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Abstract This paper investigates the control strategies in repeated games with time-variant environment, called generalized zero-
determinant (GZD) strategies, which can enforce the linear relationship between collective welfare and environmental quality. First, we
give the algebraic model for Markovian profile evolutionary dynamics and then integrate it with Markovian state evolutionary equation
into an eco-evolutionary algebraic system. Based on this algebraic form, a simple algebraic formula is provided to design GZD strategies
in a repeated three-player game with two different environments, and then some interesting results are presented. It is shown that when
the two environments are indistinguishable, the GZD strategies will degenerate to the zero-determinant (ZD) strategies. Finally, to
reduce the computation complexity and highlight the importance of coordination to succeed in large groups, the group-based method is
proposed to design GZD strategies.
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1 Introduction

Repeated games have provided a general and formal framework to describe the long-term behaviors and reciprocity
of rational individuals [1]. The most famous model is the repeated prisoner’s dilemma game and it is found that
mutual cooperation would take place over the long term. Recently, finite-memory strategies in repeated games have
been widely studied since the rationality of real players is bounded [2-4]. However, Press and Dyson [5] have proved
that the long-memory strategies have no advantage over the memory-one strategies and proposed a new kind of
memory-one strategies in the repeated prisoner’s dilemma game, called zero-determinant (ZD) strategies. Since
then the ZD strategies have made significant progress in many applications [6-9].

For repeated games with two players, ZD strategies enable one player to unilaterally set a linear relationship
between his own payoff and that of the opponent, regardless of the opponent’s strategies. Subsequently, ZD strategies
have also been extended to repeated multi-player games [10,11]. The authors have studied the ZD strategies in
multi-player public goods games [10] and the existence of ZD strategies in finitely repeated multi-player games with
a discount factor has been investigated in [11]. In addition, the evolutionary stability of ZD strategies has been
substantially discussed [12,13]. However, these previous studies have typically assumed that interacting individuals
play games repeatedly in a constant social and natural environment. In contrast, in many practical applications, the
state of the game environment is adaptive and the feasible payoffs of players can be influenced by random factors
when the decision-making process is under dynamical environments.

Stochastic games [14] have been introduced to describe the repeated interactions between individuals in which the
underlying state of the environment changes randomly and it often influences players’ actions and their payoffs [15].
As a special class of stochastic games, Liu and Wu [16] have discussed the Markovian eco-evolutionary feedback
model between environment and human behavior. Then a new extension of ZD strategies, called the welfare-
time strategy, is proposed to build a linear relationship between collective welfare and the environmental quality.
Compared with [16], we extend the game model from two-player two-action to multi-player multi-action case. In
addition, people often naturally form different types of groups based on common characteristics, such as geographical
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location, cultural background, and social status. The group-based method thereby provides an effective way for
analyzing and solving decision-making problems in game models with a large number of players [17]. Motivated by
this, an algebraic formula is derived to design group-based ZD strategies in this paper.

As a novel matrix product, the semi-tensor product (STP) of matrices [18,19] has found successful applications in
numerous fields, including biological systems [20-25], graph theory [26], game theory [27-29] and finite automata [30].
Using the algebraic representation developed by STP, a new formula is given to design ZD strategies for multi-player
games with asymmetric strategies [31]. In [32], the ZD strategies for multi-player games with multiple memories
are investigated. The authors have discussed the correlation between the expected payoffs and the structure of
the payoff vector when players use ZD strategies in repeated symmetric or skew-symmetric games. In this paper,
we also utilize STP to investigate the ZD strategies of repeated multi-player games. However, compared with the
previous results in [31,32], we consider the stochastic game model in which the environment can be changed in
response to the actions of players. Besides, taking into account of the relationship between players’ payoffs and
environment, we give the definitions of collective welfare and environmental quality respectively, based on which
the coupling correlations between them are clarified. The main contributions of this article include three aspects.

(1) Using the algebraic representation based on the STP method, an equivalent algebraic expression of Markovian
eco-evolutionary dynamics is presented for repeated multi-player games with time-variant environment.

(2) Taking the dissemination of public opinion as the research background, the generalized zero-determinant
(GZD) strategies are introduced to explore the linear relationship between payoffs for netizens involved in spreading
information and the environmental quality. A simple formula is provided to design GZD strategies for a repeated
three-player game with two different environments.

(3) To simplify the computational complexity, a group-based method for designing GZD strategies is derived. It
is easy to verify that the total number of strategies is reduced from k" to % by aggregating r players into one
group, where k is the number of strategies for each player. Some necessary and sufficient conditions are presented
to ensure that the collective welfare and environmental quality are positively or negatively correlated.

This paper is organized as follows. Some necessary preparations are given in Section 2. Section 3 presents the
matrix expression of eco-evolutionary dynamics. Section 4 explores GZD strategies in repeated three-player games
with two environments. The group-based method is proposed to design GZD strategies in Section 5. An interesting
discussion and a concise conclusion are shown in Section 6.

