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Abstract The hybrid control scheme, involving the design of all transition rates/probabilities, has been extensively studied in the

literature. However, there may be cases where certain transition rates/probabilities are fixed a priori, rendering existing methods inap-

plicable. In this paper, hybrid control schemes which consider the co-design of partly transition rates/probabilities and output feedback

controller are respectively investigated for continuous-time and discrete-time Markovian jump systems by proposing a synchronous mode-

dependent parametric method. Firstly, novel necessary and sufficient conditions are established to reconstruct the unfixed switching

rates/probabilities that ensure the mean square stability of both continuous-time and discrete-time Markovian jump systems. Next,

stabilization conditions are established via hybrid control design. Importantly, the decision matrices related to the fixed and unfixed

transition rates/probabilities are strictly separated, resulting in reduced complexity demands and avoiding the requirement to solve

complex parameters. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed methods.
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1 Introduction

Markovian jump systems, representing a category of stochastically switching models, are extensively employed in
accurately representing various real-world systems due to their robust modeling capabilities (see [1–3]). These
systems adeptly model plants undergoing sudden structural changes, characterized by phenomena like unforeseen
component failures, rapid environmental shifts, alterations in subsystem connections, and significant operational
deviations in nonlinear plants (see [4–6]). A large number of studies have investigated the stability, stabilization,
and optimal control of Markovian jump systems, which can be found in the relevant literature (see [7–9]).

In recent years, most existing stabilization approaches for Markovian jump systems have been widely studied based
on the assumption that the Markovian transition matrices are fixed a priori (see [10–13]). However, in practical
cases, engineers often have the flexibility to choose or design Markovian transition matrices or general switching rules,
which may deviate from the aforementioned assumption (see [14]). In such scenarios, the design of an appropriate
switching rule has the potential to stabilize Markovian jump systems, even if none of the individual subsystems
are inherently stable. Previous research has shown that by designing transition rates/probabilities, it is possible to
achieve overall stability and improve the dynamic performance of Markovian jump systems whose subsystems are
unstable (such as in [15–19]). For instance, within the continuous-time domain, Markovian jump systems have been
explored through hybrid design methods involving transition rates and output feedback control [15]. This research
establishes criteria for formulating transition rate matrices. Further expanding on these findings, the authors in [16]
extend the concept of transition rate synthesis to time-delayed Markovian jump systems, delving into stochastic
stabilization challenges using transition rate matrix design and state feedback control gain strategies. Conversely,
in the discrete-time domain, the focus shifts towards exponential stabilization via an asynchronous mode-dependent
parametric approach [18]. This method hinges on synthesizing both transition probabilities and output feedback
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control gains, incorporating various asynchronous parameters for enhanced system stability. These parameters are
settled using a gridding technique. Based on the core of asynchronous mode-dependent parametric method, a hybrid
sliding mode control scheme for Markovian jump systems is designed in [19], where iterative algorithms are employed
to settle the asynchronous parameters. Furthermore, the problem of hybrid design optimization, incorporating
adaptive event-triggered schemes and an asynchronous fault detection filter for stochastic Markovian jump systems,
has been considered using genetic algorithm [20]. In [21], the co-design problem of scheduling protocol and sliding
mode controller for interval type-2 T-S fuzzy systems has been investigated, in which a stochastic scheduling
protocol established through a co-designedMarkov chain is proposed for system state transmission. These techniques
have provided inspiration for exploring the co-design of transition rates/probabilities and controllers. However, a
challenge arises when fixed transition rates/probabilities are present, as the current techniques become inapplicable.
Therefore, this paper addresses the following aspects to tackle this open issue. (i) Addressing the scenario where
fixed transition rates/probabilities exist, and at least one individual subsystem is unstable, but none of them are
output controllable by a single static output feedback. The goal is to co-design unfixed transition rates/probabilities
and a static output feedback controller, enabling the transformation of “slow” and “unstable” subsystems into a “fast
and stable” Markovian jump system. (ii) The asynchronous mode-dependent parametric method in the literature
suggests complex optimization algorithms. The paper aims to solve complex parameter optimization problems in
both continuous-time and discrete-time Markovian jump systems under partly fixed transition rates/probabilities.

With the above analysis, the paper investigates the hybrid control design problems for both continuous-time and
discrete-time Markovian jump systems. Considering certain transition rates/probabilities fixed a priori, new suffi-
cient and necessary conditions for the switching rate/probability matrix are established to ensure the mean square
stability of both Markovian jump systems by the synchronous mode-dependent parametric method. Additionally,
hybrid control conditions via co-designing transition rates/probabilities and a static output feedback controller are
respectively proposed. The contributions are summarized as follows.

• This paper considers the co-design of partly transition rates/probabilities for both continuous-time and discrete-
time Markovian jump systems, filling the gap where there are some transition rates/probabilities fixed a priori.

• The synchronous mode-dependent parametric method is proposed to strictly separate the fixed and unfixed
transition rates/probabilities, which simultaneously avoids the generation of large decision variables and the re-
quirement to solve asynchronous parameters.

2 System description and preliminaries

2.1 The overall framework

The overall framework of the hybrid control scheme is portrayed in Figure 1, which can be concluded as the following
three parts.

• The black transition rates/probabilities elements in the “MJS (i.e., the abbreviation of Markov jump system)
with fixed TR/Ps” mean that the elements are fixed and cannot be computed. These are the differences and
difficulties (how to separate the fixed and unfixed parts) compared with the previous studies (such as in [13, 18])
(see the expression in (4)).

