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Abstract This paper investigates the control strategies in repeated games with time-variant environment, called generalized zero-

determinant (GZD) strategies, which can enforce the linear relationship between collective welfare and environmental quality. First, we

give the algebraic model for Markovian profile evolutionary dynamics and then integrate it with Markovian state evolutionary equation

into an eco-evolutionary algebraic system. Based on this algebraic form, a simple algebraic formula is provided to design GZD strategies

in a repeated three-player game with two different environments, and then some interesting results are presented. It is shown that when

the two environments are indistinguishable, the GZD strategies will degenerate to the zero-determinant (ZD) strategies. Finally, to

reduce the computation complexity and highlight the importance of coordination to succeed in large groups, the group-based method is

proposed to design GZD strategies.
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1 Introduction

Repeated games have provided a general and formal framework to describe the long-term behaviors and reciprocity
of rational individuals [1]. The most famous model is the repeated prisoner’s dilemma game and it is found that
mutual cooperation would take place over the long term. Recently, finite-memory strategies in repeated games have
been widely studied since the rationality of real players is bounded [2–4]. However, Press and Dyson [5] have proved
that the long-memory strategies have no advantage over the memory-one strategies and proposed a new kind of
memory-one strategies in the repeated prisoner’s dilemma game, called zero-determinant (ZD) strategies. Since
then the ZD strategies have made significant progress in many applications [6–9].

For repeated games with two players, ZD strategies enable one player to unilaterally set a linear relationship
between his own payoff and that of the opponent, regardless of the opponent’s strategies. Subsequently, ZD strategies
have also been extended to repeated multi-player games [10, 11]. The authors have studied the ZD strategies in
multi-player public goods games [10] and the existence of ZD strategies in finitely repeated multi-player games with
a discount factor has been investigated in [11]. In addition, the evolutionary stability of ZD strategies has been
substantially discussed [12,13]. However, these previous studies have typically assumed that interacting individuals
play games repeatedly in a constant social and natural environment. In contrast, in many practical applications, the
state of the game environment is adaptive and the feasible payoffs of players can be influenced by random factors
when the decision-making process is under dynamical environments.

Stochastic games [14] have been introduced to describe the repeated interactions between individuals in which the
underlying state of the environment changes randomly and it often influences players’ actions and their payoffs [15].
As a special class of stochastic games, Liu and Wu [16] have discussed the Markovian eco-evolutionary feedback
model between environment and human behavior. Then a new extension of ZD strategies, called the welfare-
time strategy, is proposed to build a linear relationship between collective welfare and the environmental quality.
Compared with [16], we extend the game model from two-player two-action to multi-player multi-action case. In
addition, people often naturally form different types of groups based on common characteristics, such as geographical
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location, cultural background, and social status. The group-based method thereby provides an effective way for
analyzing and solving decision-making problems in game models with a large number of players [17]. Motivated by
this, an algebraic formula is derived to design group-based ZD strategies in this paper.

As a novel matrix product, the semi-tensor product (STP) of matrices [18,19] has found successful applications in
numerous fields, including biological systems [20–25], graph theory [26], game theory [27–29] and finite automata [30].
Using the algebraic representation developed by STP, a new formula is given to design ZD strategies for multi-player
games with asymmetric strategies [31]. In [32], the ZD strategies for multi-player games with multiple memories
are investigated. The authors have discussed the correlation between the expected payoffs and the structure of
the payoff vector when players use ZD strategies in repeated symmetric or skew-symmetric games. In this paper,
we also utilize STP to investigate the ZD strategies of repeated multi-player games. However, compared with the
previous results in [31, 32], we consider the stochastic game model in which the environment can be changed in
response to the actions of players. Besides, taking into account of the relationship between players’ payoffs and
environment, we give the definitions of collective welfare and environmental quality respectively, based on which
the coupling correlations between them are clarified. The main contributions of this article include three aspects.

(1) Using the algebraic representation based on the STP method, an equivalent algebraic expression of Markovian
eco-evolutionary dynamics is presented for repeated multi-player games with time-variant environment.

(2) Taking the dissemination of public opinion as the research background, the generalized zero-determinant
(GZD) strategies are introduced to explore the linear relationship between payoffs for netizens involved in spreading
information and the environmental quality. A simple formula is provided to design GZD strategies for a repeated
three-player game with two different environments.

(3) To simplify the computational complexity, a group-based method for designing GZD strategies is derived. It

is easy to verify that the total number of strategies is reduced from kr to (k+r−1)!
(k−1)!r! by aggregating r players into one

group, where k is the number of strategies for each player. Some necessary and sufficient conditions are presented
to ensure that the collective welfare and environmental quality are positively or negatively correlated.

This paper is organized as follows. Some necessary preparations are given in Section 2. Section 3 presents the
matrix expression of eco-evolutionary dynamics. Section 4 explores GZD strategies in repeated three-player games
with two environments. The group-based method is proposed to design GZD strategies in Section 5. An interesting
discussion and a concise conclusion are shown in Section 6.

2 Preliminaries

For statement ease, we first give some notations.

• Mm×n: the set of m× n real matrices.

• Col(M): the set of columns of M ; Coli(M) is the i-th column of M .

• M∗: the adjoint matrix of M .

• Dk := {1, 2, . . . , k} , k > 2.

• ∆k :=
{
δik|i = 1, . . . , k

}
, where δik is the i-th column of the identity matrix Ik.

• L ∈ Mm×n is called a logical matrix, if and only if Col(L) ∈ ∆m, and it can be simply expressed as L =
δm[i1, i2, . . . , in].

• Υm is the set of m dimensional random vectors and Υm×n is the set of m× n random matrices.

• 1k := (1, 1, . . . , 1
︸ ︷︷ ︸

k

)T.

• Span(M): the subspace spanned by Col(M).

2.1 Semi-tensor product of matrices

STP is the fundamental tool in this paper. More details are described in [18, 19].

Definition 1. Let M ∈ Mm×n, N ∈ Mp×q, and t = lcm{n, p} be the least common multiple of n and p. Then
STP of M and N , denoted by M ⋉N , is defined as

M ⋉N :=
(
M ⊗ It/n

) (
N ⊗ It/p

)
∈ Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.