2 Preliminaries

For statement ease, we first give some notations.

o M, «n: the set of m x n real matrices.

e Col(M): the set of columns of M; Col;(M) is the i-th column of M.

e M*: the adjoint matrix of M.

e Dy :={1,2,...,k}, k=2

o Ay = {52|z =1,..., k}, where 4 is the i-th column of the identity matrix Ij.

o L. € My,xn is called a logical matrix, if and only if Col(L) € A,,, and it can be simply expressed as L =
Omlit, o, ..., in].

e Y™ is the set of m dimensional random vectors and Y, is the set of m x n random matrices.

o 1;:=(1,1,..., D)L

—_——

k
e Span(M): the subspace spanned by Col(M).

2.1 Semi-tensor product of matrices

STP is the fundamental tool in this paper. More details are described in [18,19].

Definition 1. Let M € M,,xpn, N € My, and t = lem{n, p} be the least common multiple of n and p. Then
STP of M and N, denoted by M x N, is defined as

M x N := (M® It/n) (N® It/p) € Mmt/nxqt/pu (1)

where ® is the Kronecker product.
Proposition 1. Let X € R” be a column and M be a matrix. Then X x M = (I, ® M) X.
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Theorem 1. Let x; € Dy, i = 1,...,n, f : D} — Dy (or D — R) be a k-valued logical (or pseudo-logical)
function. Then there exists a unique My € Lyxpn (or My € Rkn), such that

flxe,. . xn) = My X7 2. (2)

My is called the structure matrix (or structure vector) of f.
Definition 2. Let M € Myypm, N € Myxym. Then the Khatri-Rao Product is defined as

M« N = [Coly (M) x Coly(N)---Coly, (M) x Col,, (N)]. (3)

2.2 Finite normal game and repeated game

Definition 3. Consider a finite normal game G = (N, A4, C'), including three fundamental ingredients:

(i) Let N ={1,2,...,n} denote the set of players;

(ii) Let A =[]\, A; denote the strategy profile, where A; = {a1,as,...,ax,} is the set of strategies for player i,
1=1,....n;

(iii) C = (c1,...,¢n) € R™, and define ¢; : A — R as the payoff function of player i.

Let G € Gy ka,... k) denote such finite games. Then we give the definition of repeated multi-player games with
time-variant environment.

Definition 4. A repeated multi-player game with time-variant environment can be denoted by G = (N, S, A, C, Q),
where

(1) N =4{1,2,...,n} is the set of players;

(2) S ={s1,52,...,8m} is the set of states, where s; is initial state;
(3) Ai(s) is the set of strategies for player i in state s € S. In this paper, we assume A;(s) = A4, for any s € S;
(4) C=(c1,...,¢n), where ¢; : S x A — R is called the payoff function of player i;
(5) Q: S x A— A(S) is the state transition function. A(S) represents the probability distribution over the set
S.

3 Matrix expression for repeated multi-player games with time-variant environment

Consider a finite game G' € Gy, ks,...k,] Played repetitively, all the players update their strategies based on
historical information. This paper only considers repeated games with memory-one strategies. When the state of
game environment is time-invariant, the strategy evolutionary dynamics can be described as

ri(t+1) = fi(z(t),. .., zn(t)),
; (4)
Tn(t+ 1) = fu(z1(t),. .., 2.(t)),

where z;(t) € Ty, is the strategy of player i at time ¢, and f; : T — T}, denotes the stochastic rule, k = H?:l ki,
1=1,...,n.

Let x(t) = x_,2;(t), then Eq. (4) can be converted into

Ex;(t+1) = LiEx(t), i1 =1,2,...,n, (5)
where
P},l Pzz,l Pf,l
L; = : e € Vixk, t=1,2,...,n, (6)

and pl ; = Pr(az;(t +1) = jlz(t) = 1).
Multiply both sides of (5), we can obtain the matrix expression of Markovian profile dynamics

Ex(t + 1) = LExz(t), (7)
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Table 1 Payoff matrix of game 1.

c\a 111 112 121 122 211 212 221 222
c1 Ry K1 K1 S1 T Ly Ly Py
ca Ry K T L, Ky S1 Ly Py
cs Ry Th K1 Ly K1 L,y S1 Py

Table 2 Payoff matrix of game 2.

c\a 111 112 121 122 211 212 221 222
c1 Ro K> K> Sa T> Lo Lo Py
co R K> T> Lo K> Sa Lo Py
cs Ro T> K> Lo K> Lo Sa Py

where L = Ly % Lo % ---x L,, € T« is called the transition matrix.

Next we consider a repeated multi-player game with time-variant environment, the transitions between different
states can be deterministic or stochastic, state-dependent or state-independent. This paper only considers the
probabilistic state-dependent case, then the strategy dynamics can be expressed as

w1t +1) = f7 O (@1 (t), - za()),
; (8)
2ot +1) = [ (@1 (1), 2 (1)),

where 5

0 1T = Yy, is a state-dependent function.

Assume that the structure matrices of fis(t) is Lf(t), then the matrix expression of Markovian profile dynamics is
Ex(t + 1) = L*YEx(t) = LEs(t)Ex(t), (9)

where L3() = Li(t) * Lg(t) v LS ¢ Yixk, and L = [LY L% ... L™ € Tixmk-
Similarly, we have the matrix expression of Markovian state dynamics as

Es(t + 1) = QEs(t)Ex(t), (10)

where @ € Tixmr. Set z(t) = s(t)z(t), then the dynamics (9) and (10) can be integrated into an algebraic
Markovian eco-evolutionary equation

Ez(t+1) = MEz(t), (11)

where M = Q * L € Yk xmk-

With the number of players and strategies increasing, as well as the effect of environmental stochasticity, the
computational complexity becomes one of the main challenging issues. For simplicity, we consider a repeated
three-player prisoner’s dilemma game with two different environments in this paper.

