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Abstract In this paper, the issue of fault reconstruction is investigated for a class of continuous-time piecewise-affine

(PWA) systems against actuator faults. First, to overcome the slow response issue of the conventional iterative learning law

to the fault estimation error, a novel iterative accelerator and a new triggering condition, which together constitute a more

efficient accelerated iterative learning law, are proposed. Then, based on the PWA iterative learning observer, the M-th

accelerated iterative learning law, including a first accelerated iterative learning law as a special case, is constructed. A novel

learning law updating algorithm is developed to depict the iterative procedure of fault reconstruction, the triggering process

for the iterative accelerator, and the updating process. Moreover, sufficient conditions for ensuring asymptotic stability with

guaranteed H∞ performance are derived for the augmented PWA estimation error dynamics subject to region mismatch

between the faulty system and the iterative learning observer. Finally, two examples, including a case study of a tunnel

diode circuit system, are presented to fully verify the effectiveness and superiority of the proposed accelerated iterative

learning method.
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1 Introduction

1.1 Literature review

Industrial systems are usually subject to stringent performance requirements and demanding safety stan-
dards, and any potential fault or anomaly may cause serious damage to the normal operation of the
plant [1]. In reality, faults may be produced by equipment failure, external disturbances, changes in the
environment, or malicious attacks. In this context, fault reconstruction, which aims to monitor, detect,
and reconstruct faults and anomalies of dynamic systems in real time, has become a crucial technology
to guarantee system reliability and security. Currently, the commonly used fault reconstruction methods
contain the inversion-based filter [2], the sliding mode observer [3], the polytopic learning observer [4],
and the adaptive super-twisting observer [5].

Whereas, in the industrial process, a large number of modules are frequently composed of single or
compound nonlinear systems, such as mechanical operation, information transmission, electric power
conveyance, and other modules [6–8]. Accordingly, various accurate approximation approaches have been
developed thoroughly for analyzing the nonlinear system to date. At present, several typical approxima-
tion models for nonlinear systems include the linear varying parameter system [9], the neural network
system [10], and the fuzzy system [11]. The piecewise-affine (PWA) system, as a special class of hybrid
systems first proposed by Hassibi and Boyd in 1998 [12], can be employed to approximate one or more
sets of complex nonlinear systems. Specifically, the state space of nonlinear systems is divided into a
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series of sub-partitions, each of which can be filled via the corresponding convex polyhedral PWA region.
Because of the advantage that the approximate effect of the PWA system is enhanced with the increase in
the number of PWA regions, the PWA system has been widely considered in the fields of mechanics and
control engineering [13–20]. In the past two decades, an increasing number of literature has reported on
the modeling of complex industrial systems using the PWA approximation approach, e.g., the hydraulic
wind power transfer system [21], the distributed generator in distribution grids [22], and the distributed
drive electric vehicle [23].

In recent years, fault reconstruction for PWA systems has been explored extensively and inten-
sively [24–28]. For instance, in [24], the diagnostic observer design issue of fault reconstruction is addressed
for a class of PWA systems subject to the specified disturbance attenuation, and fault detectability is
optimized simultaneously. In [27], the solutions for fault detection and estimation filter design are pre-
sented for linear time-invariant and PWA systems, respectively, where the hybrid Luenberger observer
and its related design are presented based on quadratic boundedness. In [28], reconfigurable control is
investigated for a class of continuous-time PWA systems against both the actuator and sensor faults,
where both the virtual actuator and virtual sensor blocks are established to “hide” the effects of faults.
However, whether the diagnostic observer, the quadratic-boundedness-based hybrid observer, or the re-
configurable control method is used, the common defect of the fault reconstruction methods proposed
previously is that the convergence of fault estimation error must be ensured in finite time. If the expected
estimation error cannot be reached at this time, then the fault reconstruction methods cannot self-repair
the estimation error and will become invalid, which can also result in the assumption that the afore-
mentioned methods lack intelligence. To improve the efficiency of fault reconstruction methods, more
intelligent theoretical techniques need to be explored. Therefore, the gaps should be filled by developing
more efficient and intelligent fault reconstruction methods for PWA systems. Furthermore, the region
mismatch phenomenon may exist between the PWA system and the fault reconstruction module because
of different system states. However, most of the previous research mainly focuses on fault reconstruction
design and precise modeling for PWA systems in the discrete-time/continuous-time domain but ignores
the region mismatch problem between different modules, which is one of the main concerns of this study.

Furthermore, as modern industrial systems continue to upgrade and exhibit more high-level intelli-
gence, the iterative learning method is increasingly emerging as an efficient tool for addressing various
challenges and problems and optimizing system performance [29–31]. The core idea of the iterative learn-
ing method is to gradually improve the performance, adaptability, and robustness of the system through
repeated iterations to cope with the ever-changing environment and requirements [32,33]. In addition, to
alleviate the damage caused by system faults, the iterative-learning-based fault reconstruction has become
one of the significant research directions in the field of fault estimation [34–36] and fault-tolerant con-
trol [37]. Specifically, in [34], the fault estimation issue is analyzed for a class of switched interconnected
nonlinear systems by designing a novel variable-weighted iterative learning observer. In [35], the fault
estimation issue is investigated for a class of Markov jump systems against sensor and nondifferentiable
actuator faults. Based on the iterative learning observer, accurate fault estimation can be obtained by
integrating the estimations in the iterative processes. In [37], the design issues of both Q-learning-based
fault estimation and fault-tolerant iterative learning control are considered for a class of multiple-input
multiple-output systems, where the controller is adjusted based on the results of both fault estimation
and previous iterative learning to suppress the effect of faults. Compared with the conventional fault
reconstruction methods, the iterative-learning-based fault reconstruction method has stronger adaptabil-
ity and generalization capability, which is more suitable for dealing with complicated and changeable
systems. However, the previous iterative learning law is usually based on the update of the estimation
error, and the decreasing rate of estimation error may be slowed down step by step with the increase
in iterations. Therefore, the updating efficiency of the iterative learning estimate can be impaired, and
more iterations are required to achieve the desired purpose of estimation. Moreover, depending on the
actual situation, the iterative learning process should be completed within a finite number of iterations.
To speed up the convergence rate, the design of a more advanced iterative learning law to break the
“iteration bottleneck” and avoid getting stuck in infinite iterations, which is one of the main concerns of
this study, is more practical.