• The red transition rates/probabilities elements in the “MJS with fixed TR/Ps” mean that the elements are free
and can be optimized (i.e., the condition in Theorems 1 and 2) (see the blue transition rates/probabilities elements
in “MJS with reconstructed TR/Ps”).

• If the inner optimized structure can stabilize the system, then stop the external feedback controller. If not, an
external static output controller and the inner optimized structure are co-designed (i.e., the conditions in Theorems
3 and 4).

2.2 System description

Consider the continuous-time and discrete-time Markovian jump system represented by the following equations:

ẋ(t) =A(rt)x(t) +B(rt)u(t), (1)

x(k + 1) =A(rk)x(k) +B(rk)u(k), (2)

where x(t) ∈ R
n (or x(k) ∈ R

n) represents the state vector of the system, and u(t) (or u(k)) represents the control
input. The switching between different system modes is governed by a jumping process, defined as rt (or rk), with
values in the finite set ℓ = {1, 2, ..., N}.
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Figure 1 (Color online) The overall framework of hybrid control scheme.

In continuous-time scenarios, the jumping process, defined as rt, manifests as a homogeneous Markov process
characterized by continuous time and discrete states. The associated mode transition rates are specified as follows:

Pr(rt+h = j|rt = i) ,

{

πijh+ o(h), if j 6= i,

1 + πiih+ o(h), if j = i.

Here, h > 0 represents the time interval, and we have limh→0(
o(h)
h

) = 0. The parameter πij > 0 (i, j ∈ ℓ, j 6= i)
represents the switching rate from mode i at time t to mode j at time t+h. Additionally, for all i ∈ ℓ, the condition
πii = −

∑N

j=1,j 6=i πij holds.
In discrete-time scenarios, the process represented by rk, k > 0 operates as a homogeneous Markov chain in

discrete time, drawing values from a defined finite set ℓ. The probabilities governing mode transitions within this
chain are delineated as follows:

Pr(rk+1 = j|rk = i) , λij .

Here, λij > 0 for all i, j ∈ ℓ, and the probabilities satisfy the condition
∑N

j=1 λij = 1.
Previous studies have extensively investigated hybrid control schemes, with a primary focus on the full recon-

struction of transition probability matrices (e.g., [15, 18, 19, 21]). However, in practical scenarios, certain transition
probabilities or rates are often fixed and cannot be freely adjusted, which is an open issue. For instance, when
incorporating a Gossip Markov Chain into a network-on-chip system to allocate data packet flow rates across com-
munication links (see [14]), the transition probability matrix adheres to a predefined structural form, as illustrated
in Figure 2. Motivated by such practical considerations, this paper proposes a hybrid control framework that explic-
itly accommodates both fixed and unfixed (i.e., designable) transition probabilities/rates. The distinctive features
of this framework are detailed in Remark 1, and the main difficulties and contributions are elaborated in Remarks
2–5.

Π =













p q 1− pq 0

1− pq p 0 q

q 0 p 1− pq

0 1− pq q p













, (3)

where p and q are adjustable parameters within the range of [0, 1], and pq = p+ q. However, certain elements, such
as 0, are fixed a priori. Consequently, existing approaches that aim to reconstruct the entire transition probability
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Figure 2 (Color online) The gossip Markov chain [14] (“PE” is the abbreviation of “processing element”).

matrix are not applicable in this scenario. To address this gap, this paper presents a hybrid control scheme that
incorporates the design of partly fixed transition rates/probabilities for both continuous-time and discrete-time
Markovian jump systems.

To simplify the expression of transition rates/probabilities, we adopt two forms based on the methodology pre-
sented in [12]. These forms, defined as Π and Λ, are utilized to represent the transition rate and probability matrices
that require reconstruction. For example, considering system (1) and system (2), matrices Π and Λ are represented
as follows:

Π ,















π11 ◦ · · · π1N

π21 ◦ · · · π2N

...
...

. . .
...

◦ πN2 · · · ◦















,Λ ,















◦ λ12 · · · λ1N

λ21 ◦ · · · λ2N

...
...

. . .
...

λN1 ◦ · · · ◦















. (4)

It is important to note that, unlike the representation in [12], in this paper, πij and λij represent fixed elements,
while the symbol “◦” represents the unfixed elements that can be reconstructed.

Remark 1. It should be noted that this paper introduces a novel perspective by considering two types of ele-
ments in transition rates/probabilities: (i) fixed transition elements and (ii) unfixed elements. The paper’s unique
contribution lies in the reconstruction of these unfixed elements, which diverges from the main idea in the known
and unknown elements of the most existing studies [12,13]. Concretely, the research on Markov jump systems with
unknown rates/probabilities primarily attributes the uncertainty to the challenges or high costs associated with
measuring transition rates/probabilities during the modeling process.

In this paper, our objective is to determine the transition rates/probabilities that are unfixed. To ensure clear
notations, we define ℓ for each i ∈ ℓ as ℓ , ℓik ∪ ℓiuk, where

ℓik , {j : πij/λij is known}, ℓiuk , {j : πij/λij is unknown}.