Proposition 1. Let X ∈ R
n be a column and M be a matrix. Then X ⋉M = (In ⊗M)X .
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Theorem 1. Let xi ∈ Dk, i = 1, . . . , n, f : Dn
k → Dk (or Dn

k → R) be a k-valued logical (or pseudo-logical)
function. Then there exists a unique Mf ∈ Lk×kn (or Mf ∈ R

kn

), such that

f(x1, . . . , xn) = Mf ⋉
n
i=1 xi. (2)

Mf is called the structure matrix (or structure vector) of f .

Definition 2. Let M ∈ Mp×m, N ∈ Mq×m. Then the Khatri-Rao Product is defined as

M ∗N = [Col1(M)⋉ Col1(N) · · ·Colm(M)⋉ Colm(N)]. (3)

2.2 Finite normal game and repeated game

Definition 3. Consider a finite normal game G = (N,A,C), including three fundamental ingredients:
(i) Let N = {1, 2, . . . , n} denote the set of players;
(ii) Let A =

∏n
i=1 Ai denote the strategy profile, where Ai = {a1, a2, . . . , aki

} is the set of strategies for player i,
i = 1, . . . , n;

(iii) C = (c1, . . . , cn) ∈ R
n, and define ci : A → R as the payoff function of player i.

Let G ∈ G[n;k1,k2,...,kn] denote such finite games. Then we give the definition of repeated multi-player games with
time-variant environment.

Definition 4. A repeated multi-player game with time-variant environment can be denoted byG = (N,S,A,C,Q),
where

(1) N = {1, 2, . . . , n} is the set of players;
(2) S = {s1, s2, . . . , sm} is the set of states, where s1 is initial state;
(3) Ai(s) is the set of strategies for player i in state s ∈ S. In this paper, we assume Ai(s) = Ai for any s ∈ S;
(4) C = (c1, . . . , cn), where ci : S ×A → R is called the payoff function of player i;
(5) Q : S ×A → ∆(S) is the state transition function. ∆(S) represents the probability distribution over the set

S.

3 Matrix expression for repeated multi-player games with time-variant environment

Consider a finite game G ∈ G[n;k1,k2,...,kn] played repetitively, all the players update their strategies based on
historical information. This paper only considers repeated games with memory-one strategies. When the state of
game environment is time-invariant, the strategy evolutionary dynamics can be described as







x1(t+ 1) = f1(x1(t), . . . , xn(t)),
...

xn(t+ 1) = fn(x1(t), . . . , xn(t)),

(4)

where xi(t) ∈ Υki
is the strategy of player i at time t, and fi : Υk → Υki

denotes the stochastic rule, k =
∏n

i=1 ki,
i = 1, . . . , n.

Let x(t) = ⋉
n
i=1xi(t), then Eq. (4) can be converted into

Exi(t+ 1) = LiEx(t), i = 1, 2, . . . , n, (5)

where

Li =







p1i,1 p2i,1 · · · pki,1
...

...
. . .

...

p1i,ki
p2i,ki

· · · pki,ki






∈ Υki×k, i = 1, 2, . . . , n, (6)

and pli,j = Pr(xi(t+ 1) = j|x(t) = l).
Multiply both sides of (5), we can obtain the matrix expression of Markovian profile dynamics

Ex(t+ 1) = LEx(t), (7)
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Table 1 Payoff matrix of game 1.

c\a 111 112 121 122 211 212 221 222

c1 R1 K1 K1 S1 T1 L1 L1 P1

c2 R1 K1 T1 L1 K1 S1 L1 P1

c3 R1 T1 K1 L1 K1 L1 S1 P1

Table 2 Payoff matrix of game 2.

c\a 111 112 121 122 211 212 221 222

c1 R2 K2 K2 S2 T2 L2 L2 P2

c2 R2 K2 T2 L2 K2 S2 L2 P2

c3 R2 T2 K2 L2 K2 L2 S2 P2

where L = L1 ∗ L2 ∗ · · · ∗ Ln ∈ Υk×k is called the transition matrix.

Next we consider a repeated multi-player game with time-variant environment, the transitions between different
states can be deterministic or stochastic, state-dependent or state-independent. This paper only considers the
probabilistic state-dependent case, then the strategy dynamics can be expressed as







x1(t+ 1) = f
s(t)
1 (x1(t), · · ·xn(t)),

...

xn(t+ 1) = f
s(t)
n (x1(t), · · ·xn(t)),

(8)

where f
s(t)
i : Υk → Υki

is a state-dependent function.

Assume that the structure matrices of f
s(t)
i is L

s(t)
i , then the matrix expression of Markovian profile dynamics is

Ex(t+ 1) = Ls(t)
Ex(t) = LEs(t)Ex(t), (9)

where Ls(t) = L
s(t)
1 ∗ L

s(t)
2 ∗ · · · ∗ L

s(t)
n ∈ Υk×k, and L = [L1, L2, . . . , Lm] ∈ Υk×mk.

Similarly, we have the matrix expression of Markovian state dynamics as

Es(t+ 1) = QEs(t)Ex(t), (10)

where Q ∈ Υm×mk. Set z(t) = s(t)x(t), then the dynamics (9) and (10) can be integrated into an algebraic
Markovian eco-evolutionary equation

Ez(t+ 1) = MEz(t), (11)

where M = Q ∗ L ∈ Υmk×mk.

With the number of players and strategies increasing, as well as the effect of environmental stochasticity, the
computational complexity becomes one of the main challenging issues. For simplicity, we consider a repeated
three-player prisoner’s dilemma game with two different environments in this paper.

In the background of sudden public events, online media platforms can adopt both active and passive control
measures, where active control refers to the real-time control and review of information content by online media
platforms, but passive control means allowing the dissemination of public opinion information to gain traffic and
popularity when facing a sudden public event. For a certain topic of online public opinion, netizens usually have
two different choices: spreading and not spreading. The benefits of netizens are closely related to the control
behavior of online media platforms. First, we make the following assumptions: (1) there are only positive and
negative regulation which can be characterized as two environment states (i.e., games 1 and 2); (2) the finite game
is prisoner’s dilemma, (3) the transition function is probabilistic state-dependent; (4) the action “not spread” means
“cooperation” (C) and “spread” means “betrayal” (D). Then the payoff matrices are shown in Tables 1 and 2.