1.2 Contributions

Inspired by previous research, in this study, the fault reconstruction issue is concerned with a class of
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continuous-time PWA systems against actuator faults. First, based on the Luenberger observer, the
iterative learning observer-based fault reconstruction is performed for a class of continuous-time PWA
systems in the presence of region mismatch. Then, a new accelerated iterative learning law, including
a learning law updating algorithm, is presented. Furthermore, the problem of asymptotic stability with
guaranteed H∞ performance for the augmented PWA estimation error system is addressed by employing
a region-dependent Lyapunov function approach. The main contributions are listed as follows. (i) To
optimize the convergence speed of the conventional iterative learning law to the fault estimation error,
a novel accelerated iterative learning law is proposed by constructing a kind of iterative accelerator.
Moreover, an algorithm that depicts both the learning law updating process and the iterating accelerator
intervention process, in which the triggering condition is satisfied, is presented. (ii) The augmented higher-
order form of the multiple accelerated iterative learning law is achieved to accelerate the convergence of
fault estimation error continuously. Furthermore, a simplified accelerated iterative learning law, which can
decrease computational complexity without requiring high precision, is designed in some specific cases.
(iii) A new iterative-learning-based fault reconstruction observer that accommodates the mismatch of
state regions between the original system and the observer is developed. Then, the region-dependent
Lyapunov function is constructed to ensure asymptotic stability with the prescribed H∞ performance
indices for the augmented PWA estimation error dynamics.

1.3 Notations

In this study, col{·} is the column vector. R
n is the vector in n-dimensional Euclidean space. ∗ and

T are the transposed term in a symmetric matrix and the transpose of a matrix or vector, respectively.
He{β} is equivalent to He{β} , β + βT. I is an identity matrix with suitable dimensions. ABS(̺) is
the absolute value of ̺. L2[0,+∞) is the space of square-integrable vector functions. ⊗ is the Kronecker
product. ‖ · ‖ is the Euclidean norm of vectors.

2 Problem formulation

2.1 PWA system description

Consider a class of continuous-time PWA systems with actuator faults as follows:















ẋ(t) = Aix(t) + ai +Bifa(t) +Diω(t),

y(t) = Cix(t),

z(t) = Eix(t), i ∈ I,

(1)

where x(t) ∈ R
nx , y(t) ∈ R

ny , and z(t) ∈ R
nz are the state vector, the measurement output, and

the controlled output, respectively; fa(t) is the actuator faults; ω(t) is the disturbance input, which is
an energy-bounded signal in L2[0,+∞); ai is the affine term; and Ai, Bi, Ci, Di, and Ei are system
matrices with the appropriate dimensions. Subsequently, the convex polyhedral PWA region is defined as
Ri , {x | Lix− li 6 0}, where Li and li are constant matrices. Moreover, it holds that

⋃

i∈I
Ri = R

nx ,

Ri ∩ Rj = ∅, ∀i 6= j ∈ I. i is the index of the PWA region, and I , {1, 2, . . . , i, . . . , I} is the set of
all PWA region indices. Then, the set I satisfies I = I0 ∪ I1, where I0 and I1 are the sets containing
the origin and others. As i ∈ I0, it yields the expression ai ≡ 0. By defining B̄i , [Bi Di] and
f̄a(t) , col{fa(t) ω(t)}, the following expression can be derived:















ẋ(t) = Aix(t) + ai + B̄if̄a(t),

y(t) = Cix(t),

z(t) = Eix(t), i ∈ I.

(2)
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2.2 Fault reconstruction observer

To address the diagnostic observer design issue of fault reconstruction, consider the following Luenberger-
based iterative learning observer:















˙̂x(k)(t) = Aj x̂
(k)(t) + aj + Lj(ŷ

(k)(t)− y(t)) + B̄j
ˆ̄f
(k)
a (t),

ŷ(k)(t) = Cj x̂
(k)(t),

ẑ(k)(t) = Ej x̂
(k)(t), j ∈ I,

(3)

where x̂(k)(t) ∈ R
nx̂ , ŷ(k)(t) ∈ R

nŷ , ẑ(k)(t) ∈ R
nẑ , and ˆ̄f

(k)
a (t) are the estimations of x(t), y(t), z(t), and

f̄a(t), respectively, k is the index for the iterations. Lj is the observer gain to be designed.
Notably, the states of the original system expressed in (2) and the fault reconstruction system expressed

in (3) are different, such that the states of the two systems may be located in the distinct PWA region.
Thus, a region mismatch problem between the transformed PWA system expressed in (2) and the fault
reconstruction PWA iterative learning observer expressed in (3) can be detected, i.e., the index i of (2)
and the index j of (3) are not the same, i.e., i 6= j, ∀i, j ∈ I, which will be observed visually in Section 4.

Defining the estimation errors as e(k)(t) , x̂(k)(t)−x(t) and e
(k)
z (t) , ẑ(k)(t)− z(t) in accordance with

(2) and (3), respectively, the following expression can be derived:

ė(k)(t) = (Aj + LjCj)e
(k)(t) + (Aj + LjCj −Ai − LjCi)x(t) + aj − ai + B̄j

ˆ̄f (k)
a (t)− B̄if̄a(t). (4)

Then, an augmented state vector is defined as ε(k)(t) , col{1 x(t) e(k)(t)}, and the following aug-
mented PWA estimation error system can be obtained by combining (2) and (4):

{

ε̇(k)(t) = A(i,j)ε
(k)(t) + B(i,j)̟

(k)(t),

e
(k)
z (t) = E(i,j)ε

(k)(t), i, j ∈ I,
(5)

where

A(i,j) ,









0 0 0

ai Ai 0

aj − ai Ā(i,j) Aj + LjCj









, B(i,j) ,









0 0

0 B̄i

B̄j −B̄i









, ̟(k)(t) ,

[

ˆ̄f
(k)
a (t)

f̄a(t)

]

,

E(i,j) , [0 Ej − Ei Ej ], Ā(i,j) , Aj −Ai + Lj(Cj − Ci).

2.3 Conventional iterative learning law

Generally, in accordance with [35], the conventional proportional-differential (PD)-type iterative learning
law can be constructed as follows:

ˆ̄f (k+1)
a (t) = ˆ̄f (k)

a (t) + ψj(ŷ
(k)(t)− y(t)) + ϕj( ˙̂y

(k)(t)− ẏ(t))

= ˆ̄f (k)
a (t) + ψjC(i,j)ε

(k)(t) + ϕjC(i,j)ε̇
(k)(t), (6)

where ψj and ϕj are the gains of iterative learning law, ∀i, j ∈ I, and C(i,j) , [0 Cj − Ci Cj ].