In the background of sudden public events, online media platforms can adopt both active and passive control
measures, where active control refers to the real-time control and review of information content by online media
platforms, but passive control means allowing the dissemination of public opinion information to gain traffic and
popularity when facing a sudden public event. For a certain topic of online public opinion, netizens usually have
two different choices: spreading and not spreading. The benefits of netizens are closely related to the control
behavior of online media platforms. First, we make the following assumptions: (1) there are only positive and
negative regulation which can be characterized as two environment states (i.e., games 1 and 2); (2) the finite game
is prisoner’s dilemma, (3) the transition function is probabilistic state-dependent; (4) the action “not spread” means
“cooperation” (C) and “spread” means “betrayal” (D). Then the payoff matrices are shown in Tables 1 and 2.

The game transition process can be shown in Figure 1, where f,,, is the probability of players playing game 1
in the next step, m represents the current state (m = 1,2) and n (n = 0, 1,2) is the number of cooperators at the
current time step.

To ensure that the payoffs of the betrayers are higher than those of the cooperators [13], it needs to satisfy that
T > Ry > Ly, > Ky > Py > Spy Ry > (T, + Ki)/2 and Ky, > (L, + Sm)/2, (m = 1,2). According to
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n people
1-fi, cooperate

fln 1'f2n

Game 1 Game 2

f2n

Figure 1 (Color online) Game transition diagram.

Theorem 1, we have the vectors of payoff functions

Ve = (R, K1, K1,51,Th, L1, L1, P1, Ry, K2, Ko, S3, T, Lo, Ly, P,),
Vs = (R, K1,T1,L1,K1,S1, L1, P1, Ry, K2, T, Ly, K2, 52, Ly, P,), (12)
Vi = (Ry,Th, K1, L1, Ky, L1, 81, P1, R2, Ts, Ko, Lo, K, La, So, Py).

In (9), when s(t) = 1, we have

Ll — D1 D2 p3 Pa Y% De pr ps
1 — )
l-p11—-p21l—p31—psl—ps1l—psl—prl—ps

Il — q1 qz q3 q4 qs de qr qs
2
1-¢11-g1-g31—qal—¢g51—¢gs 1—qr1—gs]

Ll — 1 T2 T3 T4 s ] r7 T8

_1—7‘1 1—7‘2 1—7“3 1—7‘4 1—7“5 1—7‘6 1—7“7 1—7‘8_

and

p1gim Pgqsrs
L'=Li*Ly*L}= :

(I=p)(I—=q)(L—r1) -+ (1 —ps)(L —gs)(1—rs)

7); g5 = Pr(za(t +1) = 1jz(t) = j) and r; = Pr(zs(t + 1) = 1|z(t) = j),

where p; = Pr(z1(t + 1) = 1|z(t) =
= 2, we have

j=1,...,8. Similarly, when s(t)

grhily gshsls
LP=IL3% L2+ L3 = : :

(1=g)(I =h)(A =) - (1 —gs)(1 —hs)(1 =)
where g; = Pr(zi(t + 1) = 1|z(t) = j); hj = Pr(z2(t + 1) = 1jz(t) = j) and I; = Pr(as(t + 1) = 1]z(t) = j),

j=1,....8
Define L = [L*, L?], and in (10), we have

Qi f13 f12 flO f23 f22 f20

— € Toxie-
1—fisl—=fio - 1—=fiol—=fag 1—foo---1— fo
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Then the matrix expression of Markovian eco-evolutionary equation (11) is obtained and we calculate

[ P1q171f13 P8qsTs f10
p1q1(1 —71) f13 e psgs(1 —78) fio
p1(1—qi)r1fis e ps(1 —gs)rsfio
. : :
QI=—p)X—q)X—=r1)fiz - (1=ps)(1—gs)(l—rs)fio
p1qiri(1 — fi3) e psqsrs(1 — fio)
| (T =p)(I=q)X =7r1)(1 = fi3) -+ (1 —ps)(1 —gs)(1 —rs)(1 = fio)

gihily fa3 gshsglg f2o
(1-=g)A—=h)(I=l)fs - (1—gs)(1—hs)(1—1Is)f € i, (13)

gihili(1 — fa3) e gshgls(1 — f20)

(1—=g1)(1 =h1)(L=1)(1 = faz) -+ (1 —gs)(1 — hs)(1 —Is)(1 — fa0)

In this matrix, p1qi(1 — r1) means the probability that profile is 62 ~ (1,1,2) at the next step while the current
state is game 1 and the profile is 63 ~ (1,1,1). Then the probability that they play in game 2 at the next step is
denoted as p1¢1(1 — r1)(1 — f13) when all players cooperate at the current moment.

4 GZD strategies for repeated three-player games with two environments

In this section, we give an algebraic formula to design GZD Strategies, which is based on the properties of Markov
transition matrix M in (11).

