2(k)(k
∗
new) < I2limit

)

= 1
}

, (34)

where Γ (xnew) refers to the fault type of xnew.
(3) Cnew > 1. This means that multiple subspaces can reconstruct xnew below the control limit I2limit. In this

case, further analysis based on the BBC in the fault library is needed. Assume that xnew can be reconstructed

below the I2limit by
{

Ξ(1), ...,Ξ(α)
}

, and the corresponding magnitudes are recorded as f
(1)
new, ...,f

(α)
new. Notably, Ξ(1)

here is not the same as Ξ1. Ξ
(1) represents the first subspace that can reconstruct xnew below the I2limit, and it can
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Figure 3 (Color online) Flowchart of the proposed RD-KICA.

Table 2 The number of flops needed during online fault diagnosis.

Main time-consuming steps KICA RD-KICA

Calculate kernel vector knew and scale it O(mN + N2) O(mNS + N2

S)

Calculate the I2 for the knew O(N2) O(N2

S)

Calculate the fault magnitude fnew,k O(N2 + N2θk + Nθ2

k + θ3

k) O(N2

S + N2

Sθk + NSθ2

k + θ3

k)

Reconstruct the knew and calculate the reconstructed I2 statistic O(N2 + Nθk) O(N2

S + NSθk)

Identify the fault using BBCs – O(Nkθ
2

k)

be any of {Ξ1, ...,Ξc}. Subsequently, based on the trained BBCs, the probability of xnew belonging to each fault
type is calculated as follows.

(i) For each candidate fault type, magnitudes f
(1)
new, ...,f

(α)
new are substituted into (27)–(29) to calculate the posterior

probabilities pnew =
[

p(xnew ∈ c(1)), ..., p(xnew ∈ c(α))
]

. For example, if xnew can be reconstructed below I2limit by

Ξ2 and Ξ4, then the candidate fault types are fault 2 and 4, and it holds that Ξ(1) = Ξ2, Ξ
(2) = Ξ4, f

(1)
new = fnew,2,

f
(2)
new = fnew,4, p(xnew ∈ c(1)) = p(xnew ∈ c2), and p(xnew ∈ c(2)) = p(xnew ∈ c4). According to (27), probabilities

of xnew belonging to fault 2 and 4 are computed as

p(xnew ∈ c2) =
p(fnew,2|c2)p(c2)

p(fnew,2|c2)p(c2) + p(fnew,2|cn2)p(cn2)
, (35)

p(xnew ∈ c4) =
p(fnew,4|c4)p(c4)

p(fnew,4|c4)p(c4) + p(fnew,4|cn4)p(cn4)
. (36)

(ii) By comparing the posterior probabilities, we can classify xnew as the fault type corresponding to the maximum
posterior probability, i.e.,

Γ (xnew) = arg max
16i6α

{

p(xnew ∈ c(i))
}

. (37)

Overall, the flowchart of the proposed RD-KICA is summarized in Figure 3.

3.5 Computational complexity analysis

Given that the training phase can be executed offline, the computational costs during the online phase using
subspaces extracted by RD-KICA and traditional KICA are primarily analyzed. The number of floating-point basic
operations (flops) of the main time-consuming steps for these two methods is calculated and recorded in Table 2.

After undersampling with FVS, the kernel matrix is reduced from N × N to NS × NS dimension, which leads
to the subspace dimension extracted from it being also significantly reduced. It is worth noting that there exists
N > NS > θk in Table 2, and ‘–’ means that this step is not required for the corresponding method. Although
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RD-KICA requires an additional O(Nkθ
2
k) flops in the presence of uncertainty during diagnosis, its computational

complexity is still reduced compared to KICA.

4 Simulation and application studies

In this section, a nonlinear numerical example, the TEP, and the rocket servo system were used to validate the
performance of the proposed RD-KICA method. We compared the proposed method with seven methods: KSFDA
[17], ENBC [14], CNN-LSTM, RRFS [11], LPP-Bayesian, PCA-KNN, and RD-KICA-without-FVS. Notably, LPP-
Bayesian and PCA-KNN, respectively, use LPP (local preserved projection) and PCA techniques to reduce the
dimensionality of samples, extracting key features, and then combine with corresponding classifiers to classify the
reduced samples; while the RRFS is a variant of KICA. The RD-KICA-without-FVS refers to the ablation version
of the proposed method without FVS undersampling, and is used to perform ablation experiments to test the
influence of FVS undersampling on computational efficiency and diagnostic accuracy. Finally, we implemented
online diagnosis on a rocket servo system, detailing the diagnostic procedure of the proposed RD-KICA. Notably,
the confidence level and the default reconstruction ratio are set to 0.95 in all following experiments.