The game transition process can be shown in Figure 1, where fmn is the probability of players playing game 1
in the next step, m represents the current state (m = 1, 2) and n (n = 0, 1, 2) is the number of cooperators at the
current time step.

To ensure that the payoffs of the betrayers are higher than those of the cooperators [13], it needs to satisfy that
Tm > Rm > Lm > Km > Pm > Sm, Rm > (Tm + Km)/2 and Km > (Lm + Sm)/2, (m = 1, 2). According to
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Figure 1 (Color online) Game transition diagram.

Theorem 1, we have the vectors of payoff functions

V c
1 = (R1,K1,K1, S1, T1, L1, L1, P1, R2,K2,K2, S2, T2, L2, L2, P2),

V c
2 = (R1,K1, T1, L1,K1, S1, L1, P1, R2,K2, T2, L2,K2, S2, L2, P2),

V c
3 = (R1, T1,K1, L1,K1, L1, S1, P1, R2, T2,K2, L2,K2, L2, S2, P2).

(12)

In (9), when s(t) = 1, we have

L1
1 =

[

p1 p2 p3 p4 p5 p6 p7 p8

1− p1 1− p2 1− p3 1− p4 1− p5 1− p6 1− p7 1− p8

]

,

L1
2 =

[

q1 q2 q3 q4 q5 q6 q7 q8

1− q1 1− q2 1− q3 1− q4 1− q5 1− q6 1− q7 1− q8

]

,

L1
3 =

[

r1 r2 r3 r4 r5 r6 r7 r8

1− r1 1− r2 1− r3 1− r4 1− r5 1− r6 1− r7 1− r8

]

,

and

L1 = L1
1 ∗ L

1
2 ∗ L

1
3 =







p1q1r1 · · · p8q8r8
... · · ·

...

(1− p1)(1 − q1)(1 − r1) · · · (1− p8)(1 − q8)(1 − r8)






,

where pj = Pr(x1(t + 1) = 1|x(t) = j); qj = Pr(x2(t + 1) = 1|x(t) = j) and rj = Pr(x3(t + 1) = 1|x(t) = j),
j = 1, . . . , 8. Similarly, when s(t) = 2, we have

L2 = L2
1 ∗ L

2
2 ∗ L

2
3 =







g1h1l1 · · · g8h8l8
... · · ·

...

(1− g1)(1 − h1)(1− l1) · · · (1− g8)(1 − h8)(1− l8)






,

where gj = Pr(x1(t + 1) = 1|x(t) = j); hj = Pr(x2(t + 1) = 1|x(t) = j) and lj = Pr(x3(t + 1) = 1|x(t) = j),
j = 1, . . . , 8.

Define L = [L1, L2], and in (10), we have

Q =

[

f13 f12 · · · f10 f23 f22 · · · f20

1− f13 1− f12 · · · 1− f10 1− f23 1− f22 · · · 1− f20

]

∈ Υ2×16.
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Then the matrix expression of Markovian eco-evolutionary equation (11) is obtained and we calculate

M =





















p1q1r1f13 · · · p8q8r8f10

p1q1(1− r1)f13 · · · p8q8(1 − r8)f10

p1(1− q1)r1f13 · · · p8(1− q8)r8f10
... · · ·

...

(1− p1)(1 − q1)(1 − r1)f13 · · · (1− p8)(1− q8)(1− r8)f10

p1q1r1(1− f13) · · · p8q8r8(1− f10)
...

...
...

(1 − p1)(1− q1)(1 − r1)(1− f13) · · · (1− p8)(1 − q8)(1− r8)(1 − f10)

g1h1l1f23 · · · g8h8l8f20
... · · ·

...

(1− g1)(1− h1)(1 − l1)f23 · · · (1− g8)(1 − h8)(1− l8)f20

g1h1l1(1− f23) · · · g8h8l8(1− f20)
...

...
...

(1− g1)(1− h1)(1− l1)(1 − f23) · · · (1 − g8)(1 − h8)(1 − l8)(1− f20)
















∈ Υ16×16. (13)

In this matrix, p1q1(1− r1) means the probability that profile is δ28 ∼ (1, 1, 2) at the next step while the current
state is game 1 and the profile is δ18 ∼ (1, 1, 1). Then the probability that they play in game 2 at the next step is
denoted as p1q1(1− r1)(1− f13) when all players cooperate at the current moment.

4 GZD strategies for repeated three-player games with two environments

In this section, we give an algebraic formula to design GZD Strategies, which is based on the properties of Markov
transition matrix M in (11).

A Markovian chain is ergodic if it is irreducible and aperiodic, then the transition matrix M has a unique
stationary distribution. Define λ ∈ Υ2k as the stationary vector with respect to a unit eigenvalue, then we have
Mλ = λ, which is equivalent to

(M − I2k)λ = 0. (14)

For a repeated three-player game, the stationary distribution is defined as

λ = (σ1
1 , σ

1
2 , . . . , σ

1
8 , σ

2
1 , σ

2
2 . . . , σ

2
8)

T,

where the element σm
j represents the proportion of the time that the profile δj8 in game m across all the possible

profiles and games, j = 1, . . . , 8, m = 1, 2. Next, we explore the linear relationship between the collective welfare
and the environmental quality, which are defined as follows.

Definition 5. Define Nm as the proportion of the time in game m (m = 1, 2), then Nm is called environmental
quality of game m. Let

f = (f13, f12, f12, f11, f12, f11, f11, f10, f23, f22, f22, f21, f22, f21, f21, f20),

then

N1 =

2∑

m=1

[fm3σ
m
1 + fm2(σ

m
2 + σm

3 + σm
5 ) + fm1(σ

m
4 + σm

6 + σm
7 ) + fm0σ

m
8 ]

= f · λ,

and N2 = 1−N1.