A Markovian chain is ergodic if it is irreducible and aperiodic, then the transition matrix M has a unique
stationary distribution. Define A € Yo as the stationary vector with respect to a unit eigenvalue, then we have
MM = X, which is equivalent to

(M — Ipk)A = 0. (14)

For a repeated three-player game, the stationary distribution is defined as

(11 12 2 2T
A= (01,05,...,08,071,05...,05)",

where the element 07" represents the proportion of the time that the profile 5% in game m across all the possible
profiles and games, j = 1,...,8, m = 1,2. Next, we explore the linear relationship between the collective welfare
and the environmental quality, which are defined as follows.

Definition 5. Define N, as the proportion of the time in game m (m = 1,2), then N,, is called environmental

quality of game m. Let

I = (fi3, fi2, fi2, f11, f12, fi1, fi1, fros f23s fa2, fa2, fo1, fo2, fo1, f1, f20),

then

2
Ny =Y [fms0T" + fima(05' + 05 +08") + fur (0] + 05" + 07) + frmo0d']
1

fA

and N2:1—N1.
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Definition 6. The expected payoffs for three players are expressed as Ec; = V,°A, i = 1,2,3. Then
3
W=VE+Vs+VE) A=V A=) Ee
i=1

is called the collective welfare, where V = V¢ + Vi 4+ V.

Lemma 1 ([31]). Consider a finite game G' € Gi3,i, k,,ks] Played repetitively in two environments. The strategy
extraction vector for player ¢ with strategy j is denoted by =Z; ; € R2* 5 =1,... ki, i=1,2,3, k = k1kyks, which
is defined as

Ei)j = IXEL:OKJF“ (15)
where
127 H= 07
K= 0%, b=1
1, p#i.
Then we have
EL,M = > Row.(M), (16)
red; ;

where ®; ; = {a € Al|a; = j} C A is the set of profiles that player ¢ uses strategy j in profile a € A.
Define z; as the i-th row of matrix M, then z; ; = [2};,27,,..., 205, 2} ;, 27 ,..., 20 ;],Vi € N, j € Ay, that is, in

game 1, 27, = Pr(z;(t + 1) = jlz(t) = s); and in game 2, 27, = Pr(z;(t + 1) = jlz(t) = s), s = 1,...,8. According
to (14) and basic knowledge of linear algebra, for an arbitrary vector e € R16, it is easy to calculate

21— (636) ] (21— (015)"]
22 — (6%6)T ;
e\ = fdet : =det | z; —EF, |, (17)
z16 — (618)"
L € i e

where 6 is a non-zero constant, and the reason why the latter equal sign is valid is that we add all rows belonging
to ®;; to a certain row of ®; ;. Obviously, if z; ; — E;FJ is proportional to e, it follows e - A = 0, that is,

=T _

Z@j 58 = ce,

where ¢ is a non-zero adjustable parameter. Based on the above analysis, we have the following result.

Theorem 2. Consider an infinitely repeated game G € §i3;229) With two transformed environmental states.
Assume player i aims to set the linear relationship between N7 and W as

a1 + as Ny + asW = 0. (18)
Then the GZD strategies can be designed as
zig=mlg+mf+nV +2, i=1,23, j=1.2, (19)

where the parameters o, and 7, = ca,., r = 1,2, 3, are determined unilaterally by player i.
Proof. Let
e =onlig+ aaf +az(Ve + V5 + Vi)
If z; ; satisfies (19), that is
zij =mlis +nof +nsV + 57

=c(o; 11T6 +asf +a3V)+ E;r]

T

=ce + Ei,j'
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Bring it into (17), it is obvious that e- A = 0. On the other hand, we have

e A= (115 + asf +azV) -\
:Ozl]_rer')\—l—O[Qf')\—FOégV'A
= O[l—I—O[QNl—FO[gW,

which leads to (18).

Remark 1. (i) The purpose of (16) is to select the set involving z; ; from matrix M, and such set is D, ;.
(ii) According to [33], if we define T; = [Ef M — E}'] € Maxis, V = [Lig, (Vi + V5 + V)T, fT] € Mygxs, where
Ei = [Zi1,Ei,2), then the GZD strategies can be existed if and only if

Span(T;") N Span(V) # {016} .

It is shown that there exists at least one set of coefficients such that I3 (z; 1 —Ezl)—klg (zi2 —E%) = 1fs+aaf+asV,
which is essentially equivalent to (19).

(iii) Since No = 1 — Ny, we can also set the linear relationship between No and W, which is expressed as
oy + 042(1 —Ny)+asW =0.

It is noted that Theorem 2 can also be extended to repeated games with multiple players and multiple strategies,
but the corresponding complexity will be significantly high. Without loss of generality, we make the following
assumptions.