4.1 Numerical simulation

Revisit the nonlinear and non-Gaussian numerical example [27] and revise it as follows:

x1 = t1 + e1,

x2 = t21 − 2t2 + e2,

x3 = −t32 + 3t23 + e3,

x4 = t2 + t4 + e4,

x5 = t23 − 2t4 + e5,

x6 = −t23 + 3t34 + e6,

x7 = t21 − 3t3 + e7,

(38)

where ti ∼ U(0, 1) and ei ∼ N(0, 0.012). Based on (38), we set the fault as follows:

x = x∗ + λΘ, (39)

where x∗ = [x1, x2, ..., x7] denotes the normal data, and x denotes the faulty data with magnitude λ added to x∗

in the Θ direction. In this simulation, we set the following 5 fault scenarios:

Fault 1: Θ = [ 1 1 0 0 0 0 0 ] , λ1 = 2,

Fault 2: Θ = [ 2 0 0 3 0 0 0 ] , λ2 = 1,

Fault 3: Θ = [ 0 0 1 0 1 1 0 ] , λ3 = 5,

Fault 4: Θ = [ 0 0 1 0 1 1 0 ] , λ4 = 4,

Fault 5: Θ = [ 0 1 0 1 0 1 2 ] , λ5 = 4.

(40)

Eq. (40) shows that both Faults 1 and 2 are associated with variable x1, while Faults 3 and 4 share the same
fault direction, with the sole difference lying in the fault magnitudes. As for Fault 5, it overlaps partially with other
faults in certain fault variables. Such a fault setup aims to assess the diagnostic capability and accuracy of different
methods in the scenario of overlapping fault variables.

In this simulation, Faults 1–4 are served as historical faults, while Fault 5 is served as an unseen fault (marked
with ∗ in the subsequent tables and graphs figures). We generated 800 normal samples based on (38) for building
the model. Meanwhile, according to (39), 800 samples were generated for each historical fault, from which 300
samples were randomly selected for extracting the fault subspace, and the remaining 500 samples were used to test
the diagnosis performance. For Fault 5, 500 fault samples were generated to test the feedback ability of different
methods toward unseen samples. The detailed fault diagnosis confusion matrices are presented in Figure 4. Note
that in the confusion matrix of the RRFS, there is a key concept “Uncertain”. This concept refers to the situation
where samples can be recovered by multiple subspaces. Consequently, RRFS fails to distinguish the fault type of
these samples, resulting in poor diagnosis accuracy in Table 3. As can be seen from Table 3, ENBC, CNN-LSTM,
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Table 3 Fault diagnosis accuracy on numerical simulation (%). The best results are in bold.

Fault ID KSFDA ENBC CNN-LSTM RRFS LPP-Bayesian PCA-KNN RD-KICA-without-FVS RD-KICA

Historical

1 77.80 92.20 95.20 9.00 97.60 98.60 90.40 90.60

2 99.60 99.00 100.00 86.20 97.20 99.20 96.60 96.20

3 70.00 90.60 89.40 85.40 85.00 82.80 86.20 92.80

4 58.00 83.60 80.60 0.00 81.40 77.40 91.00 86.20

Ave. 76.35 91.35 91.30 45.14 90.30 89.50 91.05 91.45

Unseen 5* 0.00 0.00 0.00 87.00 0.00 0.00 92.20 92.40

Figure 4 (Color online) Diagnostic confusion matrix of the numerical example. (a) KSFDA; (b) ENBC; (c) CNN-LSTM; (d) RRFS;

(e) LPP-Bayesian; (f) PCA-KNN; (g) RD-KICA-without-FVS; (h) RD-KICA.

LPP-Bayesian, and PCA-KNN all show high diagnostic accuracy for historical faults, but all these methods based on
pattern recognition fail to identify unseen faults; while RRFS can effectively identify unseen faults, but its average
diagnostic accuracy for historical faults is only 45.14%. In contrast, the proposed RD-KICA can identify 92.40% of
unseen faults while maintaining high diagnostic accuracy for historical faults.