Wang Y H, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112205:7

Definition 6. The expected payoffs for three players are expressed as Eci = V c
i λ, i = 1, 2, 3. Then

W = (V c
1 + V c

2 + V c
3 ) · λ = V · λ =

3∑

i=1

Eci

is called the collective welfare, where V = V c
1 + V c

2 + V c
3 .

Lemma 1 ([31]). Consider a finite game G ∈ G[3;k1,k2,k3] played repetitively in two environments. The strategy

extraction vector for player i with strategy j is denoted by Ξi,j ∈ R
2k, j = 1, . . . , ki, i = 1, 2, 3, k = k1k2k3, which

is defined as

Ξi,j = ⋉
3
µ=0κµ, (15)

where

κµ =







12, µ = 0;

δjki
, µ = i;

1ki
, µ 6= i.

Then we have

ΞT
i,jM =

∑

r∈Φi,j

Rowr(M), (16)

where Φi,j = {a ∈ A|ai = j} ⊆ A is the set of profiles that player i uses strategy j in profile a ∈ A.
Define zi as the i-th row of matrix M , then zi,j = [ẑ1i,j , ẑ

2
i,j , . . . , ẑ

8
i,j , z̃

1
i,j , z̃

2
i,j, . . . , z̃

8
i,j ], ∀i ∈ N, j ∈ Ai, that is, in

game 1, ẑsi,j = Pr(xi(t+ 1) = j|x(t) = s); and in game 2, z̃si,j = Pr(xi(t+ 1) = j|x(t) = s), s = 1, . . . , 8. According

to (14) and basic knowledge of linear algebra, for an arbitrary vector e ∈ R
16, it is easy to calculate

e · λ = θdet












z1 − (δ116)
T

z2 − (δ216)
T

...

z16 − (δ1516)
T

e












= det













z1 − (δ116)
T

...

zi,j − ΞT
i,j

...

e













, (17)

where θ is a non-zero constant, and the reason why the latter equal sign is valid is that we add all rows belonging
to Φi,j to a certain row of Φi,j . Obviously, if zi,j − ΞT

i,j is proportional to e, it follows e · λ = 0, that is,

zi,j − ΞT
i,j = ce,

where c is a non-zero adjustable parameter. Based on the above analysis, we have the following result.

Theorem 2. Consider an infinitely repeated game G ∈ G[3;2,2,2] with two transformed environmental states.
Assume player i aims to set the linear relationship between N1 and W as

α1 + α2N1 + α3W = 0. (18)

Then the GZD strategies can be designed as

zi,j = η11
T
16 + η2f + η3V + ΞT

i,j , i = 1, 2, 3, j = 1, 2, (19)

where the parameters αr and ηr = cαr, r = 1, 2, 3, are determined unilaterally by player i.
Proof. Let

e = α11
T
16 + α2f + α3(V

c
1 + V c

2 + V c
3 ).

If zi,j satisfies (19), that is

zi,j =η11
T
16 + η2f + η3V + ΞT

i,j

=c(α11
T
16 + α2f + α3V ) + ΞT

i,j

=ce+ ΞT
i,j .
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Bring it into (17), it is obvious that e · λ = 0. On the other hand, we have

e · λ = (α11
T
16 + α2f + α3V ) · λ

= α11
T
16 · λ+ α2f · λ+ α3V · λ

= α1 + α2N1 + α3W,

which leads to (18).

Remark 1. (i) The purpose of (16) is to select the set involving zi,j from matrix M , and such set is Φi,j .
(ii) According to [33], if we define Ti = [ΞT

i M − ΞT
i ] ∈ M2×16, V = [116, (V

c
1 + V c

2 + V c
3 )

T, fT] ∈ M16×3, where
Ξi = [Ξi,1,Ξi,2], then the GZD strategies can be existed if and only if

Span(Ti
T) ∩ Span(V) 6= {016} .

It is shown that there exists at least one set of coefficients such that l1(zi,1−ΞT
i,1)+l2(zi,2−ΞT

i,2) = α11
T
16+α2f+α3V ,

which is essentially equivalent to (19).
(iii) Since N2 = 1 − N1, we can also set the linear relationship between N2 and W , which is expressed as

α1 + α2(1−N1) + α3W = 0.
It is noted that Theorem 2 can also be extended to repeated games with multiple players and multiple strategies,

but the corresponding complexity will be significantly high. Without loss of generality, we make the following
assumptions.

(i) Let β1 = α3

α2

, β2 = α1

α2

, α2 6= 0. Then we have

N1 + β1W + β2 = 0.

(ii) Using matrix M in (13) and strategy extraction vector (15), we have

ΞT
1,1 = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0].

It follows that

z1,1 =ΞT
1,1M =

∑

r∈Φ1,1

Rowr(M)

=[ẑ11,1, ẑ
2
1,1, ẑ

3
1,1, ẑ

4
1,1, ẑ

5
1,1, ẑ

6
1,1, ẑ

7
1,1, ẑ

8
1,1, z̃

1
1,1, z̃

2
1,1, z̃

3
1,1, z̃

4
1,1, z̃

5
1,1, z̃

6
1,1, z̃

7
1,1, z̃

8
1,1],

which can be simply written as z1,1 = [p1, p2, p3, p4, p5, p6, p7, p8, g1, g2, g3, g4, g5, g6, g7, g8]. Set c = 1, then we have

z1,1 = f + β1V + β21
T
16 + ΞT

1,1. (20)

(iii) In Tables 1 and 2, choose its payoffs as Rm = a > 0, Km = a − bm, Sm = a − 2cm, Tm = 2bm > 0,
Lm = cm > 0, Pm = 0 (m = 1, 2) and b1 < b2, c1 < c2, that is, when online regulation is not as strict, players who
choose to spread information will receive higher payoffs than those under strict regulation.