Furthermore, if ℓik 6= ∅, it can be further described as

ℓik , (ki1, k
i
2, ..., k

i
m1

), for 1 6 m1 6 N, ℓiuk , (ui
1, u

i
2, ..., u

i
m2

), for 1 6 m2 6 N,

where kim1
denotes the fixed element at position m1 in the ith row of matrices Π or Λ. Correspondingly, ui

m2

signifies the element at position m2 in the ith row, whose value is yet to be ascertained. Notably, m1 +m2 = N .
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2.3 Preliminaries

The following preconditions are necessary for the proposed hybrid control scheme.

Lemma 1 ([22]). Positive definite matrices P1, P2, ..., PN exist if and only if condition (5) is satisfied. Under
this circumstance, the free system (1) achieves mean square stability with the specified transition rate matrix Π.
Similarly, condition (6) being met ensures mean square stability for the free system (2) when associated with the
transition rate matrix Λ, where

A⊤
i Pi + PiAi +

∑N

j=1
πijPj<0, (5)

A⊤
i

∑N

j=1
λijPjAi − Pi<0. (6)

Lemma 2 ( [23]). The following two conditions are equivalent for matrices T , P , U , and A with appropriate
dimensions and a scalar β:

[

T βP +A⊤U⊤

⋆ −βU − βU

]

< 0 ⇔ T < 0, T +A⊤P + PA < 0.

Proof. The detailed proof has been shown in [23], which is omitted here.
In this paper, we consider the possibility of designing or modifying the switching matrices Π and Λ. The primary

goal is to delineate a condition that is both necessary and sufficient for the effective synthesis of these matrices,
ensuring mean square stability for the unforced systems (1) and (2). The second objective is to co-design the
transition rates/probabilities and the following static output feedback controllers:

u(t),Kiy(t) = KiCix(t), (7)

u(k),Kiy(k) = KiCix(k), (8)

to ensure mean square stability of the closed-loop systems, where y(t) (or y(k)) represents the measured output,
Ki is the controller gain to be determined.

3 Main results

This paper concentrates on the intricate co-design of transition rates/probabilities and static feedback control
mechanisms within the frameworks of systems (1) and (2). For simplicity, setting Ekj ,

∑

j∈ℓk

and Euj ,
∑

j∈ℓuk

in the

whole paper.

3.1 Stabilizing transition rates/probabilities

In the subsection, we will present the necessary and sufficient conditions for the synthesis of a stabilizing transition
rate in Π and transition probabilities in Λ, respectively. To begin, we will focus on Π.

Theorem 1. The continuous-time Markovian jump system (1) is mean square stable if and only if there exist
positive-definite symmetric matrices Pki

1

, Pki
2

, ..., Pki
m1

, Xui
1

, Xui
2

, ..., Xui
m2

, X̄ui
1

, X̄ui
2

, ..., X̄ui
m2

, a set of scalars

εui
1

, εui
2

, ..., εui
m2

, π̄iui
1

, π̄iui
2

, ..., π̄iui
m2

such that the following conditions hold for j ∈ ℓiuk:

rank

(

[

Xj I

I X̄j

]

)

<n, (9)









Υ̂11i Υ12i Υ13i

⋆ −Υ22i 0

⋆ ⋆ −Υ22i









<0, i ∈ ℓik, (10)













Υ11i Υ12i Υ13i Aεi

⋆ −Υ22i 0 0

⋆ ⋆ −Υ22i 0

⋆ ⋆ ⋆ −X̄i













<0, i ∈ ℓiuk
, (11)
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where

Υ̂11i,A⊤
i Pi + PiAi + EkjπijPj − EujXj , Υ11i , −EujXj − 2Xi + EkjπijPj ,

Υ12i, [(1 + π̄iui
1

)I, (1 + π̄iui
2

)I, ..., (1 + π̄iui
m2

)I], Υ13i , [εui
1

A⊤
i , εui

2

A⊤
i , ..., εui

m2

A⊤
i ],

Υ22i,diag{X̄ui
1

, X̄ui
2

, ..., X̄ui
m2

}, Aεi , I + εiA
⊤
i .

Then, the unfixed transition rates can be given by πij =
2
εj
π̄ij .

Proof. To simplify, decision matrices Pki
1

, Pki
2

, ..., Pki
m1

are shown by i ∈ ℓik and i ∈ ℓiuk
. Then, two cases on

i ∈ ℓik and i ∈ ℓiuk
will be respectively discussed as follows.

Case 1: If i ∈ ℓik, it yields from (5) and ℓ , ℓik ∪ ℓiuk

A⊤
i Pi + PiAi + EkjπijPj + EujπijPj < 0. (12)

Inequality (12) holds if and only if, for sufficiently small and mode-synchronous parameters εj > 0 with Pj (i.e.,
the parameter εj shares the same subscript j with the decision matrix P ), the following inequality holds:

A⊤
i Pi + PiAi + EkjπijPj + Euj

πij

2
Pj + Euj

πij

2
Pj + Eujεj

(πij

2
Pj

πij

2
+A⊤

i PjAi

)

< 0. (13)

Condition (13) can be further rewritten as









Ῡ11i Ῡ12i Υ13i

⋆ −Ῡ22i 0

⋆ ⋆ −Ῡ22i









< 0, (14)

where

Ῡ11i,A⊤
i Pi + PiAi + EkjπijPj − Eujε

−1
j Pj , Ῡ12i ,

[(

1 +
εui

1

πiui
1

2

)

I, ...,

(

1 +
εui

m2

πiui
m2

2

)

I

]

,

Ῡ22i,diag{εui
1

P−1
ui
1

, εui
2

P−1
ui
2

, ..., εui
m2

P−1
ui
m2

}.