In the iterative learning law expressed in (6), both ε(k)(t) and ε̇(k)(t) are the error update terms, both

of which can drive the estimation ˆ̄f
(k)
a (t) close to the augmented fault f̄a(t) in real time at each iteration.

However, with the increase in the number of iterations, the values of the error update terms ε(k)(t) and

ε̇(k)(t) become smaller gradually, which will slow down the convergence speed of the estimation ˆ̄f
(k)
a (t)

to the augmented fault f̄a(t). Thus, the update efficiency of the entire iterative learning law expressed
in (6) is sacrificed. As a result, the conventional method requires more iterations to reach an accurate
estimation of the fault; thus, the corresponding computation time increases.

3 Main results

In this section, first, the design of a continuous region mismatch piecewise Lyapunov function is in-
troduced. Then, based on the augmented PWA estimation error system and the conventional iterative
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learning law, a new M -th accelerated iterative learning method is proposed to optimize the iterative
process. Furthermore, a simplified first accelerated iterative learning method, which can decrease the
computational complexity without requiring high precision, is designed in some specific cases.

3.1 Boundary continuity region mismatch matrices

Following the procedures presented in [38,39], to ensure that the piecewise Lyapunov function is contin-
uous across the boundaries among the adjacent regions, the matrix Γi , [ri Ri], i ∈ I with ri ≡ 0 for
i ∈ I0 is constructed to satisfy the following expression:

Γicol{1 x(t)} = Γıcol{1 x(t)}, x(t) ∈ Ri ∩ Rı, i, ı ∈ I, (7)

Γjcol{1 x̂(k)(t)} = Γcol{1 x̂(k)(t)}, x̂(k)(t) ∈ Rj ∩ R, j,  ∈ I. (8)

By combining (7) and (8), the following expression can be derived:

[

ri Ri 0

rj Rj Rj

]









1

x(t)

e(k)(t)









=

[

rı Rı 0

r R R

]









1

x(t)

e(k)(t)









,

x(t) ∈ Ri ∩ Rı, x̂
(k)(t) ∈ Rj ∩ R, i, ı, j,  ∈ I. (9)

Subsequently, the S procedure is employed to deal with the affine terms. By defining the matrix H̄i ,
[hi Hi], i ∈ I with hi ≡ 0 for i ∈ I0, the following expression can be derived:

H̄icol{1 x(t)} > 0, x(t) ∈ Ri, i ∈ I, (10)

H̄jcol{1 x̂(k)(t)} > 0, x̂(k)(t) ∈ Rj , j ∈ I. (11)

By combining (10) and (11), the following expression can be derived:

[

hi Hi 0

hj Hj Hj

]









1

x(t)

e(k)(t)









> 0, x(t) ∈ Ri, x̂
(k)(t) ∈ Rj , i, j ∈ I. (12)

3.2 M-th accelerated iterative learning law

To overcome the bottleneck of the conventional iterative learning law expressed in (6) that the update of
the estimated fault slows down with the increase in iterations, both a novel iterative accelerator and a
trigger condition are introduced to update it, and the corresponding block diagram is shown in Figure 1.
The trigger condition is defined as follows:

ABS(‖ ˆ̄f (k+1)
a (t)‖ − ‖ ˆ̄f (k)

a (t)‖) < ς, (13)

where ς is a small positive constant. As the iteration convergence rate is slower than ς , i.e., the inequality
expressed in (13) holds, the iterative learning law expressed in (6) stops operating, which can be regarded
as entering the “iteration bottleneck.” Then, the iterative accelerator starts to intervene in the conver-
gence rate of the iterative learning law expressed in (6) such that the iterative estimation of the fault can
be accelerated. An iterative accelerator is defined to avoid falling into the first convergence bottleneck in
the following:

ˆ̄f (1)
a (t) = ψjC(i,j)ε

(1)(t) + ϕjC(i,j)ε̇
(1)(t), (14)

which is also called the first iterative accelerator. Based on the aforementioned definition of the first
iterative accelerator, a novel first accelerated iterative learning law is proposed as follows:

ˆ̄f (k+1)
a (t) = ˆ̄f (k)

a (t) + ψjC(i,j)ε
(k)(t) + ϕjC(i,j)ε̇

(k)(t) + ˆ̄f (1)
a (t). (15)
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Figure 1 (Color online) Block diagram of the iterative learning law with an iterative accelerator and a trigger condition.

Remark 1. In (15), the term ˆ̄f
(1)
a (t), which is added to the iterative learning law as a form of positive

feedback, contains the information that the iterative convergence rate has slowed down to fall into the
bottleneck. Then, the information gap generated from the gradually decreasing estimation error ε(k)(t)

can be compensated such that more previous iterative data can be received for ˆ̄f
(k+1)
a (t). Finally, the

convergence rate of iterative learning is reaccelerated. Although the bottleneck of the conventional
iterative learning law could be broken by the proposed first accelerated iterative learning law expressed
in (15), the iteration efficiency of (15) can be still slowed down once the convergence speed of iterative
estimation errors slackens again. In particular, as the trigger condition expressed in (13) is satisfied
again, the first accelerated iterative learning law expressed in (15) already stops operating, which is
forced into the second convergence bottleneck. As a remedy, the second iterative accelerator can be
further constructed as follows:

ˆ̄f (2)
a (t) = (ψjC(i,j)ε

(2)(t) + ϕjC(i,j)ε̇
(2)(t)) + (ψjC(i,j)ε

(1)(t) + ϕjC(i,j)ε̇
(1)(t)). (16)

Moreover, based on (15) and (16), the second accelerated iterative learning law can be updated as follows:

ˆ̄f (k+1)
a (t) = ˆ̄f (k)

a (t) + ψjC(i,j)ε
(k)(t) + ϕjC(i,j)ε̇

(k)(t) + ˆ̄f (1)
a (t) + ˆ̄f (2)

a (t). (17)

Remark 2. Eq. (16) shows that the second iterative accelerator contains the relevant information of
the first iterative accelerator. Notably, even if the “iteration bottleneck” of (6) is reached, the trigger
condition will be activated again with the increase in iterations. Therefore, the acceleration can be
uninterrupted through (17) based on (15) to break through the second “iteration bottleneck.” By parity
of reasoning, M is defined as the M -th convergence bottleneck. Then, the M -th accelerated iterative
learning law with self-renewal can be obtained as follows:

ˆ̄f (k+1)
a (t) = ˆ̄f (k)

a (t) + ψjC(i,j)ε
(k)(t) + ϕjC(i,j)ε̇

(k)(t) + F (M)
a (t), (18)

where F
(M)
a (t) ,

∑M
m=1

ˆ̄f
(m)
a (t). Furthermore, the following expression can be derived:

ˆ̄f (k+1)
a (t) = ˆ̄f (k)

a (t) + ψjC(i,j)ε
(k)(t) + ϕjC(i,j)ε̇

(k)(t) +

M
∑

m=1

2M−m(ψjC(i,j)ε
(m)(t) + ϕjC(i,j)ε̇

(m)(t))

= ˆ̄f (k)
a (t) + ψjC(i,j)ε

(k)(t) + ϕjC(i,j)ε̇
(k)(t) + ψjC(i,j)2MΥ(t) + ϕjC(i,j)2M Υ̇(t), (19)

where

F (M)
a (t) , ψjC(i,j)2MΥ(t) + ϕjC(i,j)2M Υ̇(t),
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Algorithm 1 M-th accelerated iterative learning law updating algorithm.

Input: The iterative learning gains ψj and ϕj, j ∈ I. The threshold ς.

Step 1: Initialization. Set the iteration index as k = 0. Set (18) as the current iterative learning law. Set F(M)
a (t) = 0 and

M = 0.

Step 2: Operate the iterative learning law expressed in (18). Update the iteration index k = k + 1.

Step 3: Check whether Eq. (13) is satisfied. If yes, then update M = M + 1 and set F(M)
a (t) = F(M−1)

a (t) + ˆ̄f(M)
a (t).

Step 4: Check whether ABS( ˆ̄f(k)
a (t) − f̄a(t)) → 0. If yes, then exit and output ˆ̄f(k)

a (t); else, go back to Step 2.

2M , [2M−1 2M−2 2M−3 · · · 20],

Υ(t) , col{ε(1)(t) ε(2)(t) ε(3)(t) · · · ε(M)(t)}.

Based on the M -th accelerated iterative learning law expressed in (19), the augmented M -th accelerator
system can be constructed as follows:

{

Υ̇(t) = (IM ⊗A(i,j))Υ(t) + (IM ⊗ B(i,j)) ¯̟
(M)(t),

ē
(M)
z (t) = (IM ⊗ E(i,j))Υ(t), i, j ∈ I,

(20)

where

¯̟ (M)(t) , col{̟(1)(t) ̟(2)(t) · · · ̟(M)(t)},

ē(M)
z (t) , col{e(1)z (t) e(2)z (t) e(3)z (t) · · · e(M)

z (t)}.

In summary, based on both the iterative accelerator expressed in (19) and the trigger condition expressed
in (13), the M -th accelerated iterative learning law updating algorithm can be presented in Algorithm 1.

Remark 3. To estimate the faults accurately and decrease the estimation errors significantly, two
layers of nested cycles exist in Algorithm 1. The first layer of the nested cycle is based on the variation
of the iteration index k, which mainly aims to reduce the fault estimation error so that the estimation
value of actuator faults can be close to its actual value. The second layer of the nested cycle is based
on the variation of the acceleration index M , which mainly aims to handle the defects of the iterative
learning law itself, such that the “iteration bottleneck” can be avoided.

Remark 4. The threshold ς is the switch used to start the iterative accelerator. Currently, a proper
quantitative description of ς , which needs to be a constant that is small enough and greater than zero, is
lacking. In the future, the specific quantization formula for the threshold ς , which will show the startup
process of iterative acceleration more clearly, will be defined. Before proceeding, a new definition of
asymptotic stability with guaranteed H∞ performance is provided for the augmented PWA estimation
error system expressed in (5) and the augmented M -th accelerator system expressed in (20).

Definition 1. Given the two scalars γ > 0 and γM > 0, the augmented PWA estimation error system
expressed in (5) and the augmented M -th accelerator system expressed in (20) are considered to be
asymptotically stable and have H∞ performance indices γ and γM , respectively. If both of them are
asymptotically stable and under the zero initial condition, then the following relationships hold for all
nonzero ̟(k)(t) and ¯̟ (M)(t):

(i) ‖e(k)z (t)‖+ ‖ ˆ̄f (k+1)
a (t)‖ 6 γ‖̟(k)(t)‖,

(ii) ‖ē(M)
z (t)‖ 6 γM‖ ¯̟ (M)(t)‖.

In accordance with theM -th accelerated iterative learning law, sufficient conditions for ensuring asymp-
totic stability are derived for the augmented PWA estimation error system expressed in (5) and the
augmented M -th accelerator system expressed in (20) in Theorem 1.

Theorem 1. Given the PWA system expressed in (2) and the iterative learning observer expressed in
(3), if the positive definite symmetric matrix G(i,j), symmetric matrices P(i,j), Q(i,j), and matrices Mj,
ψj , ϕj , i, j ∈ I exist, then the expressions

min θ̄i,j , θ̃i,j , subject to
[

Λ̄1 Λ̄2

∗ Λ̄3

]

< 0, (21)
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[

−θ̄i,jI Ξ̄i,j

∗ −I

]

< 0, (22)

[

−θ̃i,jIM Ξ̃i,j

∗ −IM

]

< 0, (23)

ΓT
(i,j)P(i,j)Γ(i,j) > 0, (24)