(i) Let 81 = o8, B2 =1, az # 0. Then we have

N1+ 5iW + B2 = 0.
(i) Using matrix M in (13) and strategy extraction vector (15), we have
=1, =1[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0].
It follows that

z1 =21, M = Y Row,(M)
redi
:[2%717 2%,17 2?,17 2%,17 2?,17 2?,17 217,17 218,17 2},17 2%,17 2?,17 211,17 2?,17 216,17 217,17 2?1]7
which can be simply written as z11 = [p1, D2, P3, P4, D5, P65 D7+ D8, 91, 92, 3, 94, G5, 96 g7. gs)- Set ¢ = 1, then we have
21,1 :f+61V+B211T6+EF1F,1' (20)

(iii) In Tables 1 and 2, choose its payoffs as R, = a > 0, K,;, = a — by, S = @ — 2¢p, T = 2by, > 0,
Ly =c¢m>0,P,=0(m=1,2) and by < be,c; < cg, that is, when online regulation is not as strict, players who
choose to spread information will receive higher payoffs than those under strict regulation.

Based on the above assumptions, the GZD strategies in (20) can be rewritten as

p1 = fi3 +3aB + P2 + 1,

p2 =p3 = fi2 +2apB1 + B2 + 1,
pa = fu1 +aBi+ B2+ 1,

ps = fi2 + 2ap1 + Po,

pe = pr = f11 +aB1 + B2,

ps = fi0 + P,

g1 = fo3 +3ab1+ B2+ 1,
92 = g3 = foo +2ap1 + B2 + 1,
g4 = for +aB + B2 + 1,

g5 = fa2 + 2ab1 + B2,

g6 = g7 = fa1 +ap + B2,

gs = fa0 + Pa.
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Obviously, po = p3 = ps+ 1, ps = ps + 1 = p7 + 1. Hence, to ensure the existence of GZD strategies, it is necessary
to satisfy that

(i) fme2 +2aB1 + B2 = fin1 + aBy + P2 = 0, which leads to 2 = — fn1 — a1 = — fine — 2af1, m = 1,2;
(ii) fi1 = for, fiz = foo.

And when [y = — f11 — a31, we have

p1 = fi3+2ap1 — fi1 +1,
P2 =p3=ps=1,

ps =ps =p7r =0,

ps = fio — ap — fi1,

g1 = faz +2aB1 — fa1 + 1,
g2 =93 =94 =1,

95 =96 = g7 =0,

gs = fa0 — aB1 — fo1,

where both 81 and (5 are solely determined by player 1. Then we have some interesting properties.

Proposition 2. Consider an infinitely repeated game G € G322 2] With two environments.

(i) Environmental quality N, deteriorates as collective welfare W increases, if and only if fr,3 < fin2 < fm1 < fmo,
m=1,2.

(ii) To ensure the existence of GZD strategies, the range of values for parameter S; is

fm2_fm3_1 .]cml_me_1 fan_fml_1 .]cmO_fml_1

max ’ ) ) gﬂl
3R, —2K,, — T,” 3R, — 2Ly, — Sy, 2K,y + Ly, — 3Py, Sy + 2L, — 3P,

<min fmS_me fmS_fml me_me me_fml

b 2Ky + Trn — 3R S + 2Ly, — 3Ry, 2K, + Ty — 3Py, Sy + 2Ly, — 3P, |

where fm3 < fm2 < fml < me or fmS > fm2 > fml > me hOldS, m=1,2.
Proof. (i) According to equation Ny 4+ 51 W + 82 = 0, If 81 > 0, then N; deteriorates with the increase of W. We
first give the proof of necessity.

(Necessity) when 1 > 0, due to 0 < pj,g9; < 1, j = 1,2,...,8, it is necessary to ensure fp3 — fm1 < 0 and
fmo— fm1 >0, m=1,2 in (22). That is, fin3 < fim1 < fmo, m = 1,2. Similarly, substitute S2 = — f,,2 — 2a3; into
(21), we have fi3 < fma < fmo, m = 1,2. Finally, consider 82 = — fi1 — a1 = — fma — 2a31, which is equivalent
to fim1 — fm2 = apB1 > 0, it yields fio < fm1. In summary, we obtain that fi,3 < fm2 < fm1 < fmo,m =1,2.

The sufficiency is obvious. Hence, we can omit it here.

(ii) According to (20) and (22), we can obtain the following inequations for s(t) = 1:

p2—p1 = fiz — fi3 + (2K1 + T1 — 3R1)B1 > 0,
pa—p1 = fu1 — fis + (2L1 + S1 = 3R1)B1 > 0,
= fis— fizo— K1 +T1 —3Ry)B1 +1 >0,
:f13—f11 (2L1 4+ S1 = 3Ry)p1 +1 >0,
p2 —ps = fi1 — fio+ QK1 +T1 —3P1)B1 +1 >0,
pa—ps = fu1 — fro+ (2L1 + 51 —3P)p1 +1 >0,
ps —ps = fio — fiz — K1 +T1 = 3P1)B1 > 0,
ps —p6 = fio — fi1 — (2L1 + S1 = 3P1)B1 > 0.
Similarly, for s(t) = 2, we have
g2 — g1 = fa2 — faz + (2K2 + T2 — 3R2)B1 > 0,
gas— g1 = fo1 — fo3 + (2L2 + S2 — 3R2)B1 > 0,
91— 95 = faz — foo — (2K2 + T2 = 3R2)31 +1 >0,
91— 96 = faz — fo1 — (2L2 + S2 —3R3)B1 +1 >0,
g2 —gs = fo1 — fao + (2K2 + T2 — 3P2)B1 +1 > 0,
g1 — 98 = fo1 — foo + (2L2 + 82 = 3P2)B1 + 1 > 0,
g8 — 95 = fao — fa2 — (2K2 + T2 — 3P)B31 > 0,
g8 — g6 = fa0 — fo1 — (2L2 + S2 — 3P) By > 0.
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Table 3 Payoff matrix of game 1 with two groups.