Defining

Xj , ε−1
j Pj , X̄j , εjP

−1
j , λ̄ij ,

εjλij

2
, (15)

we have (10).
Case 2: If i ∈ ℓiuk

, it yields from (5)

A⊤
i Pi + PiAi + EkjπijPj + EujπijPj < 0. (16)

Inequality (16) holds if and only if, for sufficiently small and mode-synchronous parameters εj > 0 with Pj and
εi > 0 with Pi, the following inequality holds:

A⊤
i Pi + PiAi + EkjπijPj + Euj

πij

2
Pj + Euj

πij

2
Pj + Eujεj

(

πij

2
A⊤

i Pj

πij

2
Ai +A⊤

i PjAi

)

+ εiA
⊤
i PiAi < 0,

which can be rewritten as












Ύ11i Ῡ12i Υ13i I + εiA
⊤
i

⋆ −Ῡ22i 0 0

⋆ ⋆ −Ῡ22i 0

⋆ ⋆ ⋆ −εiP
−1
i













< 0, (17)

where Ύ11i , −Eujε
−1
j Pj − 2ε−1

i Pi + EkjπijPj . From (15), (17) with the similar procedure to (14), it yields (11).
This completes the proof.
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We will proceed to delineate the essential condition that is both necessary and sufficient for the synthesis of
stabilizing transition probabilities within Λ.

Theorem 2. The discrete-time Markovian jump system (2) is mean-square stable if and only if there exist
symmetric and positive-definite matrices Pki

1

, Pki
2

, ..., Pki
m1

, Xui
1

, Xui
2

, ..., Xui
m2

, X̄ui
1

, X̄ui
2

, ..., X̄ui
m2

, a set of

scalars εui
1

, εui
2

, ..., εui
m2

, λ̄iui
1

, λ̄iui
2

, ..., λ̄iui
m2

such that Eq. (9) and the following conditions hold for j ∈ ℓiuk:









Ω̂11i Ω12i Ω13i

⋆ −Ω22i 0

⋆ ⋆ −Ω22i









<0, i ∈ ℓik, (18)













Ω11i Ω12i Ω13i ε̄iI

⋆ −Ω22i 0 0

⋆ ⋆ −Ω22i 0

⋆ ⋆ ⋆ −X̄i













<0, i ∈ ℓiuk
, (19)

where

Ω̂11i,−Pi +A⊤
i EkjλijPjAi − EujA

⊤
i XjAi, Ω11i , −Xi +A⊤

i EkjλijPjAi − EujA
⊤
i XjAi,

Ω12i, [A⊤
i + λ̄i1A

⊤
i , A

⊤
i + λ̄i2A

⊤
i , ..., A

⊤
i + λ̄im2

A⊤
i ], Ω13i , [ε1A

⊤
i , ε2A

⊤
i , ..., εm2

A⊤
i ],

Ω22i,diag{X̄1, X̄2, ..., X̄m2
}, ε̄i , 1−

εi
2
.

The unfixed transition probabilities are given by πij =
2
εj
π̄ij .

Proof. For any mode i ∈ ℓ , ℓik ∪ ℓiuk
, one has from (6)

− Pi +A⊤
i EkjλijPjAi +A⊤

i EujλijPjAi < 0. (20)

Focusing on (20), two steps will be given for the proof.
Step 1: Inequality (20) holds for any mode i ∈ ℓik if and only if, for sufficiently small and mode-synchronous

parameters εj > 0 with Pj , the following inequality holds:

A⊤
i EkjλijPjAi + Euj

(

1

2
λijA

⊤
i

)

PjAi + EujA
⊤
i Pj

(

1

2
λijAi

)

−Pi + Eujεj

[(

1

2
λijAi

)⊤

Pj

(

1

2
λijAi

)

+A⊤
i PjAi

]

< 0,

which can be rewritten as








Ω̄11i Ω̄12i Ω13i

⋆ −Ω̄22i 0

⋆ ⋆ −Ω̄22i









< 0, (21)

where

Ω̄11i,EkjλijA
⊤
i PjAi − EujA

⊤
i ε

−1
j PjAi − Pi, Ω̄12i ,

[

A⊤
i +

1

2
ε1λi1A

⊤
i , ..., A

⊤
i +

1

2
εm2

λim2
A⊤

i

]

,

Ω̄22i,diag{ε1P
−1
1 , ε2P

−1
2 , ..., εm2

P−1
m2

}.

Combining with (15), it yields (18).
Step 2: Inequality (20) holds for any mode i ∈ ℓiuk

if and only if, for sufficiently small and mode-synchronous
parameters εj > 0 with Pj and εi > 0 with Pi, the following inequality holds, where i, j ∈ ℓiuk

:

A⊤
i EkjλijPjAi + Euj

(

1

2
λijA

⊤
i

)

PjAi + EujA
⊤
i Pj

(

1

2
πijAi

)

+
εi
4
Pi − Pi
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+Eujεj

[(

1

2
λijAi

)⊤

Pj

(

1

2
λijAi

)

+A⊤
i PjAi

]

< 0.

With the similar procedure to (21), it yields (19). This completes the proof.

