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Abstract This paper delves into the analysis of a category of highly nonlinear hybrid stochastic systems with non-differentiable time

delays, which has caught the attention of scholars in recent years due to its relevance to real-world applications. As an essential step

in studying stochastic systems, a generalized Hasminskii-type theorem is initially formulated for the existence and uniqueness of the

global solution. The central focus lies on addressing the crucial issue of stability in distribution. To this end, the paper presents several

significant lemmas to examine the stability in distribution of this system and proposes some sufficient conditions. An example is provided

to validate the accuracy and validity of the theoretical results.
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1 Introduction

Stochastic differential equations (SDEs) with Markov switching, also called hybrid SDEs (HSDEs), represent a class
of dynamic models that capture abrupt changes in system structure and parameters, reflecting real-world phenomena
encountered in diverse scientific and engineering domains [1–5]. These equations elegantly accommodate sudden
shifts induced by environmental fluctuations, component malfunctions, data irregularities, and other stochastic
influences. In numerous practical applications, ranging from biological systems to financial markets, scholars have
increasingly focused on elucidating the behavior and properties of such systems.

Amidst this scholarly attention, the study of stability emerges as a pivotal pursuit, offering insights into the
resilience and long-term dynamics of hybrid stochastic systems. Typically, analysis on stability revolves around the
study of the trivial solution (equilibrium state) in terms of almost sure stability, moment stability and stability in
probability [6–10]. Nonetheless, in many practical scenarios, the notion of stability as conventionally understood
may prove too restrictive, especially considering the absence of deterministic steady states in numerous stochastic
systems encountered in engineering and other fields. For instance, systems like multiple target tracking setups,
fault-tolerant control systems, and flexible manufacturing systems often lack equilibrium states altogether, rendering
discussions on trivial solution stability moot [11–13]. In such contexts, traditional notions of stability, focused on
trivial solutions and deterministic equilibrium states, often fall short. Instead, there arises a need to assess whether
the system’s solution converges in distribution, a concept known as stability in distribution.

The exploration of stability in distribution extends beyond pure theoretical inquiry, bearing practical relevance.
For instance, when studying population systems experiencing environmental fluctuations, the emphasis lies on
identifying conditions under which the population can persist stochastically rather than face extinction. Hence, this
research proves beneficial by shedding light on essential survival dynamics within ecological frameworks. The concept
of stability in distribution, unlike conventional stability analysis of trivial solutions, poses a formidable challenge
[14–17]. In order to address the challenges posed by stability in distribution, it is imperative to employ a number
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of sophisticated methods, including conditional expectation properties, indicator functions, probability measures,
Cauchy sequence convergence, Chebyshev’s inequality, as well as other related skills. Some preliminary results have
been achieved through the efforts of researchers. For instance, the semi-linear HSDEs were investigated in [18], while
HSDEs were explored in [14], and hybrid stochastic differential delay equations (HSDDEs) were examined in [15],
marking significant contributions to the field. Subsequently, in 2014, the methodological improvements were made
in [16] to the work of [15]. Notably, in 2019, contributions were made in [17] to the study of stochastic functional
differential equations. However, it is important to note that these studies have largely overlooked scenarios where
the drift and diffusion coefficients exhibit a highly nonlinear nature or where the delay functions within the system
are non-differentiable. These complexities introduce additional challenges that warrant thorough investigation.
Hence, in the following discussion, we will delve into a detailed exposition of these aspects.

On one hand, the adherence of diffusion and drift coefficients to linear growth conditions is often a prevailing
assumption in the study of hybrid systems. However, many practical systems need to be accurately characterised
by highly nonlinear HSDDEs, such as those found in financial and economic systems, population dynamics, and
stochastic oscillators [19–21]. Consequently, extensive research has been devoted to studying the stability of HSDDEs
with highly nonlinear coefficients in recent years [6, 7, 22–24]. However, there is a scarcity of research outcomes
regarding the distributional stability of highly nonlinear systems.