Q1\Q2 cc CD(DC) DD
c RY, RY K9, LY 59,79
D 17,89 LY, KY Py, P?

Table 4 Payoff matrix of game 2 with two groups.

Q1\ Q2 cc CD(DC) DD
c RY, RS K$,L§ Sg, T8
D Ty, 54 LY, K§ Py, P§

By solving the above two inequations, the range of values for 1 can be provided.
Remark 2. (i) Similarly, environmental quality N7 improves along with the increase of collective welfare W, if and
only if fins > fine > fm1 > fmo,m = 1,2. That is to say, if more people do not spread rumours, then transforming
into an environment with better environmental quality and stricter regulation is possible.

(ii) If the two environments are identical, then the GZD strategies will degenerate into the traditional ZD
strategies.

(iii) In addition to the prisoner’s dilemma, the GZD strategies remain valid for 2K; + 71 = 2K, + T» and
201 + 51 = 2Ly + S5.

5 Group-based GZD strategies for repeated three-player games with two environ-
ments

In many situations, when players make decisions, they often choose to collaborate with others. Assume that
G € G[nk) is a symmetric game with n players. If each player acts individually without making any alliance, then
the set of strategies for r (r < n) players can be expressed as

{(@1---1),(11---2),...,(kk---k)}.
Hence, the total number of strategies in this set is k”. By contrast, when there are r players forming an alliance,
we can ignore the order of players in this alliance, because (11---12) and (211---1) are the same from the point
N—— SN——
r—1 r—1
of view for players outside this alliance. Then the total number of strategies is reduced from k" to
(k+r—1)
(k— 1)t~

The computational complexity is obviously reduced by using the group-based method.

In this section, we only consider the group-based GZD strategies in repeated three-player games with two
environments. Assume there are two groups, where €3 = {1} is the first group and Qs = {2,3} is the sec-
ond group, then the strategies for these two groups can be denoted as Ao, = AY = {C,D} ~ {1,2}, and
Aq, = A§ = {CC,CD(DC),DD} ~ {1,2,3}. The payoff matrices of game m (m = 1,2) are shown in Tables
3 and 4, where a = (af,a), af € A{, af € AJ.

In the two tables, we assume cq, = co + 3, that is, RY, = 2RY, | LI, = KJ, + T9,T9 = 219, S9 = 2K9, K9 =
LY, + 89 P9 =2P9.

To ensure rationality for maximizing each player’s payoffs, according to [13], it should satisfy 79 > RY, > L9, >
K9 > P9 > 89;: RI, > (T9 + K9,)/2; K, > (LY, + S9,)/2. Then the payoffs for two groups can be expressed as

Vlc = (R{,Ki], SilvavLiJvPi(lngvng ngTnggvng)v
Vég = (Ri]vigfvff]vgfvf(fvpfvégvigvfgvggvf(gvpg)

Let 21" € Af and 25" € Af, m =1,2. When m = 1, set
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The strategy dynamics can be described as

Eay?(t + 1) = L}Ea(t),
Exy?(t + 1) = LyYEa(t),

where
L9 — P b2 p3 yz: Ps Pe
1 )
1—-p11—=p21—-p31—ps1—p51—psg
and
q1 q2 q3 qa g5 g6
Lég = 1 T2 T3 T4 s 76

l-gg—rml-—g—-rol—-—g—-r3l—q—ral—qgs—151—0qs—r¢
Then the strategy profile dynamics can be expressed as

Ex(t +1) = L'9Ex(t),

where
I Piga P2g2 e P66 1
piri pare PeTe
LYM=09+LyY=| »m(l—aq—nr) p2(l—gz—12) -+ pe(l—gs—76)

[(T=p)d—q—r1) 1 =p2)(L =gz —7r2) -+ (1= ps)(1 — g6 —76)]
Similarly, we calculate the strategy profile dynamics for m = 2 as
Ex(t + 1) = L*9Ex(t),
where
g1l galo gele
29 — L%Q * ng _ : : :
(I—g)d =l —h1) (L=g2)(I—lo—ha) -+ (1 —g6)(1 =l — he)

and
g; = Pr(a}?(t +1) = 1]z(t) = j);
lj = Pr(y’(t+1) = 1|z(t) = j);
hy = Pr(z5?(t + 1) = 2|z(t) = j);
1—1; —h; =Pr(z3%(t+1) =3|z(t) = 4), j=1,...,6.

Define LI = [L'9, L?9]. According to (10), set

o flS f12 flO f23 f22 f20

o= 1—fisl—=fio--1—=fiol—=fag 1= foo---1—fap

€ Toxio.