ΓT
(i,j)Q(i,j)Γ(i,j) > 0 (25)

hold, i, j ∈ I, where

Λ̄1 ,









Λ̄1,1 0 Λ̄1,3

∗ Λ̄2,2 0

∗ ∗ −γ2I









, Λ̄2 ,









0 0 0

0 Λ̄2,5 0

Λ̄3,4 Λ̄3,5 0









, Λ̄3 ,









−I 0 0

∗ −γ2MIM Λ̄5,6

∗ ∗ −IM









,

with Λ̄1,1 , ET
(i,j)E(i,j)+He{ΓT

(i,j)P(i,j)Γ(i,j)A(i,j)}+H̄T
(i,j)G(i,j)H̄(i,j), Λ̄1,3 , ΓT

(i,j)P(i,j)Γ(i,j)B(i,j), Λ̄2,2 ,

(IM ⊗ E(i,j))
T(IM ⊗ E(i,j)) + He{O(i,j)(IM ⊗A(i,j))}+ IM ⊗ H̄T

(i,j)G(i,j)H̄(i,j), Λ̄2,5 , O(i,j)(IM ⊗ B(i,j)),

Λ̄3,4 , (~+ϕjC(i,j)B(i,j))
T, Λ̄3,5 , ~

TϕjC(i,j)2M (IM ⊗B(i,j))+BT
(i,j)C

T
(i,j)MjC(i,j)2M (IM ⊗B(i,j)), Λ̄5,6 ,

(ϕjC(i,j)2M (IM⊗B(i,j)))
T, Ξ̄i,j , ψjC(i,j)+ϕjC(i,j)A(i,j), and Ξ̃i,j , ψjC(i,j)2M+ϕjC(i,j)2M (IM⊗A(i,j)).

Then, the augmented PWA estimation error system expressed in (5) and the augmentedM -th accelerator
system expressed in (20) are asymptotically stable with guaranteed H∞ performance indices γ and γM ,
respectively.

Proof. Depending on whether the PWA region contains the origin or not, the derivations can be divided
into two cases, i.e., Case I: i, j ∈ I0; Case II: else. Notably, Case I is the special case of Case II; therefore,
only the most complex Case II is analyzed here to save space. First, a class of region-dependent Lyapunov
functions is established as follows:

V (ε(t)) = ε(k)T(t)ΓT
(i,j)P(i,j)Γ(i,j)ε

(k)(t) + ΥT(t)O(i,j)Υ(t),

where

O(i,j) , IM ⊗ ΓT
(i,j)Q(i,j)Γ(i,j), Γ(i,j) ,

[

Ri 0

Rj Rj

]

, if i, j ∈ I0, Γ(i,j) ,

[

ri Ri 0

rj Rj Rj

]

, else.

Letting L denote the infinitesimal operator, ̟(k)(t) ≡ 0, and ¯̟ (M)(t) ≡ 0, for i ∈ I, j ∈ I1, the following
expression can be derived:

LV (ε(t)) = He{ε(k)T(t)ΓT
(i,j)P(i,j)Γ(i,j)A(i,j)ε

(k)(t)}+He{ΥT(t)O(i,j)(IM ⊗A(i,j))Υ(t)}

= ζT(t)Ξ(i,j)ζ(t), (26)

where ζ(t) , col{ε(k)(t) Υ(t)} and

Ξ(i,j) ,

[

Ξ1,(i,j) 0

∗ Ξ2,(i,j)

]

,

with Ξ1,(i,j) , He{ΓT
(i,j)P(i,j)Γ(i,j)A(i,j)} and Ξ2,(i,j) , He{O(i,j)(IM ⊗A(i,j))}. To cope with the affine

term, by applying the S procedure with matrix G(i,j), the following expression can be derived:

ζT(t)Gζ(t) , ζT(t)

[

G1,1 0

∗ G2,2

]

ζ(t), (27)

where

G1,1 , H̄T
(i,j)G(i,j)H̄(i,j), G2,2 , IM ⊗ H̄T

(i,j)G(i,j)H̄(i,j),



Xu N, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112203:9

H̄(i,j) ,

[

Hi 0

Hj Hj

]

, if i, j ∈ I0, H̄(i,j) ,

[

hi Hi 0

hj Hj Hj

]

, else.

By combining (26) and (27), in accordance with [40], if Eq. (21) is satisfied, then the expression

Ξ(i,j) + G < 0 (28)

holds, and LV (ε(t)) < 0 holds, which indicates that the augmented PWA estimation error system ex-
pressed in (5) and the augmented M -th accelerator system expressed in (20) are asymptotically stable.
Subsequently, the H∞ performance of the augmented PWA estimation error system expressed in (5)
and the augmented M -th accelerator system expressed in (20) is investigated. As ̟(k)(t) 6= 0 and
¯̟ (M)(t) 6= 0, similar to that expressed in (26), the following expression can be derived:

LV (ε(t)) = He{ε(k)T(t)ΓT
(i,j)P(i,j)Γ(i,j)(A(i,j)ε

(k)(t) + B(i,j)̟
(k)(t))} +He{ΥT(t)O(i,j)((IM

⊗A(i,j))Υ(t) + (IM ⊗ B(i,j)) ¯̟
(M)(t))}. (29)

It follows from the M -th accelerated iterative learning law expressed in (19) that

ˆ̄f (k+1)T
a (t) ˆ̄f (k+1)

a (t)

= [~̟(k)(t) + ψjC(i,j)ε
(k)(t) + ϕjC(i,j)(A(i,j)ε

(k)(t) + B(i,j)̟
(k)(t)) + ψjC(i,j)2MΥ(t)

+ϕjC(i,j)2M ((IM ⊗A(i,j))Υ(t) + (IM ⊗ B(i,j)) ¯̟
(M)(t))]T[~̟(k)(t) + ψjC(i,j)ε

(k)(t)

+ϕjC(i,j)(A(i,j)ε
(k)(t) + B(i,j)̟

(k)(t)) + ψjC(i,j)2MΥ(t) + ϕjC(i,j)2M

×((IM ⊗A(i,j))Υ(t) + (IM ⊗ B(i,j)) ¯̟
(M)(t))]

= ξT(t)Γ̌(i,j)ξ(t), (30)

where ξ(t) , col{ε(k)(t) Υ(t) ̟(k)(t) ¯̟ (M)(t)} and

Γ̌(i,j) , σT
1 Γ1,1σ1 +He{σT

1 Γ1,2σ2 + σT
1 Γ1,3σ3 + σT

1 Γ1,4σ4}+ σT
2 Γ2,2σ2

+He{σT
2 Γ2,3σ3 + σT

2 Γ2,4σ4}+ σT
3 Γ3,3σ3 +He{σT

3 Γ3,4σ4}+ σT
4 Γ4,4σ4,

with σ1 , [I 0 0 0], σ2 , [0 I 0 0], σ3 , [0 0 I 0], σ4 , [0 0 0 I], Γ1,1 , He{ψjC(i,j) +

ϕjC(i,j)A(i,j)}, Γ1,2 , (ψjC(i,j)+ϕjC(i,j)A(i,j))
T(ψjC(i,j)2M+ϕjC(i,j)2M×(IM⊗A(i,j))), Γ1,3 , (ψjC(i,j)+