Based on the above assumptions, the GZD strategies in (20) can be rewritten as







p1 = f13 + 3aβ1 + β2 + 1,

p2 = p3 = f12 + 2aβ1 + β2 + 1,

p4 = f11 + aβ1 + β2 + 1,

p5 = f12 + 2aβ1 + β2,

p6 = p7 = f11 + aβ1 + β2,

p8 = f10 + β2,

g1 = f23 + 3aβ1 + β2 + 1,

g2 = g3 = f22 + 2aβ1 + β2 + 1,

g4 = f21 + aβ1 + β2 + 1,

g5 = f22 + 2aβ1 + β2,

g6 = g7 = f21 + aβ1 + β2,

g8 = f20 + β2.

(21)
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Obviously, p2 = p3 = p5 +1, p4 = p6 +1 = p7 +1. Hence, to ensure the existence of GZD strategies, it is necessary
to satisfy that

(i) fm2 + 2aβ1 + β2 = fm1 + aβ1 + β2 = 0, which leads to β2 = −fm1 − aβ1 = −fm2 − 2aβ1, m = 1, 2;
(ii) f11 = f21, f12 = f22.
And when β2 = −f11 − aβ1, we have







p1 = f13 + 2aβ1 − f11 + 1,

p2 = p3 = p4 = 1,

p5 = p6 = p7 = 0,

p8 = f10 − aβ1 − f11,

g1 = f23 + 2aβ1 − f21 + 1,

g2 = g3 = g4 = 1,

g5 = g6 = g7 = 0,

g8 = f20 − aβ1 − f21,

(22)

where both β1 and β2 are solely determined by player 1. Then we have some interesting properties.

Proposition 2. Consider an infinitely repeated game G ∈ G[3;2,2,2] with two environments.
(i) Environmental quality N1 deteriorates as collective welfareW increases, if and only if fm3 < fm2 < fm1 < fm0,

m = 1, 2.
(ii) To ensure the existence of GZD strategies, the range of values for parameter β1 is

max

{
fm2 − fm3 − 1

3Rm − 2Km − Tm
,

fm1 − fm3 − 1

3Rm − 2Lm − Sm
,

fm0 − fm1 − 1

2Km + Lm − 3Pm
,

fm0 − fm1 − 1

Sm + 2Lm − 3Pm

}

6 β1

6 min

{
fm3 − fm2

2Km + Tm − 3Rm
,

fm3 − fm1

Sm + 2Lm − 3Rm
,

fm0 − fm2

2Km + Tm − 3Pm
,

fm0 − fm1

Sm + 2Lm − 3Pm

}

,

where fm3 < fm2 < fm1 < fm0 or fm3 > fm2 > fm1 > fm0 holds, m = 1, 2.
Proof. (i) According to equation N1 + β1W + β2 = 0, If β1 > 0, then N1 deteriorates with the increase of W . We
first give the proof of necessity.

(Necessity) when β1 > 0, due to 0 6 pj, gj 6 1, j = 1, 2, . . . , 8, it is necessary to ensure fm3 − fm1 < 0 and
fm0 − fm1 > 0, m = 1, 2, in (22). That is, fm3 < fm1 < fm0, m = 1, 2. Similarly, substitute β2 = −fm2 − 2aβ1 into
(21), we have fm3 < fm2 < fm0, m = 1, 2. Finally, consider β2 = −fm1 − aβ1 = −fm2 − 2aβ1, which is equivalent
to fm1 − fm2 = aβ1 > 0, it yields fm2 < fm1. In summary, we obtain that fm3 < fm2 < fm1 < fm0,m = 1, 2.

The sufficiency is obvious. Hence, we can omit it here.
(ii) According to (20) and (22), we can obtain the following inequations for s(t) = 1:







p2 − p1 = f12 − f13 + (2K1 + T1 − 3R1)β1 > 0,

p4 − p1 = f11 − f13 + (2L1 + S1 − 3R1)β1 > 0,

p1 − p5 = f13 − f12 − (2K1 + T1 − 3R1)β1 + 1 > 0,

p1 − p6 = f13 − f11 − (2L1 + S1 − 3R1)β1 + 1 > 0,

p2 − p8 = f11 − f10 + (2K1 + T1 − 3P1)β1 + 1 > 0,

p4 − p8 = f11 − f10 + (2L1 + S1 − 3P1)β1 + 1 > 0,

p8 − p5 = f10 − f12 − (2K1 + T1 − 3P1)β1 > 0,

p8 − p6 = f10 − f11 − (2L1 + S1 − 3P1)β1 > 0.

Similarly, for s(t) = 2, we have






g2 − g1 = f22 − f23 + (2K2 + T2 − 3R2)β1 > 0,

g4 − g1 = f21 − f23 + (2L2 + S2 − 3R2)β1 > 0,

g1 − g5 = f23 − f22 − (2K2 + T2 − 3R2)β1 + 1 > 0,

g1 − g6 = f23 − f21 − (2L2 + S2 − 3R2)β1 + 1 > 0,

g2 − g8 = f21 − f20 + (2K2 + T2 − 3P2)β1 + 1 > 0,

g4 − g8 = f21 − f20 + (2L2 + S2 − 3P2)β1 + 1 > 0,

g8 − g5 = f20 − f22 − (2K2 + T2 − 3P2)β1 > 0,

g8 − g6 = f20 − f21 − (2L2 + S2 − 3P2)β1 > 0.
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Table 3 Payoff matrix of game 1 with two groups.

Ω1\Ω2 CC CD(DC) DD

C Rg

1
, R̃g

1
Kg

1
, L̃g

1
Sg

1
, T̃ g

1

D T g

1
, S̃g

1
Lg

1
, K̃g

1
P g

1
, P̃ g

1

Table 4 Payoff matrix of game 2 with two groups.

Ω1\Ω2 CC CD(DC) DD

C Rg

2
, R̃g

2
Kg

2
, L̃g

2
Sg

2
, T̃ g

2

D T g

2
, S̃g

2
Lg

2
, K̃g

2
P g

2
, P̃ g

2

By solving the above two inequations, the range of values for β1 can be provided.

Remark 2. (i) Similarly, environmental quality N1 improves along with the increase of collective welfareW , if and
only if fm3 > fm2 > fm1 > fm0,m = 1, 2. That is to say, if more people do not spread rumours, then transforming
into an environment with better environmental quality and stricter regulation is possible.