Then the Markovian eco-evolutionary dynamics for the group-based three-player games is
Ez(t+ 1) = MIEz(t), (23)

where M9 = Q9 x L9 € Y1312 is written as
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[ p1q1f13 D2G2 f12 cee P66 f10
p171f13 para f12 e P676 f10
p1(l—q —7r1)f13 p2(1 — g2 —12) f12 p6(1 — g6 — 16) f10
(1=p1)(I —q1—71)f13 1=p2)L—gz—r2)f12 - (1—=pe)(1—qs—r6)fr0
plih(l - f13) p2Q2(1 - f12) c pﬁ%(l - flO)
p1ri(1 — fi3) par2(1 — fi2) - per6(1 — f10)
p1(1—q —r1)(1 — fi3) p2(l—q2 —r2)(1— f12) -+ ps(1—q6 —76)(1 — fi0)
| (L=p1)(1 —q1 —71)(1 = f13) (1 =p2)(1 — g2 —7r2)(1 = fi12) -+ (1 —pe)(1 — g6 —76)(1 — fi0)

g1l1 fa3 g2l2 f22 gele f20
g1hi faz g2h2 fa2 gehe f20
g1(1 =11 — h) fos g2(1 = la — h2) fa2 96(1 —ls — hg) f20
(1 —g1)(1 =l —h1)fas (1-9g2)A—=la=h2)fea -+ (1—=g6)(1 =16 —he)f20
g1l (1 — fa3) gla(1 — fa2) E g6ls(1 — fa0)
(1=g1)A =l = h1)(1 = fa3) (1= g2)(1 —l2 = h)(1 = faz) -+ (1 —g6)(1 —ls — he)(1 — f20) |

Based on the algebraic form (23), we derive the group-based GZD strategies in three player model. Define the
stationary distribution as

g_ (1 1 1 2 2 2T
N = (01,05,...,06,01,05..,06) .

Similar to Definitions 5 and 6, for the group-based three-player games, the environmental quality Ny is defined
as

2
N{ = " [fmsol + fm2(08" + 07") + frm1 (05 + 05") + fmoog'] = f9 - N,

m=1

where f9 = (fi3, f12, f11, f12, f11, f10, f23, f22, fo1, f22, fo1, fo0)-
The expected payoffs for player 1 and group €2, are expressed as

Ec; = VEN,
]ECQ2 = Véz M.

Then the collective welfare W9 for the group-based three-player games is defined as
W9 = (Vi + V5,) - M = V9 - X9 = Eey +Ecq,,

where V9 =V + V§, .
In Lemma 1, let ¢ = 1,2, k1 = 2, ke = 3, we can obtain the corresponding strategy extraction vector Eﬁj € R2,
and set

e=o1], + asf? + as(VF + V).

Similar to Theorem 2, we have the following result.

Theorem 3. Consider a group-based repeated three-player game with two environments. Assume 7 = {1} is
the first group and Qs = {2,3} is the second group. Group i aims to set the linear relationship between N{ and
W9 as

ay + asNY + asW9 = 0.
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Table 5 Payoff matrix of game m for two groups.
Q1\Q2 ccC CD(DC) DD
C a,2a a—bm,a+ by a — 2Cm, 2¢m
D 2bm, 2a — 2by, Cm @ — Cpy 0,0
Then the group-based GZD strategies can be designed as

2 =mll+mff+nsVo+ (BT, i=1,2, je A,
where the parameters o, and 7, = ca,., r = 1,2, 3, are determined unilaterally by group «.
For simplicity, let p; = 3—2, By = &L

oL, o # 0, it follows that

Nf+[31W9+[32 =0.

(29,
It yields that

According to the algebraic equation (23) and the construction of strategy extraction vector (15), we have

1)T = [15 17 15070507 15 17 1507050]-

Zil = (E?,l)TMg

= Zre@l’l ROWT(MQ)

51 22 23 54 35 26 31 32 23 34 35 =6
= [21,17Zl,l?21,1721,1721,1721,1721,1721,1721,1721,1721,1721,1]7
which can be simply expressed as [p1, p2, p3, P4, D5, P6, 91, 92, 93, 94, g5, g6). Set ¢ = 1, and then we have

=[98V + ol + (B )T
In Table 3, set Ry, =a >0, K =a—by, S

s ) b =a—2cm, TY =
b1 < ba,c1 < ca. Then we have R, = 2a, LY, = a + by, T = 2¢, S9, = 2a — 20y, KI, = a — ¢y,
shown in Table 5.

m

Po
To ensure the rationality of GZD strategies, it is necessary to meet that

(i) B2 = —fm1 — aB1 = —fmz — 2afB1, m = 1,2;
(11) fll - f21)f12 - .f22-

If By = — f11 — af, the GZD strategies (25) for group 1 can be rewritten as

p1 = fi3+2ap1 — fi1 +1,
p2 =p3 =1,

pa=ps =0,

pe = fio — apr — fi1,

g1 = faz +2aB1 — fa1 + 1,
92 =93 =1,

94 =95 =0,

g6 = fa0 — aB1 — fo1,

where both 1 and B3 are solely determined by group 1. Then the following properties can be obtained
Proposition 3.

Consider a group-based three-player repeated game with two environments.
m=1,2.

(ii) To ensure the existence of GZD strategies, the range of values for parameter 3, is
{ fm2 - fm3 -1
max

me_fm3_1 me_fm2_1 me_fml_l }<B
B8, + Ry — T8, — S Ru+ 1y — Ly — K8 K+ Lju — Pl — P St T — Pl — DA S
<min f~m3_.fm2 fzn3_fm1 _ fTQ_me _ fznl_fmo _ }
K + L — Rf, — R, S% + T — R — Ri, P+ P — T — S P+ Ph — L — K3, )
where fmS < fm2 < fml < me or fm3 > fm2 > fml > me hOldSa m = 1,2.
Proposition 2, and we omit it here.