4.2 Applications on TEP

The TEP [28] is a well-known benchmark process for validating fault detection and diagnosis performance. The
TEP encompasses 21 types of faults, denoted as IDV(1)-IDV(21). In this study, IDVs(2, 4, 8, 11, and 14) are
regarded as historical faults, while IDV(18) is treated as an unseen fault. Both IDV(2) and IDV(8) are related to
the feed concentration in Stream 4, while IDVs(4, 11, and 14) are all associated with the reactor cooling water [2,12].
It is anticipated that samples from these faults may exhibit significant overlap, hence their selection for diagnostic
accuracy verification.

A total of 1460 normal samples were collected, with 960 samples allocated for the training. These training samples
underwent undersampling to create a reduced training set comprising 195 samples, which was used to establish the
KICA model. The remaining 500 samples were used to compute control limits. Furthermore, a fault library with
dual attributes was constructed, involving 480 samples for each fault type. The parameters are configured as follows:
for KSFDA, the tuning parameter is chosen as β = 0.5, and the kernel parameter is set to σ = 5.4; these values
are taken from the original literature [17]. Using cross-validation, we set the number of neighbors of LPP-Bayesian
as 100. The number of principal components in PCA-KNN is determined by the cumulative variance contribution
rate. For RRFS and RD-KICA, the kernel parameter is set to σ = 3052, which is the result of tabu optimization.
The CNN-LSTM is composed of a three-layer convolution network and a two-layer LSTM network. The number of
convolution kernels is 32, 64, and 128 with size 1× 3, and the number of unit nodes in the LSTM layer is 128.
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Table 4 Fault diagnosis accuracy on TEP (%).

Fault ID KSFDA ENBC CNN-LSTM RRFS LPP-Bayesian PCA-KNN RD-KICA-without-FVS RD-KICA

Historical

2 95.88 97.25 98.50 6.25 98.00 97.63 97.00 97.00

4 88.50 100.00 99.75 0.38 45.00 84.63 97.63 99.25

8 91.63 64.00 66.00 49.00 96.75 74.75 81.63 91.13

11 53.00 30.50 52.63 69.25 42.75 56.25 43.88 50.50

14 92.88 99.75 78.75 99.50 34.63 66.50 96.63 99.75

Ave 84.38 78.30 79.13 44.88 63.43 75.89 83.35 87.53

Unseen 18* 0.00 0.00 0.00 77.13 0.00 0.00 83.75 82.88

Figure 5 (Color online) Diagnostic confusion matrix of the TEP. (a) KSFDA; (b) ENBC; (c) CNN-LSTM; (d) RRFS; (e) LPP-Bayesian;

(f) PCA-KNN; (g) RD-KICA-without-FVS; (h) RD-KICA.

4.2.1 Experiments on fault diagnosis accuracy

To clearly show the fault diagnosis results of different methods, we visualize them as confusion matrices in Figure 5,
and summarize testing accuracy in Table 4. Diagnostic outcomes of KSFDA, ENBC, CNN-LSTM, LPP-Bayesian,
and PCA-KNN show high diagnostic accuracy for historical faults. However, since they lack an identification
mechanism for unseen faults, all samples of IDV(18) are misdiagnosed. In contrast, RRFS can effectively identify
77.13% unseen fault samples, while its diagnostic accuracy for historical faults is poor. In contrast, the proposed
RD-KICA combines the advantages of reconstruction and classification to achieve the highest average accuracy, as
well as the ability to identify unseen faults.

Although the diagnostic accuracy of RD-KICA shown in Table 4 is not the highest among all fault cases, it exhibits
the greatest stability. Compared to the RRFS, the average diagnostic accuracy of RD-KICA for historical faults
is improved by 42.65%, indicating that adding magnitude as another attribute contributes to enhanced diagnostic
accuracy. Compared to KSFDA, ENBC, CNN-LSTM, LPP-Bayesian, and PCA-KNN, RD-KICA can effectively
identify 82.88% of unseen faults while ensuring comparable diagnostic accuracy for historical faults. Moreover, the
diagnostic accuracy of RD-KICA is comparable to, or even slightly higher than, that of RD-KICA-without-FVS.
These findings suggest that undersampling the training set does not compromise fault diagnostic accuracy.

4.2.2 Experiments on computational complexity

In this subsection, we compare the computing time (CT) among six methods. CT is the time taken to diagnose each
sample online. We executed the online diagnosis programs of the different methods 60 times on the same computer
equipped with an Intel CoreTM i7-1165G7 processor (2.8 GHz) and 16 GB of RAM. The results of these methods
are presented in Table 5.