On the other hand, regarding non-differentiable delay functions, delays are indispensable in real-world scenarios
and often lead to adverse effects such as oscillations and instability within systems. Hence, investigating hybrid
hyperdynamic equations with delays, namely HSDDEs, holds significant importance. However, many of the existing
results share the common restriction that δ(t) is assumed to be differentiable and dδ(t)/dt < 1, like in [6,24]. This
constraint is typically imposed due to the mathematical techniques employed, such as the method of time scaling.
Yet, it may not reflect a realistic feature of HSDDE models. For instance, sawtooth delays or piecewise constant
delays, often encountered in network-based control or sampled-data control, where the delay is frequently termed
fast-varying delay, without the restriction on the delay derivatives. Also, data are usually buffered and sent through
a network in packets traveling independently from each other, and the delay changes abruptly when processing
proceeds from a packet to the subsequent one [10, 25]. A straightforward example is, for instance, the piecewise
constant function, as follows:

δ(t) =

∞
∑

m=0

KmI[tm,tm+1)(t),

where h1 6 Km 6 h. However, even such a straightforward function lacks differentiability. This clearly indicates
the necessity of a weaker condition to substitute the differentiability assumption of δ(t) in the study of HSDDEs.
Therefore, this paper conducts research on stochastic systems with non-differentiable delay functions.

In summary, our contributions are mainly focused on the following.

(1) An in-depth investigation into the stability in distribution of a category of highly nonlinear HSDDEs with
non-differentiable time delays has been conducted, with sufficient criteria provided. New ideas and methods are
offered for the study of many stochastic systems without deterministic steady states.

(2) The drift and diffusion coefficients of the systems under study exhibit highly nonlinear characteristics. The
introduction of such highly nonlinear conditions weakens the reliance on linear growth conditions, greatly expanding
the applicability range of the theorems. This innovation enables the coverage of a broader spectrum of practical
systems and provides a more accurate description of their dynamic behaviors.

(3) The impact of delay on system dynamics has been considered. In practical applications, time delay is inevitable
and crucially affects the speed of system response, accuracy of reaching targets, and timeliness of information
transmission. However, existing literature often imposes conditions on the delay function being differentiable and
its derivative being less than 1, which may not necessarily align with the characteristics of real systems. Thus, a
class of HSDDEs with non-differentiable delays has been investigated, capturing the characteristics of real-world
systems more accurately.

(4) An optimization of the sufficiency criterion has been performed, reducing the restrictions on the assumption
conditions while maintaining applicability to a more generalized range of systems. This innovation enhances the
practicality and universality of our research findings, providing more effective tools and methods for the analysis
and application of real-world systems.
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2 Preliminaries

Consider (Ω,F , {Ft}t>0, P ) to be a complete probability space with a filtration {Ft}t>0 that satisfies the usual
conditions, and B(t) = (B1(t), . . . , Bm(t))T an m-dimensional Brownian motion. Let Rn be the n-dimensional
Euclidean space, R+ = [0,∞). Let C(Rn;R+) denote the family of all continuous functions fromRn to R+. Let h > 0
and C([−h, 0];Rn) denote the family of continuous functions ζ : [−h, 0] → Rn with norm ‖ζ‖ = sup−h6u60 |ζ(u)|.
For t > 0, if x(t) is an Rn-value stochastic process, define xt = xt(s) := {x(t+ s) : −h 6 s 6 0}. For real numbers
p and q are real numbers, then p ∧ q = min{p, q} and p ∨ q = max{p, q}. If A is a matrix, the trace norm is
given by |A| =

√

trace(ATA). The indicator function IA for a subset A of Ω is defined such that IA(ω) = 1 if
ω ∈ A and 0 otherwise. Consider r(t), t > 0, a right-continuous Markov chain with values in a finite state space
S = {1, 2, . . . , N} and a generator Q = (γij)N×N , where γij > 0 is the transition rate from i to j if i 6= j while
γii = −

∑

j 6=i γij . Let us assume that almost all of the sampled paths of r(t) are right continuous.