ϕjC(i,j)A(i,j))
T × (~ + ϕjC(i,j)B(i,j)), Γ1,4 , (ψjC(i,j) + ϕjC(i,j)A(i,j))

T(ϕjC(i,j)2M (IM ⊗ B(i,j))), Γ2,2 ,

He{ψjC(i,j)2M+ϕjC(i,j)2M (IM⊗A(i,j))}, Γ2,3 , (ψjC(i,j)2M+ϕjC(i,j)2M (IM⊗A(i,j)))
T(~+ϕjC(i,j)B(i,j)),

Γ2,4 , (ψjC(i,j)2M + ϕjC(i,j)2M (IM ⊗ A(i,j)))
T(ϕjC(i,j)2M (IM ⊗ B(i,j))), Γ3,3 , He{~ + ϕjC(i,j)B(i,j)},

Γ3,4 , (~ + ϕjC(i,j)B(i,j))
T(ϕjC(i,j)2M (IM ⊗ B(i,j))), and Γ4,4 , He{ϕjC(i,j)2M (IM ⊗ B(i,j))}. Based on

(29) and (30), under the zero initial condition, the H∞ performance indices for the augmented PWA
estimation error system expressed in (5) and the augmented M -th accelerator system expressed in (20)
can be established, respectively, as follows:

J1 =

∫ ∞

0

(e(k)Tz (t)e(k)z (t) + ˆ̄f (k+1)T
a (t) ˆ̄f (k+1)

a (t)− γ2̟(k)T(t)̟(k)(t))dt,

J2 =

∫ ∞

0

(ē(M)T
z (t)ē(M)

z (t)− γ2M ¯̟ (M)T(t) ¯̟ (M)(t))dt.

By combining these two performance index functions, the following expression can be derived:

J = J1 + J2

=

∫ ∞

0

(e(k)Tz (t)e(k)z (t) + ˆ̄f (k+1)T
a (t) ˆ̄f (k+1)

a (t) + ē(M)T
z (t)ē(M)

z (t)− γ2̟(k)T(t)̟(k)(t)

−γ2M ¯̟ (M)T(t) ¯̟ (M)(t))dt

6

∫ ∞

0

(e(k)Tz (t)e(k)z (t) + ˆ̄f (k+1)T
a (t) ˆ̄f (k+1)

a (t) + ē(M)T
z (t)ē(M)

z (t)− γ2̟(k)T(t)̟(k)(t)
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−γ2M ¯̟ (M)T(t) ¯̟ (M)(t) + LV (ε(t)))dt

=

∫ ∞

0

ξT(t)(Γ̌(i,j) + Γ̄(i,j))ξ(t)dt, (31)

where

Γ̄(i,j) , σT
1 Γ̄1,1σ1 +He{σT

1 Γ̄1,3σ3}+ σT
2 Γ̄2,2σ2 +He{σT

2 Γ̄2,4σ4} − σT
3 γ

2Iσ3 − σT
4 γ

2
MIMσ4,

with Γ̄1,1 , ET
(i,j)E(i,j)+He{ΓT

(i,j)P(i,j)Γ(i,j)A(i,j)}, Γ̄1,3 , ΓT
(i,j)P(i,j)Γ(i,j)B(i,j), Γ̄2,2 , (IM⊗E(i,j))

T(IM⊗

E(i,j))+He{O(i,j)(IM ⊗A(i,j))}, and Γ̄2,4 , O(i,j)(IM ⊗B(i,j)). To cope with the affine term, by applying
the S procedure with matrix G(i,j), the following expression can be derived:

ξT(t)Hξ(t) , ξT(t)(σT
1 H̄

T
(i,j)G(i,j)H̄(i,j)σ1 + σT

2 IM ⊗ H̄T
(i,j)G(i,j)H̄(i,j)σ2)ξ(t). (32)

By combining (31) and (32), the following expression can be derived:

J =

∫ ∞

0

ξT(t)(Γ̌(i,j) + Γ̄(i,j) +H)ξ(t)dt. (33)

Notably, Eq. (33) is nonconvex; therefore, a fault reconstruction method is proposed to cope with this
nonconvexity problem as follows:

ψjC(i,j) = −ϕjC(i,j)A(i,j), (34)

ψjC(i,j)2M = −ϕjC(i,j)2M (IM ⊗A(i,j)). (35)

By employing the technique presented in [41], Eqs. (34) and (35) can be transformed, respectively, as
follows:

Trace((ψjC(i,j) + ϕjC(i,j)A(i,j))
T(ψjC(i,j) + ϕjC(i,j)A(i,j))) = 0,

and

Trace((ψjC(i,j)2M + ϕjC(i,j)2M (IM ⊗A(i,j)))
T(ψjC(i,j)2M + ϕjC(i,j)2M (IM ⊗A(i,j)))) = 0.

Then, the expressions

(ψjC(i,j) + ϕjC(i,j)A(i,j))
T(ψjC(i,j) + ϕjC(i,j)A(i,j)) < θ̄i,jI (36)

and

(ψjC(i,j)2M + ϕjC(i,j)2M (IM ⊗A(i,j)))
T(ψjC(i,j)2M + ϕjC(i,j)2M (IM ⊗A(i,j))) < θ̃i,jIM (37)

hold, where both θ̄i,j and θ̃i,j are two small positive scalars. By applying the Schur complement, the
inequalities expressed in (36) and (37) can be converted into the minimization issues expressed in (22)
and (23), respectively. In summary, the following expression can be derived:

J =

∫ ∞

0

ξT(t)Ω(i,j)ξ(t)dt, (38)

where Ω(i,j) can be obtained from (21). According to Definition 1, if Eq. (21) is satisfied, then J < 0 holds,
which indicates that the augmented PWA estimation error system expressed in (5) and the augmented
M -th accelerator system expressed in (20) are asymptotically stable with the guaranteedH∞ performance
indices γ and γM , respectively. The proof is completed.

3.3 First accelerated iterative learning law

Although M -th accelerated iterative learning method can considerably accelerate the convergence rate of
iterative errors, the computational complexity of the iterative learning law will increase as accelerators are
inserted to accelerate continuously. In some cases, the first accelerated iterative learning law expressed
in (15) is only required to satisfactorily achieve the convergence goal. Therefore, a simplified method (or
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Algorithm 2 First accelerated iterative learning law updating algorithm.