The proof process is similar to

20y, >0, LY, = ¢ >0, PJ, =0, (m=1,2) and

(26)

(i) Environmental quality ng decreases as collective welfare W9 increases, if and only if f,3 < fime < fm1 < fmo,

(25)

9 = 0, which is
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Table 6 Payoff matrix of example 1 with m = 1.

Q1\Q2 cc CD(DC) DD
C 5,10 2,8 1,6
D 6,4 3,2 0,0

Table 7 Payoff matrix of example 1 with m = 2.

1\ Q2 cc CD(DC) DD
c 5,10 1.5,8.5 -3,8
D 7.3 4,1 0,0

Remark 3. In (26), po = p3 = 1 and g» = g3 = 1, which means that if player 1 cooperates and at least one player
in group 2 defects at the current step, regardless of the environments, player 1 will continue to cooperate at the
next step. That is, player 1 forgives group 2 under the GZD strategies. Similarly, ps = ps = 0 and g4 = g5 = 0,
that is, player 1 in each environment will continue to defect at the next step if he decides to defect and at least one
player in group 2 cooperates at the current step. Finally, with the increase of 31, player 1 who adopts the GZD
strategy is more willing to cooperate at the next step when two groups decide to cooperate at present, and he will
probably choose to defect at the next step when two groups decide to defect at the current step.

A numerical example for the group-based repeated three-player game with two environments is provided in the
following.

Example 1. Consider a group-based repeated three-player game with two environments, its payoff matrix is
described in Table 5. Set a = 5,b; = 3,¢1 = 3,by = 3.5, ¢co = 4, then the payoff matrices are shown in Tables 6 and
7.

Set parameters fi3 = 0.85, fio = 0.8, fi1 = 0.2, fip = 0.1, fo3 = 0.9, foo = 0.8, fo1r = 0.2, foo = 0.15, then
according to Proposition 3, environmental quality Ny increases as collective welfare W9 increases for fr,3 > fimo >
fm1 > fmo, m = 1,2, and the boundary of 81 is —0.165 < 81 < —0.07. Choose f; = —0.12, then 5o = — f11 —afB1 =
0.4, group 1 can set the linear relationship between Ny and W9 as

NY —0.12W9 4 0.4 = 0,

where the GZD strategies (26) for group 1 will be zil =10.45,1,1,0,0,0.5,0.5,1,1,0,0,0.55].

6 Discussion and conclusion

For the ZD strategies, one player is able to unilaterally set the opponent’s payoffs. For the welfare-time strategy
in two-player games proposed in [16], there also exists a strategy that allows one player to control the value of the
population welfare, which is called the determined-welfare (D-W) strategy. So, is there a D-W strategy like this in
the case of three players?

Recall (18) and (19), let as = 0, and then the strategy for player 1 is 211 = o117 + azV + Erlf)l, where ¢ = 1.
That is, a1 175 + a3V = 0. Multiply both sides of this equation by A simultaneously, which leads to oy + azW = 0.
Then W can be set as —3—;. And the D-W strategy can be designed as

p1 = 3R1a3 + a1 + 1,

p2 =p3 = (2K + T1)az + oy +1,
pa = (S1+2L1)asz+ a1 + 1,

ps = (2K1 +Th)az + oy,

ps =7 = (S1+2L1)as + oy,

ps = 3P1ag + aq,

g1 = 3Raaz +ag +1,

g2 =93 = 2Ko+To)as +aq + 1,
gs = (S2 +2Lo)as + a1 + 1,

g5 = (2K + Th)as + aq,

g6 = g7 = (S2 +2Ls)as + o,

gs = 3Pas + .
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To ensure the existence of D-W strategy in (27), it is necessary to satisfy 2K, + T, = Sy + 2Ly, m = 1,2.
However, the payoffs cannot satisfy T,,, > R, > L., > K,;, > Py, > Sy, and K, > (L, + Sp)/2 simultaneously.
Hence, the D-W strategy in (27) is invalid for the GZD strategies with three players. Similar results are also
obtained in the group-based model.

This paper investigates the linear relationship between collective welfare and environmental quality in repeated
finite games with time-variant environment. According to the profile and state dynamics, an equivalent eco-
evolutionary algebraic model is provided. Then the designing formulas of GZD strategies are obtained for repeated
three-player games with two environments.

It is remarkable that there are many interesting issues to explore GZD strategies in the future. In particular, as
the number of players increases, the control ability for a single player continuously decreases. Hence, the control
ability of ZD strategies can be improved through different types of alliance mechanisms, where players not only need
to consider how to optimize their own payoffs through ZD strategies, but also how to maximize collective interests
in an alliance. From this point of view, the existence of GZD strategy alliances has been further investigated.
Moreover, since game-theoretic approaches can be used to study several cooperative control problems of multiagent
systems [34-36], we hope that our designed method may be applied to consensus problems and synchronization
analysis of multiagent systems in further investigation [37,38].
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