Consider C2(Rn × S;R+) the set of nonnegative functions V (x, i) defined on Rn × S that are twice continuously
differentiable in x. With respect to each V ∈ C2(Rn × S;R+), it is useful to define

LV (x, y, i) =

n
∑

j=1

γijV (x, j) + Vx(x, i)f(x, y, i) +
1

2
trace

{

gT(x, y, i)Vxx(x, i)g(x, y, i)
}

and

LV (x1, x2, x̄1, x̄2, i) =

n
∑

j=1

γijV (x1 − x2, j) + Vx(x1 − x2, i) (f(x1, x̄1, i)− f(x2, x̄2, i))

+
1

2
trace

[(

gT(x1, x̄1, i)− gT(x2, x̄2, i)
)

Vxx(x− y, i) (g(x1, x̄1, i)− g(x2, x̄2, i))
]

,

where

Vx(x, i) =

(

∂V

∂x1
, . . . ,

∂V

∂xn

)

, Vxx(x, i) =

(

∂2V

∂xi∂xj

)

n×n

.

Consider a highly nonlinear HSDDE of the form

dX(t) = f(X(t), X(t− δ(t)), r(t))dt + g(X(t), X(t− δ(t)), r(t))dB(t), (1)

on t > 0 with the initial value

{X(t) : t ∈ [−h, 0]} = ξ(t) ∈ C([−h, 0];Rn);

r(0) = i ∈ S, (2)

where f : Rn × Rn × S → Rn, g : Rn × Rn × S → Rn×m are Borel measurable functions, and h > 0 represents the
upper bound boundary of the delay.

As previously stated, the non-differentiable nature of the time delay involved in the system is a key feature of
our work. We will now explicitly state this as an assumption.

Assumption 1 (see [22]). The time-varying delay δ : R+ → [h1, h] is a Borel measurable function and meets

h̄ := lim sup△→0+

(

sups>−h
π(Ms,△)

△

)

< ∞, where 0 < h1 < h, Ms,△ = {t > 0 : s 6 t − δ(t) < s + △} and π(·)

represents the Lebesgue measure.

It is important to note that the aforementioned assumption is less stringent than the conventional requirement
for δ(t) to be differentiable, with dδ(t)/dt < 1. Furthermore, numerous delay functions in practical scenarios do
not fail to fulfill Assumption 1. Additionally, under the aforementioned assumption, it can be shown that h̄ > 1.
Consequently, the subsequent lemma can be derived. For further details, please refer to [22, 23].

Lemma 1 (see [22]). Allow Assumption 1 to be satisfied. Consider H > 0 and continuous function φ : [−h,H −
h1] → R+. It yields

∫ H

0

φ(t− δ(t))dt 6 h̄

∫ H−h1

−h

φ(t)dt.

The transition probability of the time-homogeneous Markov process, denoted by p(t, ξ, i; dζ × {j}), is defined as
the probability of transitioning from state i at time t to state j at time t+△t, given that the process is in state ξ
at time t. For convenience, the concept of stability in a distribution is introduced.
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Definition 1 (see [15]). The system (1) is called stable in distribution if there is a probability measure µ(·× ·) on
C([−h, 0];Rn)×S such that the transition probability p(t, ξ, i; dζ×{j}) of (Xt, r(t)) converges weakly to µ(dζ×{j})
as t → ∞ for every (ξ, i) ∈ C([−h, 0];Rn)× S.

Clearly, the stability of the distribution of (Xt, r(t)) implies that there is a unique invariant probability measure
for (Xt, r(t)).

3 Stability in distribution

There are several sufficient conditions for the existence and uniqueness of the global solution to system (1), in this
section, and then we will introduce some key lemmas and provide a proof of the stability in distribution of system
(1). To streamline and clarify the paper’s content, we introduce some special symbols along with their corresponding
descriptions. To underscore the significance of initial value (2), Markov chain begins with i at time 0 as ri(t) and
solution X(t) is defined as Xξ,i(t). Define C ⊂ C([−h, 0];Rn) to be any compact set.

In order to assess the existence and uniqueness of this solution, these next assumptions must be given.

Assumption 2. For any constant l > 0, there exist constants ω1,l and ω2,l such that for any x, x̂, y, ŷ ∈ R
n with

|x| ∨ |x̂| ∨ |y| ∨ |ŷ| 6 l,

|f(x, y, i)− f(x̂, ŷ, i)| 6 ω1,l(|x − x̂|+ |y − ŷ|),

|g(x, y, i)− g(x̂, ŷ, i)| 6 ω2,l(|x − x̂|+ |y − ŷ|)

hold, with i ∈ S.