Remark 2. The asynchronous mode-dependent parametric method, as proposed in literature (see [15, 18]), in-
troduces asynchronous mode-dependent parameter combinations, such as εPj in [15] and εiPj in [18]. However,
the solvability of the conditions obtained in [15, 18] relies on the satisfaction of parameters ε and εi for all modes
j. This means that if there exist modes j ∈ ℓ for which the parameters ε and εi cannot simultaneously satisfy
the conditions from [15,18], the problem becomes infeasible. To address this issue, a synchronous mode-dependent
parametric method is proposed, which introduces a set of mode-dependent parameter combinations, such as εjPj ,
in the inequalities such as (13), (16). This approach effectively ensures the feasibility of the obtained conditions in
this paper and improves the efficacy of finding feasible solutions compared to asynchronous ones (such as in [15,18]).

3.2 Hybrid design with static output feedback

In this subsection, our focus is on the co-design of a stabilizing static output feedback controller (7), (8) and the
corresponding transition rates in Π and transition probabilities in Λ for Markovian jump systems. By applying
controller (7) to system (1) and (8) to system (2), one has

ẋ(t)=(Ai +BiKiCi)x(t), (22)

x(k + 1)=(Ai +BiKiCi)x(k). (23)

Next, we will address the problem of static output feedback stabilization with transition rate synthesis for system
(22).

Theorem 3. For a given scalar β, the continuous-time Markovian jump system (22) is mean square stable if there
exist positive-definite symmetric matrices P̄ki

1

, P̄ki
2

, ..., P̄ki
m1

, Xui
1

, Xui
2

, ..., Xui
m2

, X̄ui
1

, X̄ui
2

, ..., X̄ui
m2

, any matrices

Ui, Vi, K̄i, a set of scalars εui
1

, εui
2

, ..., εui
m2

, π̄iui
1

, π̄iui
2

, ..., π̄iui
m2

such that Eq. (9) and the following condition

hold for j ∈ ℓiuk
:













Υ̂11i Υ12i Υ13i Υ14i

⋆ −Υ22i 0 0

⋆ ⋆ −Υ22i 0

⋆ ⋆ ⋆ −βUi − βUi













<0, i ∈ ℓik, (24)













Υ̌11i Υ12i Υ13i Υ14i

⋆ −Υ22i 0 0

⋆ ⋆ −Υ22i 0

⋆ ⋆ ⋆ −βUi − βUi













<0, i ∈ ℓiuk
, (25)

where

Υ̌11i , A⊤
i Pi + PiAi + Ekjπij(Pj − Pi)− EujXj , Υ14i , βPiBi + C⊤

i V ⊤
i .

Then, the unfixed transition rates can be reconstructed by

πij =

{

2
εj
π̄ij , i ∈ ℓik,

−Ekjπij − Eujπij , i ∈ ℓiuk
.

(26)

Meanwhile, the controller can be designed by

Ki = U−1
i Vi. (27)

Proof. Two cases will be discussed as follows.
Case 1: If i ∈ ℓik, combining (12) and (22), it yields

(Ai +BiKiCi)
⊤Pi + Pi(Ai +BiKiCi) + EkjπijPj + EujπijPj < 0. (28)
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Inequality (28) holds if and only if the following condition holds for sufficiently small scalars εj > 0, j ∈ ℓiuk
:

A⊤
i Pi + PiAi + (BiKiCi)

⊤Pi + PiBiKiCi + EkjπijPj + Euj
πij

2
Pj + Euj

πij

2
Pj

+Eujεj

(

πij

2
A⊤

i Pj

πij

2
Ai +A⊤

i PjAi

)

< 0. (29)

From (13) and Lemma 2, for any matrix Ui and any scalar β 6= 0, condition (29) can be rewritten as













Ῡ11i Ῡ12i Υ13i βPiBi + C⊤
i K⊤

i U⊤
i

⋆ −Ῡ22i 0 0

⋆ ⋆ −Ῡ22i 0

⋆ ⋆ ⋆ −βUi − βUi













< 0. (30)

Defining Vi , UiKi, together with (15), it yields (24).
Case 2: If i ∈ ℓiuk

, combining (16) and (22), it yields

A⊤
i Pi + PiAi + EkjπijPj + (BiKiCi)

⊤Pi + PiBiKiCi + Euj
πij

2
Pj + Euj

πij

2
Pj + πiiPi

+Eujεj

(

πij

2
A⊤

i Pj

πij

2
Ai +A⊤

i PjAi

)

< 0. (31)

Due to πii = −Ekjπij − Eujπij , if Eq. (31) holds, we have

A⊤
i Pi + PiAi + EkjπijPj + (BiKiCi)

⊤Pi + PiBiKiCi + Euj
πij

2
Pj + Euj

πij

2
Pj − EkjπijPi

+Eujεj

(

πij

2
A⊤

i Pj

πij

2
Ai +A⊤

i PjAi

)

< 0, (32)

which can be rewritten as












~Υ11i Ῡ12i Υ13i βPiBi + C⊤
i K⊤

i U⊤
i

⋆ −Ῡ22i 0 0

⋆ ⋆ −Ῡ22i 0

⋆ ⋆ ⋆ −βUi − βUi













< 0, (33)

where

~Υ11i , A⊤
i Pi + PiAi + Ekjπij(Pj − Pi)− Eujε

−1
j Pj .

Defining K̄i , εiKi, together with (15), with the similar procedure to (30), it yields (25). This completes the proof.