Unsurprisingly, ENBC exhibits the highest CT since it classifies high-dimensional samples without dimension-
ality reduction. Both RD-KICA-without-FVS and RRFS, which utilize nonlinear models for fault reconstruction,
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Table 5 Computing time (CT) (ms) of different methods for TEP.

Fault ID KSFDA ENBC CNN-LSTM RRFS LPP-Bayesian PCA-KNN RD-KICA-without-FVS RD-KICA

2 0.9262 3.9496 1.0175 1.1556 0.0847 0.2750 1.1279 0.4896

4 0.9564 3.7932 1.0284 1.1975 0.0823 0.2702 2.3804 1.1625

8 0.9398 3.8355 1.0781 1.4395 0.0788 0.2714 1.0984 0.2145

11 0.9405 3.8842 1.0349 1.4317 0.0757 0.2611 1.6609 0.8842

14 0.9491 4.4864 1.0037 1.5262 0.0771 0.2604 1.1591 0.3461

18* 1.0197 4.5781 1.0330 1.4998 0.0874 0.2609 1.1289 0.1416

Ave. 0.9553 4.0878 1.0326 1.3751 0.0810 0.2665 1.4259 0.5398

Table 6 Fault description of the rocket servo system.

Fault ID Fault description

Historical

F1 Increased clearance due to mechanical friction

F2 Motor performance degradation, speed reduction

F3 Increased current in channel A

F4 Increased clearance and increased current in channel A

Unseen F5* Decreased output voltage of the filter

maintain relatively high CT as their subspace dimensions align with the number of training samples. The CT values
of LPP-Bayesian and PCA-KNN are relatively small because they belong to linear model classification methods.
According to Table 5, the CT of RD-KICA varies significantly for different faults. For example, diagnosing a sample
of IDV(8) takes only 0.2145 ms, while IDV(4) requires 1.1625 ms. This discrepancy primarily arises from the diag-
nostic strategy described in Section 3.4. During the diagnosis process, if Cnew = 0 or Cnew = 1 in (33), the fault type
can be determined directly; while if Cnew > 1, BBCs needs to be activated for further diagnosis. The introduction
of this extra step increases the overall CT. As evidenced by Table 5, the CT comparison reveals significant efficiency
gains: the proposed RD-KICA achieves an average CT of 0.5398 ms, which represents approximately only one-third
of the 1.4259 ms CT required by RD-KICA-without-FVS.

Combining the previous experimental results on diagnostics, we have the following findings: the proposed RD-
KICA substantially improves the diagnostic accuracy of historical faults compared to the reconstruction-based
RRFS, which indicates that increasing the magnitude as a fault attribute has a positive effect on the diagnostic
accuracy. Furthermore, compared to the pattern recognition-based methods KSFDA, ENBC, and CNN-LSTM, the
proposed RD-KICA possesses the ability to identify unseen faults. Additionally, combined with the data in Tables
4 and 5, the ablation experiments of RD-KICA and RD-KICA-without-FVS jointly verified that using FVS for
undersampling can improve online computational efficiency without affecting diagnostic accuracy.

4.3 Online diagnosis on the rocket servo system

The above two experiments verify the proposed RD-KICA in terms of diagnostic accuracy and computing time.
This subsection focuses on the online diagnosis procedure of the RD-KICA using a rocket servo system, including
fault reconstruction, re-diagnosis using BBC and diagnosis decision-making. The experimental data came from a
semi-physical simulation platform, as shown in Figure 6. This servo system includes dual-channel actuator data,
such as displacement, velocity feedback, and nozzle swing angle, encompassing a total of 32 process variables. In
this experiment, five fault modes were injected, as shown in Table 6. Notably, F4 is a composite of F1 and F3, so
there is a significant overlap between them.