Input: The iterative learning gains ψj and ϕj, j ∈ I. The threshold ς.

Step 1: Initialization. Set the iteration index as k = 0. Set (6) as the current iterative learning law.

Step 2: Operate the iterative learning law expressed in (6). Update the iteration index k = k + 1.

Step 3: Check whether Eq. (13) is satisfied. If yes, then update and set first accelerated iterative learning law expressed in (15).

Step 4: Operate the new iterative learning law expressed in (15). Update the iteration index k = k + 1.

Step 5: Check whether ABS( ˆ̄f(k)
a (t) − f̄a(t)) → 0. If yes, then exit and output ˆ̄f(k)

a (t); else, go back to Step 4.

a special case) is developed for the M -th accelerated iterative learning law expressed in (19), i.e., the
iterative learning law is accelerated only once. In accordance with the first accelerated iterative learning
law expressed in (15), the first accelerator system can be constructed as follows:

{

ε̇(1)(t) = A(i,j)ε
(1)(t) + B(i,j)̟

(1)(t),

e
(1)
z (t) = E(i,j)ε

(1)(t), i, j ∈ I.
(39)

Then, based on both the iterative accelerator expressed in (14) and the trigger condition expressed in
(13), the first accelerated iterative learning law updating algorithm can be obtained using Algorithm 2.

Remark 5. Two judgment conditions exist in Algorithm 2, i.e., the trigger condition and the satisfac-
tory estimation condition. The trigger condition is positioned before the satisfactory condition because,
generally, the value of the former exceeds that of the latter, and the response speed of the iterative
learning law is slowed down gradually with the increase in iterations. Thus, the threshold of the trigger
condition is bounded before the satisfactory estimation error is met. In accordance with the first accel-
erated iterative learning law, sufficient conditions for ensuring asymptotic stability with the prescribed
H∞ performance indices are derived for the augmented PWA estimation error system expressed in (5)
and the first accelerator system expressed in (39).

Corollary 1. Given the PWA system expressed in (2) and the iterative learning observer expressed in
(3), if the positive definite symmetric matrix G(i,j), symmetric matrices P(i,j), Q(i,j), and matrices Mj,
ψj , ϕj , i, j ∈ I exist, then the expressions

min θi,j , subject to
[

Λ1 Λ2

∗ Λ3

]

< 0, (40)

[

−θi,jI Ξi,j

∗ −I

]

< 0, (41)

ΓT
(i,j)P(i,j)Γ(i,j) > 0, (42)

ΓT
(i,j)Q(i,j)Γ(i,j) > 0 (43)

hold, i, j ∈ I, where

Λ1 ,









Λ1,1 0 Λ1,3

∗ Λ2,2 0

∗ ∗ −γ2I









, Λ2 ,









0 0 0

0 Λ2,5 0

Λ3,4 Λ3,5 0









, Λ3 ,









−I 0 0

∗ −γ2(1)I(1) Λ5,6

∗ ∗ −I(1)









,

with Λ1,1 , ET
(i,j)E(i,j)+He{ΓT

(i,j)P(i,j)Γ(i,j)A(i,j)}+H̄T
(i,j)G(i,j)H̄(i,j), Λ1,3 , ΓT

(i,j)P(i,j)Γ(i,j)B(i,j), Λ2,2 ,

ET
(i,j)E(i,j) + He{ΓT

(i,j)Q(i,j)Γ(i,j)A(i,j)} + H̄T
(i,j)G(i,j)H̄(i,j), Λ2,5 , ΓT

(i,j)Q(i,j)Γ(i,j)B(i,j), Λ3,4 , (~ +

ϕjC(i,j)B(i,j))
T, Λ3,5 , ~

TϕjC(i,j)B(i,j) + BT
(i,j)C

T
(i,j)MjC(i,j)B(i,j), Λ5,6 , (ϕjC(i,j)B(i,j))

T, and Ξi,j ,

ψjC(i,j) + ϕjC(i,j)A(i,j). Then, the augmented PWA estimation error system expressed in (5) and the
first accelerator system expressed in (39) are asymptotically stable with H∞ performance indices γ, γ(1),
respectively.

Proof. Similar to the proof of Theorem 1, Corollary 1 can also be divided into two cases, i.e., Case I:
i, j ∈ I0; Case II: else. Here, only the most complex Case II is analyzed to save space. First, a class of
region-dependent Lyapunov functions is constructed as follows:

V (ε(t)) = ε(k)T(t)ΓT
(i,j)P(i,j)Γ(i,j)ε

(k)(t) + ε(1)T(t)ΓT
(i,j)Q(i,j)Γ(i,j)ε

(1)(t),
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where Γ(i,j) is given in Theorem 1. Based on the first accelerated iterative learning law expressed in (15),
the augmented term is defined as follows:

ξ(t) , col{ε(k)(t) ε(1)(t) ̟(k)(t) ̟(1)(t)}.

To cope with the nonconvexity issue, similar to the proof of Theorem 1, the fault reconstruction method
can be used, and the following relations are obtained:

ψjC(i,j) = −ϕjC(i,j)A(i,j). (44)

By employing the technique presented in [41], Eq. (44) can be transformed as follows:

Trace((ψjC(i,j) + ϕjC(i,j)A(i,j))
T(ψjC(i,j) + ϕjC(i,j)A(i,j))) = 0.

Then, the following expression can be derived:

(ψjC(i,j) + ϕjC(i,j)A(i,j))
T(ψjC(i,j) + ϕjC(i,j)A(i,j)) < θi,jI, (45)

where θi,j is a small positive scalar. By applying the Schur complement, Eq. (45) can be converted into
the inequality expressed in (41). The rest of the proof follows directly from the proof of Theorem 1,
thereby completing the proof.

4 Illustrative examples

In this section, first, a numerical example is developed to demonstrate the effectiveness and advantage of
the proposed fault reconstruction PWA iterative learning observer design approach and the accelerated
iterative learning strategy. Then, a tunnel diode circuit system is employed to verify the practicability of
the proposed accelerated iterative learning strategy.