(ii) If the two environments are identical, then the GZD strategies will degenerate into the traditional ZD
strategies.

(iii) In addition to the prisoner’s dilemma, the GZD strategies remain valid for 2K1 + T1 = 2K2 + T2 and
2L1 + S1 = 2L2 + S2.

5 Group-based GZD strategies for repeated three-player games with two environ-
ments

In many situations, when players make decisions, they often choose to collaborate with others. Assume that
G ∈ G[n;k] is a symmetric game with n players. If each player acts individually without making any alliance, then
the set of strategies for r (r < n) players can be expressed as

{(11 · · ·1
︸ ︷︷ ︸

r

), (11 · · · 2
︸ ︷︷ ︸

r

), . . . , (kk · · · k
︸ ︷︷ ︸

r

)}.

Hence, the total number of strategies in this set is kr. By contrast, when there are r players forming an alliance,
we can ignore the order of players in this alliance, because (11 · · · 1

︸ ︷︷ ︸

r−1

2) and (2 11 · · ·1
︸ ︷︷ ︸

r−1

) are the same from the point

of view for players outside this alliance. Then the total number of strategies is reduced from kr to

(k + r − 1)!

(k − 1)!r!
.

The computational complexity is obviously reduced by using the group-based method.
In this section, we only consider the group-based GZD strategies in repeated three-player games with two

environments. Assume there are two groups, where Ω1 = {1} is the first group and Ω2 = {2, 3} is the sec-
ond group, then the strategies for these two groups can be denoted as AΩ1

= Ag
1 = {C,D} ∼ {1, 2}, and

AΩ2
= Ag

2 = {CC,CD(DC), DD} ∼ {1, 2, 3}. The payoff matrices of game m (m = 1, 2) are shown in Tables
3 and 4, where a = (ag1, a

g
2), a

g
1 ∈ Ag

1, a
g
2 ∈ Ag

2.
In the two tables, we assume cΩ2

= c2 + c3, that is, R̃
g
m = 2Rg

m, L̃g
m = Kg

m + T g
m, T̃ g

m = 2Lg
m, S̃g

m = 2Kg
m, K̃g

m =
Lg
m + Sg

m, P̃ g
m = 2P g

m.
To ensure rationality for maximizing each player’s payoffs, according to [13], it should satisfy T g

m > Rg
m > Lg

m >
Kg

m > P g
m > Sg

m; Rg
m > (T g

m +Kg
m)/2; Kg

m > (Lg
m + Sg

m)/2. Then the payoffs for two groups can be expressed as

V c
1 = (Rg

1,K
g
1 , S

g
1 , T

g
1 , L

g
1, P

g
1 , R

g
2 ,K

g
2 , S

g
2 , T

g
2 , L

g
2, P

g
2 ),

V c
Ω2

= (R̃g
1, L̃

g
1, T̃

g
1 , S̃

g
1 , K̃

g
1 , P̃

g
1 , R̃

g
2 , L̃

g
2, T̃

g
2 , S̃

g
2 , K̃

g
2 , P̃

g
2 ).

Let xmg
1 ∈ Ag

1 and xmg
2 ∈ Ag

2, m = 1, 2. When m = 1, set

pj = Pr(x1g
1 (t+ 1) = 1|x(t) = j);

qj = Pr(x1g
2 (t+ 1) = 1|x(t) = j);

rj = Pr(x1g
2 (t+ 1) = 2|x(t) = j);

1− qj − rj = Pr(x1g
2 (t+ 1) = 3|x(t) = j), j = 1, . . . , 6.



Wang Y H, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112205:11

The strategy dynamics can be described as

Ex1g
1 (t+ 1) = L1g

1 Ex(t),

Ex1g
2 (t+ 1) = L1g

2 Ex(t),

where

L1g
1 =

[

p1 p2 p3 p4 p5 p6

1− p1 1− p2 1− p3 1− p4 1− p5 1− p6

]

,

and

L1g
2 =







q1 q2 q3 q4 q5 q6

r1 r2 r3 r4 r5 r6

1− q1 − r1 1− q2 − r2 1− q3 − r3 1− q4 − r4 1− q5 − r5 1− q6 − r6






.

Then the strategy profile dynamics can be expressed as

Ex(t+ 1) = L1g
Ex(t),

where

L1g = L1g
1 ∗ L1g

2 =












p1q1 p2q2 · · · p6q6

p1r1 p2r2 · · · p6r6

p1(1− q1 − r1) p2(1− q2 − r2) · · · p6(1− q6 − r6)
...

...
...

(1 − p1)(1− q1 − r1) (1− p2)(1 − q2 − r2) · · · (1− p6)(1 − q6 − r6)












.

Similarly, we calculate the strategy profile dynamics for m = 2 as

Ex(t+ 1) = L2g
Ex(t),

where

L2g = L2g
1 ∗ L2g

2 =







g1l1 g2l2 · · · g6l6
...

...
...

(1− g1)(1− l1 − h1) (1− g2)(1 − l2 − h2) · · · (1− g6)(1 − l6 − h6)






,

and
gj = Pr(x2g

1 (t+ 1) = 1|x(t) = j);

lj = Pr(x2g
2 (t+ 1) = 1|x(t) = j);

hj = Pr(x2g
2 (t+ 1) = 2|x(t) = j);

1− lj − hj = Pr(x2g
2 (t+ 1) = 3|x(t) = j), j = 1, . . . , 6.

Define Lg = [L1g, L2g]. According to (10), set

Qg =

[

f13 f12 · · · f10 f23 f22 · · · f20

1− f13 1− f12 · · · 1− f10 1− f23 1− f22 · · · 1− f20

]

∈ Υ2×12.

Then the Markovian eco-evolutionary dynamics for the group-based three-player games is

Ez(t+ 1) = Mg
Ez(t), (23)

where Mg = Qg ∗ Lg ∈ Υ12×12 is written as
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
























p1q1f13 p2q2f12 · · · p6q6f10

p1r1f13 p2r2f12 · · · p6r6f10

p1(1 − q1 − r1)f13 p2(1− q2 − r2)f12 · · · p6(1− q6 − r6)f10
...