Remark 3. It has been observed in [15,18] that the asynchronous mode-dependent parametric method is utilized to
address the coupling term PiBiKiCi in continuous-time Markovian jump systems. However, this method introduces
two types of decision variables, namely Xi and X̄i, leading to significant decision complexity if large switching rules
are required. In this paper, we focus on the case where Pi is a fixed element that cannot be designed and needs to
be preserved when i ∈ ℓik. Consequently, it becomes necessary to retain Pi in the coupling term PiBiKiCi. As a
result, the traditional asynchronous mode-dependent parametric method becomes unsuitable. To address this issue,
we employ the matrix decoupled approach in Lemma 2 and the relation πij = 0 to separate Pi and Ki, effectively
reducing the complexity associated with decision variables dependent on fixed transition rates. This allows us to
focus solely on the variables dependent on fixed ones, such as P̄ki

1

, P̄ki
m1

.

Now, we will deal with the static output feedback stabilization with transition probability synthesis for system
(23).

Theorem 4. The discrete-time Markovian jump system (23) is mean square stable if there exist positive-definite
symmetric matrices P̄ki

1

, P̄ki
2

, ..., P̄ki
m1

, Xui
1

, Xui
2

, ..., Xui
m2

, X̄ui
1

, X̄ui
2

, ..., X̄ui
m2

, any matrices Qui
1

, Qui
2

, ..., Qui
m2

,
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K1, K2, ..., KN , a set of scalars εui
1

, εui
2

, ..., εui
m2

, λ̄iui
1

, λ̄iui
2

, ..., λ̄iui
m2

, viui
1

, viui
2

, ..., viui
m2

such that Eq. (9) and

the following conditions hold for j ∈ ℓikk
:

[

Γ11i Γ12i

⋆ Γ22

]

60, (34)

[

Ψ̂11i Ψ̂12i

⋆ −Ψ̂22i

]

60, i ∈ ℓik, (35)









Ψ11i Ψ̂12i ε̄iI

⋆ −Ψ̂22i 0

⋆ ⋆ −X̄i









60, i ∈ ℓiuk
, (36)

where

Ψ̂11i,−2I + P̄i − EujA
⊤
i XjAi, Ψ11i , −Xi − EujA

⊤
i XjAi,

Ψ̂12i, [Ψ12i,Ψ13i,Ψ14i,Ψ15i], Ψ̂22i , diag{Ψ22i,Ψ33i,Ψ33i,Ψ33i},

Ψ22i,diag{P̄ki
1

, ..., P̄ki
m1

}, Ψ33i , diag{X̄ui
1

, ..., X̄ui
m2

}, Kbi = BiKiCi,

Ψ12i,

[

√

λiki
1

(Ai +Kbi)
⊤, ...,

√

λiki
m1

(Ai +Kbi)
⊤

]

, Ψ13i , [2λ̄iui
1

A⊤
i +K⊤

bi , ..., 2λ̄iui
m2

A⊤
i +K⊤

bi ],

Ψ14i, [λ̄iui
1

A⊤
i +A⊤

i , ..., λ̄iui
m2

A⊤
i +A⊤

i ], Ψ15i , [εui
1

A⊤
i , εui

2

A⊤
i , ..., εui

m2

A⊤
i ],

Γ11i,−EujXj + Euj(Q
⊤
j Qj −Q⊤

j Xj −X⊤
j Qj + v2ijI − 2vij λ̄ijI),

Γ12i, [λ̄iui
1

I +Xui
1

, λ̄iui
2

I +Xui
2

, ..., λ̄iui
m2

I +Xui
m2

], Γ22i , diag{I, I, ..., I}.

Then, a stabilizing transition probability can be reconstructed by λij = 2
εj
λ̄ij and the controller can be design by

Ki.

Proof. Three steps will be given for the proof.
Step 1: From (34), we have

Euj(Q
⊤
j Qj −Q⊤

j Xj −X⊤
j Qj + v2ijI − 2vij λ̄ijI)− EujXj + Euj(λ̄ijI +Xj)

⊤(λ̄ijI +Xj) 6 0, (37)

which can be further rewritten as

2Eujλ̄ijXj + Euj(Qj −Xj)(Qj −Xj)− EujXj + Euj(vij − λ̄ij)(vij − λ̄ij) 6 0. (38)

From the following fact:

(Qj −Xj)(Qj −Xj) > 0, (vij − λ̄jj)(vij − λ̄jj) > 0,

we have

− EujXj + 2Euj λ̄ijXj 6 0. (39)

From (15), condition (39) implies

− Eujε
−1
j Pj + EujλijPj 6 0. (40)

Step 2: Following the fact

(I − P−1
i )⊤Pi(I − P−1

i ) > 0,

we have

− Pi 6 −2I + P−1
i . (41)
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Step 3: The mean square stability of system (23), as defined by (6), is guaranteed if a set of positive definite
matrices Pi fulfills the following inequality:

(Ai +BiKiCi)
⊤(EkjλijPj)(Ai +BiKiCi)− Pi + (Ai +BiKiCi)

⊤(EujλijPj)(Ai +BiKiCi) < 0. (42)

In the following, two cases on i ∈ ℓik and i ∈ ℓiuk
will be respectively considered.