In this experiment, 500 fault samples were collected for each fault mode (F1–F4), with 300 samples from each
mode utilized to extract fault subspaces, denoted as Ξ1, Ξ2, Ξ3 and Ξ4. The remaining 200 samples were used to
evaluate the diagnostic performance. Additionally, 200 samples of F5* were collected to test the method’s ability
to identify unseen faults. The proposed RD-KICA method is used for online diagnosis, and the results of fault
reconstruction are illustrated in Figure 7. The reconstruction statistics I2(4)(k

∗
new) of sample points 1–200 and 401–

600 are less than the control limit I2limit, indicating that subspace Ξ4 mistakenly eliminated the fault effects of
samples from F1 and F3. This result is because F4 (as a composite of F1 and F3) covers all fault information of
them in Ξ4. In contrast, for sample points 601–800, only Ξ4 can effectively eliminate the fault effects, while Ξ1

and Ξ3 are failed. For the unseen fault sample points 801–1000, only one sample point has a I2(4)(k
∗
new) less than

I2limit, while the others are above it, indicating that no subspace can completely cover the fault information of these
samples. This reconstruction result is consistent with the fault injection situation in Table 6.
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Figure 6 (Color online) Structure diagram of the rocket servo system.

Figure 7 (Color online) Results of the fault reconstruction.

Figure 8 (Color online) Probabilities in re-diagnosis by BBC.

To address this incorrect elimination due to overlap, the proposed RD-KICA method incorporates a BBC for re-
diagnosis. Figure 8 presents the re-diagnosis results, where sample points 1–200 are enlarged for clearer observation.
The vertical axis of Figure 8 represents the probability of a sample belonging to a specific fault category. Next,
we analyze this re-diagnosis using sample point 168 as an example. According to Figure 7, we can see that the
reconstruction statistics I2(1)(k

∗
new) and I2(4)(k

∗
new) of this sample are less than I2limit. Therefore, we only calculate
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Figure 9 (Color online) Diagnostic results of the rocket servo system.

Figure 10 (Color online) Sensitivity of each fault to parameters σ in the rocket servo system.

the probabilities of this sample belonging to F1 and F4, which are 0.889957% and 0.0404448%, respectively. It
means p(x ∈ F1) > p(x ∈ F4). Thus, we diagnose this sample as F1, as shown in Figure 9. It can be clearly
observed from Figure 9 that most samples are accurately diagnosed, with only a few misdiagnoses. According to
statistics, the diagnostic accuracy of the RD-KICA in this online diagnostic has reached 93.20%. Additionally, for
sampling points of the unseen fault (i.e., sampling points 800–1000), except for one sample being misdiagnosed, the
rest are correctly identified as unseen faults.

The key parameter of the proposed RD-KICA that influences model’s performance is the kernel parameter
σ. In this study, we employed a tabu search optimization for tuning [29, 30]. To investigate the effect of the
kernel parameters on the model performance, we performed a sensitivity analysis by gradually varying the kernel
parameters across a predefined range. For each parameter value, the fault diagnosis accuracy is calculated and
summarized in Figure 10. Varying σ has a minimal effect on the diagnostic accuracy of F1, F4 and F5, while the
diagnostic results of F2 and F3 show great fluctuation. Combined with the statistical analysis in Figure 7, it can
be inferred that this fluctuation is mainly because the fault effect of F2 and F3 is not serious, and their statistics
are only slightly higher than the control limit, resulting in some samples being misjudged as normal samples. The
experimental results demonstrate that the kernel parameter σ significantly affects the diagnostic performance of
RD-KICA. Notably, the kernel parameter optimized via tabu search achieves superior diagnostic accuracy.

5 Conclusion

In this paper, a reduced reconstruction modeling approach with dual attributes is proposed to tackle the high
complexity and uncertainties during fault diagnosis. FVS undersampling is investigated to construct a less numerous
but more informative training set. This approach is a novel attempt to combine the ideas of reconstruction and
classification by taking subspaces and magnitudes together as dual attributes to build the fault library. Such that,
the Bayesian classifier trained with magnitudes can continue to further diagnose under uncertainty when relying
solely on fault subspaces. The main advantages of the RD-KICA include faster and more accurate diagnostic
capabilities, as well as its ability to identify unseen faults. The proposed RD-KICA method is suitable for non-
Gaussian nonlinear systems with multivariate variables and high system coupling, such as large complex equipment
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systems, metal smelting, and intelligent manufacturing. It has unique advantages for systems with frequent unseen
faults. The limitation of the proposed RD-KICA method lies in the requirement for structured fault sample data
to establish the fault library. Issues such as multi-source heterogeneous data, missing values, or zero-shot learning
scenarios still require further investigation and research.

This research has introduced a new research direction for fault attributes and re-diagnosis mechanisms. In this
study, several Bayesian binary classifiers are used to identify the fault types; however, there are alternative methods
that can be explored in future research, such as support vector machine (SVM), deep learning, and decision tree.
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