... · · ·
...

(1− p1)(1− q1 − r1)f13 (1− p2)(1 − q2 − r2)f12 · · · (1 − p6)(1− q6 − r6)f10

p1q1(1− f13) p2q2(1− f12) · · · p6q6(1− f10)

p1r1(1− f13) p2r2(1 − f12) · · · p6r6(1− f10)

p1(1− q1 − r1)(1 − f13) p2(1− q2 − r2)(1− f12) · · · p6(1 − q6 − r6)(1 − f10)
...

...
...

...

(1− p1)(1 − q1 − r1)(1 − f13) (1− p2)(1 − q2 − r2)(1− f12) · · · (1− p6)(1− q6 − r6)(1− f10)

g1l1f23 g2l2f22 · · · g6l6f20

g1h1f23 g2h2f22 · · · g6h6f20

g1(1 − l1 − h1)f23 g2(1− l2 − h2)f22 · · · g6(1− l6 − h6)f20
...

... · · ·
...

(1− g1)(1− l1 − h1)f23 (1− g2)(1 − l2 − h2)f22 · · · (1 − g6)(1 − l6 − h6)f20

g1l1(1− f23) g2l2(1− f22) · · · g6l6(1 − f20)
...

...
...

...

(1− g1)(1 − l1 − h1)(1 − f23) (1− g2)(1 − l2 − h2)(1 − f22) · · · (1− g6)(1− l6 − h6)(1− f20)





















.

Based on the algebraic form (23), we derive the group-based GZD strategies in three player model. Define the
stationary distribution as

λg = (σ1
1 , σ

1
2 , . . . , σ

1
6 , σ

2
1 , σ

2
2 . . . , σ

2
6)

T.

Similar to Definitions 5 and 6, for the group-based three-player games, the environmental quality Ng
1 is defined

as

Ng
1 =

2∑

m=1

[fm3σ
m
1 + fm2(σ

m
2 + σm

4 ) + fm1(σ
m
3 + σm

5 ) + fm0σ
m
6 ] = fg · λg,

where fg = (f13, f12, f11, f12, f11, f10, f23, f22, f21, f22, f21, f20).

The expected payoffs for player 1 and group Ω2 are expressed as

Ec1 = V c
1 λ

g ,

EcΩ2
= V c

Ω2
λg.

Then the collective welfare W g for the group-based three-player games is defined as

W g = (V c
1 + V c

Ω2
) · λg = V g · λg = Ec1 + EcΩ2

,

where V g = V c
1 + V c

Ω2
.

In Lemma 1, let i = 1, 2, k1 = 2, k2 = 3, we can obtain the corresponding strategy extraction vector Ξg
i,j ∈ R

12,
and set

e = α11
T
12 + α2f

g + α3(V
c
1 + V c

Ω2
).

Similar to Theorem 2, we have the following result.

Theorem 3. Consider a group-based repeated three-player game with two environments. Assume Ω1 = {1} is
the first group and Ω2 = {2, 3} is the second group. Group i aims to set the linear relationship between Ng

1 and
W g as

α1 + α2N
g
1 + α3W

g = 0.
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Table 5 Payoff matrix of game m for two groups.

Ω1\Ω2 CC CD(DC) DD

C a, 2a a − bm, a + bm a − 2cm, 2cm

D 2bm, 2a − 2bm cm, a − cm 0, 0

Then the group-based GZD strategies can be designed as

zgi,j = η11
T
12 + η2f

g + η3V
g + (Ξg

i,j)
T, i = 1, 2, j ∈ Ag

i , (24)

where the parameters αr and ηr = cαr, r = 1, 2, 3, are determined unilaterally by group i.
For simplicity, let β1 = α3

α2

, β2 = α1

α2

, α2 6= 0, it follows that

Ng
1 + β1W

g + β2 = 0.

According to the algebraic equation (23) and the construction of strategy extraction vector (15), we have

(Ξg
1,1)

T = [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0].

It yields that

zg1,1 = (Ξg
1,1)

TMg

=
∑

r∈Φ1,1
Rowr(M

g)

= [ẑ11,1, ẑ
2
1,1, ẑ

3
1,1, ẑ

4
1,1, ẑ

5
1,1, ẑ

6
1,1, z̃

1
1,1, z̃

2
1,1, z̃

3
1,1, z̃

4
1,1, z̃

5
1,1, z̃

6
1,1],

which can be simply expressed as [p1, p2, p3, p4, p5, p6, g1, g2, g3, g4, g5, g6]. Set c = 1, and then we have

zg1,1 = fg + β1V
g + β21

T
12 + (Ξg

1,1)
T. (25)

In Table 3, set Rg
m = a > 0, Kg

m = a− bm, Sg
m = a− 2cm, T g

m = 2bm > 0, Lg
m = cm > 0, P g

m = 0, (m = 1, 2) and
b1 < b2, c1 < c2. Then we have R̃g

m = 2a, L̃g
m = a+ bm, T̃ g

m = 2cm, S̃g
m = 2a− 2bm, K̃g

m = a− cm, P̃ g
m = 0, which is

shown in Table 5.
To ensure the rationality of GZD strategies, it is necessary to meet that
(i) β2 = −fm1 − aβ1 = −fm2 − 2aβ1, m = 1, 2;
(ii) f11 = f21, f12 = f22.
If β2 = −f11 − aβ1, the GZD strategies (25) for group 1 can be rewritten as







p1 = f13 + 2aβ1 − f11 + 1,

p2 = p3 = 1,

p4 = p5 = 0,

p6 = f10 − aβ1 − f11,

g1 = f23 + 2aβ1 − f21 + 1,

g2 = g3 = 1,

g4 = g5 = 0,

g6 = f20 − aβ1 − f21,

(26)

where both β1 and β2 are solely determined by group 1. Then the following properties can be obtained.

Proposition 3. Consider a group-based three-player repeated game with two environments.
(i) Environmental quality Ng

1 decreases as collective welfare W g increases, if and only if fm3 < fm2 < fm1 < fm0,
m = 1, 2.