Example 1. Given the continuous-time PWA system expressed in (1) with four regions, the system
matrices are expressed as follows:

A1 = ς

[

0 0.37

−0.73 −0.72

]

, A2 = ς

[

0 0.25

−0.73 −1.02

]

, A3 = ς

[

0 0.72

−0.73 −0.88

]

, A4 = ς

[

0 0.17

−0.73 −0.81

]

,

a1 = ς

[

0

0

]

, a2 = ς

[

−0.93

0.56

]

, a3 = ς

[

−0.20

−0.64

]

, a4 = ς

[

0.87

−0.39

]

, Bi =

[

1

1

]

, Ci =
[

1 1
]

, Di =

[

1

−1

]

,

Ei =
[

1 −1
]

,

where i ∈ I, I = {1, 2, 3, 4} with four regions, i.e.,

L1 =









−3 2

2 1

−1 −4









, l1 =









60

30

90









,L2 =
[

3 −2
]

, l2 = −60,L3 =
[

−2 −1
]

, l3 = −30,L4 =
[

1 4
]

, l4 = −90.

From Theorem 1 associated with Algorithm 1, by setting ς = 4, the trajectories of the original system
state and the observer state in different PWA regions are plotted in Figure 2(a), which shows that the two
states are located in two different PWA regions in the initial stage and remain at different PWA regions
in the subsequent operation process, i.e., the original system state passes through PWA regions R1,
R2, and R1 in sequence, whereas the observer state passes through PWA regions R4 and R1 in sequence.
Notably, the original system can be estimated accurately by the designed PWA iterative learning observer,
even under the presence of region mismatch. In addition, the trajectories of actuator faults and the
conventional-based, first-accelerated-based, second-accelerated-based, and third-accelerated-based fault
reconstructions are plotted in Figure 2(b). With the continued operation of the iterative accelerator, the
“iteration bottleneck” of the slow estimation is broken through consecutively, and the estimation of the
actuator fault can be obtained accurately via the PWA iterative learning observer after three consecutive
accelerations.
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Figure 2 (Color online) Trajectories of x(t), x̂(k)(t), and fault reconstructions in Example 1. (a) Trajectories of x(t) and x̂(k)(t)

in different PWA regions; (b) trajectories of multiple acceleration fault reconstructions.

Figure 3 (Color online) Comparison between the conventional iterative learning law (blue) and the first accelerated iterative

learning law (red) for fault reconstruction in Example 1.

Furthermore, from Corollary 1 associated with Algorithm 2, by setting ς = 1, the trajectories of ac-
tuator faults and the conventional-based and first-accelerated-based fault reconstructions are plotted in
Figure 3 under the initial condition fa(0) = 0. Figure 3 shows that, in the first three iterations, the
convergence speed of conventional fault reconstruction slows down gradually. Starting from the fourth it-
eration, the convergence amplitude of the first-accelerated-based fault reconstruction (red) is significantly
higher than that of the conventional-based fault reconstruction (blue), which indicates that the “iteration
bottleneck” can be broken by the first accelerated iterative learning law; hence, the convergence speed
can be improved.

Example 2. Consider the tunnel diode circuit system [42] whose characteristics can be described as
follows:

{

V̇c(t) = C−1(−̺1Vc(t)− ̺2Vc(t)3 + IL(t)),

İL(t) = L−1(−Vc(t)−RIL(t) + ω(t)),
(46)

where Vc(t) is the voltage across the capacitor, IL(t) is the current flowing through the inductor, R
is the resistor, C is the capacitor, L is the inductor, ω(t) is the disturbance, and ̺1 and ̺2 are the
scalars. By approximating (46) using the PWA system model expressed in (1) with three regions, i.e.,
R1 , {Vc(t) | −4 6 Vc(t) < −1}, R2 , {Vc(t) | −1 6 Vc(t) 6 1}, and R3 , {Vc(t) | 1 < Vc(t) 6 4},
and by defining x(t) = col{Vc(t) IL(t)}, R = 5Ω, C = 0.05F, L = 0.2H, ̺1 = 0.002, and ̺2 = 0.01, the
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Figure 4 (Color online) Trajectories of fault reconstructions and comparison results in Example 2. (a) Trajectories of multiple

acceleration fault reconstructions; (b) comparison between the conventional iterative learning law (blue) and the first accelerated

iterative learning law (red) for fault reconstruction; (c) comparison between the conventional iterative learning law (blue) and the

first accelerated iterative learning law (red) for the state estimation x1; (d) comparison between the conventional iterative learning

law (blue) and the first accelerated iterative learning law (red) for the state estimation x2.

system matrices are expressed as follows:

A1 = A3 =

[

−3.64 20

−5 −25

]

, A2 =

[

−0.04 20

−5 −25

]

, a1 =

[

−5.4

0

]

, a2 =

[

0

0

]

, a3 =

[

5.4

0

]

,

Bi =

[

9

9

]

, Ci =
[

1 1
]

, Di =

[

0

5

]

, Ei =
[

1 0
]

,

where i ∈ I, I = {1, 2, 3}. From Theorem 1 associated with Algorithm 1, by employing the PWA iterative
learning observer, the trajectories of actuator faults and the conventional-based, first-accelerated-based,
and second-accelerated-based fault reconstructions are plotted in Figure 4(a). With the continued op-
eration of the iterative accelerator, the estimation of the actuator fault can be obtained accurately via
the PWA iterative learning observer after two consecutive accelerations. Moreover, from Corollary 1
associated with Algorithm 2, the trajectories of actuator faults, the system states, and their estimations
are plotted in Figures 4(b)–(d), respectively. Figures 4(b)–(d) show that the convergence rates of the
iterative estimation of both system state and system faults are improved significantly, and the first accel-
erated iterative learning law (red) can produce accurate estimation results faster than the conventional
iterative learning law (blue).

5 Conclusion

This study investigated the fault reconstruction problem for a class of continuous-time PWA systems
with actuator faults. First, a novel accelerated iterative learning law, which contains an iterative accel-
erator and a triggering condition, has been designed to resolve the issue of the “iteration bottleneck”
existing in the conventional iterative learning law. Second, a novel learning law updating algorithm has
been developed to describe the iterative procedure of augmented PWA estimation error systems against
the region mismatch problem. Then, based on the designed fault reconstruction PWA iterative learning
strategy, sufficient conditions for ensuring asymptotic stability with guaranteed H∞ performance have



Xu N, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112203:15

been established for the augmented PWA estimation error system. Finally, the effectiveness and superi-
ority of both the proposed accelerated iterative learning law and the learning law updating algorithms
have been assessed using two examples, including a case study of a tunnel diode circuit system.
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