Case 1: If i ∈ ℓik, one has from (40)–(42)

P−1
i − 2I + (Ai +BiKiCi)

⊤λijPj(Ai +BiKiCi) + EujA
⊤
i Pj

(

λij

2
Ai

)

+ Euj

(

λij

2
Ai

)⊤

PjAi

+Euj(λijAi)
⊤Pj(BiKiCi) + Euj(BiKiCi)

⊤Pj(λijAi) + Euj(BiKiCi)
⊤ε−1

j Pj(BiKiCi)

+Eujεj

[

5

4
(λijAi)

⊤Pj(λijAi) +A⊤
i PjAi

]

< 0, (43)

which can be rewritten as


















Ψ̄11i Ψ12i Ψ̄13i Ψ̄14i Ψ15i

⋆ −Ψ̄22i 0 0 0

⋆ ⋆ −Ψ̄33i 0 0

⋆ ⋆ ⋆ −Ψ̄33i 0

⋆ ⋆ ⋆ ⋆ −Ψ̄33i,



















< 0, (44)

where

Ψ̄11i,−2I + P−1
i − Eujε

−1
j A⊤

i PjAi, Ψ12i ,

[

√

λiki
1

(Ai +Kbi)
⊤, ...,

√

λiki
m1

(Ai +Kbi)
⊤

]

,

Ψ̄13i, [εui
1

λiui
1

A⊤
i +K⊤

bi , ..., εui
m2

λiui
m2

A⊤
i +K⊤

bi ],

Ψ̄14i, [
εui

1

2
λiui

1

A⊤
i +A⊤

i , ...,
εui

m2

2
λiui

m2

A⊤
i +A⊤

i ], Ψ15i , [εui
1

A⊤
i , εui

2

A⊤
i , ..., εui

m2

A⊤
i ],

Ψ̄22i,diag{P−1
ki
1

, P−1
ki
2

, ..., P−1
ki
m1

}, quadΨ̄33i , diag{εi1P
−1
ui
1

, ..., εim2
P−1
ui
m2

}.

From (15), we can obtain (35).
Case 2: If i ∈ ℓiuk

, it further yields from (40) and (42)

(Ai +BiKiCi)
⊤λijPj(Ai +BiKiCi)− Pi + EujA

⊤
i Pj

(

λij

2
Ai

)

+ Euj

(

λij

2
Ai

)⊤

PjAi

+Euj(λijAi)
⊤Pj(BiKiCi) + Euj(BiKiCi)

⊤Pj(λijAi) + Euj(BiKiCi)
⊤ε−1

j Pj(BiKiCi) +
εi
4
Pi

+Eujεj

[

5

4
(λijAi)

⊤Pj(λijAi) +A⊤
i PjAi

]

< 0,

which can be rewritten as






















Ψ̃11i Ψ12i Ψ̄13i Ψ̄14i Ψ15i ε̄iI

⋆ −Ψ̄22i 0 0 0 0

⋆ ⋆ −Ψ̄33i 0 0

⋆ ⋆ ⋆ −Ψ̄33i 0 0

⋆ ⋆ ⋆ ⋆ −Ψ̄33i 0

⋆ ⋆ ⋆ ⋆ ⋆ −εiP
−1
i























< 0,

where Ψ̃11i , −ε−1
i Pi − Eujε

−1
j A⊤

i PjAi. From the definition in (15), with the similar procedure to (43), we can
obtain (36). This completes the proof.
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Remark 4. It is seen from [18] that the 4-degree coupling terms (BiKiCi)
⊤
∑N

j=1 λijPj(BiKiCi) are addressed.

The relation λij 6 1 is used to impose a constraint, leading to (BiKiCi)
⊤
∑N

j=1 λijPj(BiKiCi) 6 (BiKiCi)
⊤
∑N

j=1

Pj(BiKiCi). However, since λij are the parameters to be solved, eliminating them inevitably introduces conser-
vatism. In this paper, we introduce condition (34) to retain the parameters λij in Λ (refer to Step 1 in the proof of
Theorem 4 for details), leading to less conservatism.

Remark 5. The hybrid control scheme in this paper distinguishes between the fixed transition
probabilities-dependent matrices Pi and the unfixed transition probabilities-dependent matrices Xi and X̄i. This
clear separation eliminates the complexity associated with a large number of decision variables and avoids the need
for optimization algorithms. For instance, using the methods described in [15, 19], condition (13) can be expressed
as

A⊤
i Pi + PiAi + EkjπijPj + Euj

πij

2
Pj + Euj

πij

2
Pj + Eujεj

πij

2
Pj

πij

2
+ εiA

⊤
i PiAi < 0.

This formulation will introduce additional combinations such as εiXi, making the problem difficult to solve, which
further demonstrates the advantages of the hybrid control scheme in the present paper.

Remark 6. Compared to traditional methods that solely rely on feedback controllers [7,12], this paper proposes
a hybrid control strategy that stabilizes the closed-loop system through two main aspects. First, it optimizes
the transition rates/probabilities to improve the internal structure of the Markov jump system, a capability that
traditional feedback control does not possess. Second, it further adjusts and supplements the optimized structure
through the feedback controller. Therefore, the hybrid controller possesses the ability for internal self-optimization,
which can further enhance the system performance.