(ii) To ensure the existence of GZD strategies, the range of values for parameter β1 is

max

{
fm2 − fm3 − 1

Rg
m + R̃g

m − T g
m − S̃g

m

,
fm0 − fm3 − 1

Rg
m + R̃g

m − Lg
m − K̃g

m

,
fm0 − fm2 − 1

Kg
m + L̃g

m − P g
m − P̃ g

m

,
fm0 − fm1 − 1

Sg
m + T̃ g

m − P g
m − P̃ g

m

}

6 β1

6 min

{
fm3 − fm2

Kg
m + L̃g

m −Rg
m − R̃g

m

,
fm3 − fm1

Sg
m + T̃ g

m −Rg
m − R̃g

m

,
fm2 − fm0

P g
m + P̃ g

m − T g
m − S̃g

m

,
fm1 − fm0

P g
m + P̃ g

m − Lg
m − K̃g

m

}

,

where fm3 < fm2 < fm1 < fm0 or fm3 > fm2 > fm1 > fm0 holds, m = 1, 2. The proof process is similar to
Proposition 2, and we omit it here.
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Table 6 Payoff matrix of example 1 with m = 1.

Ω1\Ω2 CC CD(DC) DD

C 5, 10 2, 8 −1, 6

D 6, 4 3, 2 0, 0

Table 7 Payoff matrix of example 1 with m = 2.

Ω1\Ω2 CC CD(DC) DD

C 5, 10 1.5, 8.5 −3, 8

D 7, 3 4, 1 0, 0

Remark 3. In (26), p2 = p3 = 1 and g2 = g3 = 1, which means that if player 1 cooperates and at least one player
in group 2 defects at the current step, regardless of the environments, player 1 will continue to cooperate at the
next step. That is, player 1 forgives group 2 under the GZD strategies. Similarly, p4 = p5 = 0 and g4 = g5 = 0,
that is, player 1 in each environment will continue to defect at the next step if he decides to defect and at least one
player in group 2 cooperates at the current step. Finally, with the increase of β1, player 1 who adopts the GZD
strategy is more willing to cooperate at the next step when two groups decide to cooperate at present, and he will
probably choose to defect at the next step when two groups decide to defect at the current step.

A numerical example for the group-based repeated three-player game with two environments is provided in the
following.

Example 1. Consider a group-based repeated three-player game with two environments, its payoff matrix is
described in Table 5. Set a = 5, b1 = 3, c1 = 3, b2 = 3.5, c2 = 4, then the payoff matrices are shown in Tables 6 and
7.

Set parameters f13 = 0.85, f12 = 0.8, f11 = 0.2, f10 = 0.1, f23 = 0.9, f22 = 0.8, f21 = 0.2, f20 = 0.15, then
according to Proposition 3, environmental quality Ng

1 increases as collective welfare W g increases for fm3 > fm2 >
fm1 > fm0, m = 1, 2, and the boundary of β1 is −0.165 6 β1 6 −0.07. Choose β1 = −0.12, then β2 = −f11−aβ1 =
0.4, group 1 can set the linear relationship between Ng

1 and W g as

Ng
1 − 0.12W g + 0.4 = 0,

where the GZD strategies (26) for group 1 will be zg1,1 = [0.45, 1, 1, 0, 0, 0.5, 0.5, 1, 1, 0, 0, 0.55].

6 Discussion and conclusion

For the ZD strategies, one player is able to unilaterally set the opponent’s payoffs. For the welfare-time strategy
in two-player games proposed in [16], there also exists a strategy that allows one player to control the value of the
population welfare, which is called the determined-welfare (D-W) strategy. So, is there a D-W strategy like this in
the case of three players?

Recall (18) and (19), let α2 = 0, and then the strategy for player 1 is z1,1 = α11
T
16 + α3V + ΞT

1,1, where c = 1.

That is, α11
T
16 +α3V = 0. Multiply both sides of this equation by λ simultaneously, which leads to α1 +α3W = 0.

Then W can be set as −α1

α3

. And the D-W strategy can be designed as







p1 = 3R1α3 + α1 + 1,

p2 = p3 = (2K1 + T1)α3 + α1 + 1,

p4 = (S1 + 2L1)α3 + α1 + 1,

p5 = (2K1 + T1)α3 + α1,

p6 = p7 = (S1 + 2L1)α3 + α1,

p8 = 3P1α3 + α1,

g1 = 3R2α3 + α1 + 1,

g2 = g3 = (2K2 + T2)α3 + α1 + 1,

g4 = (S2 + 2L2)α3 + α1 + 1,

g5 = (2K2 + T2)α3 + α1,

g6 = g7 = (S2 + 2L2)α3 + α1,

g8 = 3P2α3 + α1.

(27)
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To ensure the existence of D-W strategy in (27), it is necessary to satisfy 2Km + Tm = Sm + 2Lm,m = 1, 2.
However, the payoffs cannot satisfy Tm > Rm > Lm > Km > Pm > Sm and Km > (Lm + Sm)/2 simultaneously.
Hence, the D-W strategy in (27) is invalid for the GZD strategies with three players. Similar results are also
obtained in the group-based model.

This paper investigates the linear relationship between collective welfare and environmental quality in repeated
finite games with time-variant environment. According to the profile and state dynamics, an equivalent eco-
evolutionary algebraic model is provided. Then the designing formulas of GZD strategies are obtained for repeated
three-player games with two environments.

It is remarkable that there are many interesting issues to explore GZD strategies in the future. In particular, as
the number of players increases, the control ability for a single player continuously decreases. Hence, the control
ability of ZD strategies can be improved through different types of alliance mechanisms, where players not only need
to consider how to optimize their own payoffs through ZD strategies, but also how to maximize collective interests
in an alliance. From this point of view, the existence of GZD strategy alliances has been further investigated.
Moreover, since game-theoretic approaches can be used to study several cooperative control problems of multiagent
systems [34–36], we hope that our designed method may be applied to consensus problems and synchronization
analysis of multiagent systems in further investigation [37, 38].
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