Assumption 3. There are three nonnegative constants c1, c2 and c3 and functions V ∈ C2(Rn × S;R+), U1,
U2 ∈ C(Rn;R+), such that for all (x, y, i) ∈ Rn × Rn × S,

lim
|x|→∞

U1(x) = ∞, U1(x) 6 V (x, i), LV (x, y, i) 6 c1 − c2U2(x) + c3U2(y).

It is worth noting that here we do not require the condition c2 > c3h̄.

Theorem 1. Under Assumptions 1–3, the conclusion below can be obtained.
(i) With the initial value (2), system (1) has a unique global solution Xξ,i(t) for t ∈ [−h,∞).
(ii) There are K = K(C) and K̄ = K̄(C) such that for all T > 0, (ξ, i) ∈ C × S,

sup
06t6T

EU1

(

Xξ,i(t)
)

6 K < ∞, E

∫ T

0

U2

(

Xξ,i(t)
)

dt 6 K̄ < ∞.

Proof. Given that the coefficients of the HSDDEs (1) are locally Lipschitz continuous, there exists a unique
maximal local solution Xξ,i(t) for any given initial data (2) over t ∈ [−h, e∞), where e∞ denotes the explosion
time (refer to [1]). To each integer k > ‖ξ‖, the stopping time is defined as τk = inf

{

0 6 t < e∞ :
∣

∣Xξ,i(t)
∣

∣ > k
}

,
where inf ∅ = ∞ (with ∅ denoting the empty set). It is evident that τk increases as k approaches infinity. We set
τ∞ = limk→∞ τk, leading to τ∞ 6 e∞ almost surely. Demonstrating τ∞ = ∞ almost surely implies e∞ = ∞ almost
surely and validatesassertion (i). Subsequently, we will establish that τ∞ = ∞ almost surely.

When restricting t to [0, h1] and observing −h 6 t − δ(t) 6 0, it is evident that Xξ,i(t − δ(t)) = ξ(t − δ(t)).
Utilizing the generalized Itô formula (refer to [1]) and Assumption 3, it is able to demonstrate that, for any k > ‖ξ‖,

EU1

(

Xξ,i(t ∧ τk)
)

− V (ξ(0), i) 6 E

∫ t∧τk

0

c1 − c2U2

(

Xξ,i(s)
)

+ c3U2

(

Xξ,i(s− δ(s))
)

ds. (3)

This implies EU1

(

Xξ,i(t ∧ τk)
)

+c2E
∫ t∧τk
0

U2

(

Xξ,i(s)
)

ds 6 K1, whereK1 = V (ξ(0), i)+c1h1+c3E
∫ h1

0
U2(X

ξ,i(s−
δ(s)))ds > 0. The rest of the proof procedure is very similar to that in [22, 23], and is omitted here for reasons of
space.

Remark 1. It is crucial to emphasize that we do not require c2 > c3h̄, a significant departure from many existing
papers, such as [9, 24]. Therefore, Theorem 1 encompasses a much broader class of HSDDEs.

In the theorem just demonstrated above, both the generalized Hasminskii-type theorem concerning the existence
and uniqueness of the solution for system (1) is developed, and a valuable assertion (2) regarding the solutions of
U1 and U2 is gained. In practical applications, however, the following assumption is often easier to satisfy compared
to Assumption 3, as it eliminates the requirement to determine the functions U1 and U2.
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Assumption 4. For x, y ∈ R
n, i ∈ S, there exist constants p, q with p > 2, q > 2 and ai > 0 (1 6 i 6 3) such

that

xTf(x, y, i) +
q − 1

2
|g(x, y, i)|2 6 a1(|x|

2 + |y|2)− a2|x|
p + a3|y|

p.