Remark 7. It is important to emphasize that this study does not aim to extend or refine the existing literature on
partially transition probabilities/rates [12]. Instead, it approaches the problem from a novel perspective by inves-
tigating the designability of non-fixed transition probabilities. As such, the proposed framework is fundamentally
distinct and should not be interpreted as a direct generalization of existing work on general uncertain transition
probabilities/rates [24]. Building on this foundation, future research could explore how to more effectively de-
sign non-fixed transition matrices or identify conditions under which certain non-fixed transition structures remain
inherently non-designable.

4 Examples

Example 1. Consider the system (1) borrowed from [15], where the parameters are defined as follows:

A1=

[

0 −1

−2 0

]

, A2 =

[

−1 −1

3 0

]

, C1 =
[

0 1
]

, B1 =

[

0

1

]

, B2 =

[

1

0

]

, C2 =
[

1 0
]

.

It is evident that A2 is stable, but A1 is not. On this basis, we will consider the following two cases.

(1) If Π =

[

◦ ◦

3 −3

]

, we can stabilize the system through transition rate design and hybrid control design.

(i) Using Theorem 1, we can find the unfixed elements as

Π0 = [−9.4773, 9.4773].

(ii) Using Theorem 3, we obtain the hybrid unfixed elements and static feedback controller as

(Π,K) = ([−4.1536, 4.1536], [−0.6787,−1.6101]). (45)

Under the initial condition x(0) = [−5, 5]⊤, the corresponding stabilization results are shown in Figures 3–5.
Therein, Figure 3 demonstrates the stable state response achieved through designing the transition rate matrix Π0.
Figure 4 indicates the stable state response achieved through co-designing transition rates and a static feedback
controller (Π,K). Furthermore, Figure 5 shows that the convergence rate of the system under the hybrid control
strategy is faster than that of the design considering only transition rates, where a smaller convergence domain
implies better system performance.
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Figure 3 (Color online) Stabilization via the designed transition

rates.

Figure 4 (Color online) Stabilization via the co-designed transition

rates and static feedback controller in (45).

Figure 5 (Color online) The convergence tendencies via Π0 and

(Π,K).

Figure 6 (Color online) Stabilization via the co-designed transition

rates and static feedback controller in (46).

(2) If Π =

[

−3 3

◦ ◦

]

, it can be seen that this system can not be stable via designing transition probabilities only.

Thus, using Theorem 3, it yields the hybrid unfixed elements and static feedback controller as

(Π,K) = ([3.3292,−3.3292], [−1.4744,−0.6937]). (46)

Under the hybrid control scheme, we can see from Figure 6 that the system is stable, which shows the hybrid
control design method is efficient.

In the above example, we have demonstrated the proposed method to continuous-time Markovian jump systems.
Now, let us provide an example to illustrate the benefits of the proposed method for discrete-time Markovian jump
systems.

Example 2. Consider two discrete-time linear subsystems as follows:

A1=









0.8 0 0

0 −0.9 0

0 0 −0.9









, A2 =









−1 0.1 0

0 0 0.2

0 0 0.1









, B1 = B2 =









0

1

1









, C1 =
[

0 0 0
]

, C2 =
[

0 1 1
]

.

It is clear that A1 is asymptotically stable but not A2. On this basis, two cases will be considered as follows.

(1) If Λ =

[

0.5 0.5

◦ ◦

]

, we can stabilize the system via transition probability design and hybrid control design.
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Figure 7 (Color online) Stabilization via the designed transition

probabilities.

Figure 8 (Color online) Stabilization via the co-designed transition

probabilities and static feedback controller in (47).

Figure 9 (Color online) The convergence tendencies via Λ0 and

(Λ,K).

Figure 10 (Color online) Stabilization via the co-designed transi-

tion probabilities and static feedback controller in (48).

(i) Using Theorem 2, it yields the unfixed elements as Λ0 = [0.3555, 0.6445].
(ii) Using Theorem 4, it yields the hybrid unfixed elements and static feedback controller as

(Λ,K) = ([0.7096, 0.2914], [0,−0.0485]). (47)

Under the initial condition x(0) = [2, 1,−2]⊤, it can be seen from Figures 7–9 that the state response is stable
via designing the transition probability matrix Λ0. From Figure 8, it can be concluded that the state response is
stable via co-designing transition probabilities and static feedback controller (Λ,K). Moreover, it can be further
summarized from Figure 9 that the convergence rate of the system under the hybrid control scheme is faster than
that of the design transition probability only.

(2) If Λ =

[

◦ ◦

0.5 0.5

]

, it can be seen that this system cannot be stable via designing transition probabilities only.

Thus, using Theorem 4, it yields the hybrid unfixed elements and static feedback controller as

(Λ,K) = ([0.2935, 0.7065], [0,−0.0748]). (48)

Under the hybrid control scheme, we can see from Figure 10 that the system is stable, which shows the hybrid
control design method is efficient.

5 Conclusion

This paper has explored the problem of hybrid control schemes for continuous-time and discrete-time Markovian
jump systems using a synchronous mode-dependent parametric method. The objective is the co-design of partly
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transition rates/probabilities and output feedback control. First, we establish novel necessary and sufficient condi-
tions to characterize the switching rates/probabilities that ensure mean square stability in both continuous-time and
discrete-time Markovian jump linear systems. Subsequently, we derive stabilization conditions for the hybrid de-
sign. It is crucial to strictly separate the decision matrices for fixed and unfixed transition rates/probabilities, which
reduces complexity requirements and eliminates the need to solve complex parameters. Finally, we demonstrate the
effectiveness of the proposed methods through two numerical examples.
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