Making V (x, i) = |x|q as well as applying Assumption 4, it is easy to demonstrate that

LV (x, y, i) 6 q|x|q−2
(

a1(|x|
2 + |y|2)− a2|x|

p + a3|y|
p
)

6 a1q|x|
q + a1q|x|

q−2|y|2 − a2q|x|
p+q−2 + a3q|x|

q−2|y|p.

Based on Young’s inequality, it can be further proven that

a1|x|
q
6

a2
4
|x|p+q−2 + ā1,

a1|x|
q−2|y|2 6

a2
4
|x|q + ā2|y|

q
6

a2
4

(

1 + |x|p+q−2
)

+ ā2
(

1 + |y|p+q−2
)

,

a3|x|
q−2|y|p 6

a2
4
|x|p+q−2 + ā3|y|

p+q−2,

where

ā1 =
q

p+ q − 2
a

p+q−2

q

1

(

4(p− 2)

a2(p+ q − 2)

)

p−2

p+q−2

,

ā2 =
2

q
a

q
2

1

(

4(q − 2)

a2q

)

q−2

q

,

ā3 =
p

p+ q − 2
a

p+q−2

p

3

(

4(q − 2)

a2(p+ q − 2)

)

q−2

p+q−2

.

Hence,

LV (x, y, i) 6 Φ−
a2q

4
|x|p+q−2 + (ā2 + ā3)q|y|

p+q−2,

where Φ =
(

a2

4 + ā2 + ā2
)

q < ∞. At this point, let U1(x) = |x|q and U2(x) = |x|p+q−2. Clearly, Assumption 3
holds. Then the next corollary logically follows from Theorem 1.

Corollary 1. Under Assumptions 1, 2, 4, system (1) with the initial value (2) has a unique global solution Xξ,i(t)
on [−h,∞), and for all t > 0, (ξ, i) ∈ C × S,

E
∣

∣Xξ,i(t)
∣

∣

q
< ∞, E

∫ t

0

∣

∣Xξ,i(s)
∣

∣

p+q−2
ds < ∞.

Moving forward, we will now delve into several lemmas crucial for establishing stability in distribution.

Lemma 2. Suppose that all conditions of Theorem 1 hold (i.e., satisfying Assumptions 1–3). Then for any H > 0,
ε > 0, t ∈ R+ and (ξ, i) ∈ C × S, there exists a positive integer R = R(C, H, ε) such that

P
{

‖Xξ,i
s ‖ < R, ∀s ∈ [t; t+H ]

}

> 1− ε.

Proof. For any (ξ, i) ∈ C × S and k > ‖ξ‖, define τ tk = inf
{

s > t : ‖Xξ,i
s (t)‖ > k

}

. Analogous to Step 1 during
the proof process of Theorem 1, we consider the interval [t, (t+H) ∧ τ tk] for t ∈ [0,m1h1], where m1 is any positive
integer. Then according to (3), it yields

EV
(

Xξ,i((t+H) ∧ τ tk), r
i((t+H) ∧ τ tk)

)

6 EV
(

Xξ,i(t), ri(t)
)

+ c1H + c3E

∫ (t+H)∧τ t
k

t

U2

(

Xξ,i(s− δ(s))
)

ds. (4)

Since H > 0, it is surely possible to find a positive integer m2 such that (m2 − 1)h1 < H 6 m2h1. Again, still
based on Lemma 1, the following derivation can be obtained:

E

∫ (t+H)∧τ t
k

t

U2

(

Xξ,i(s− δ(s))
)

ds 6 h̄E

∫ (t+H)∧τ t
k−h1

t−h

U2

(

Xξ,i(s)
)

ds
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6 h̄E

∫ (m1+m2−1)h1

−h

U2

(

Xξ,i(s)
)

ds

6 h̄

∫ 0

−h

U2(ξ(s))ds + h̄E

∫ (m1+m2−1)h1

0

U2

(

Xξ,i(s)
)

ds.

Combined with the above equation and assertion (2) in Theorem 1, Eq. (4) can be further estimated as

EV
(

Xξ,i((t+H) ∧ τ tk), r
i((t+H) ∧ τ tk)

)

6 K + c1H + c3h̄K̄ + c3h̄

∫ 0

−h

U2(ξ(s))ds := H̄ < ∞. (5)

It is recalled lim|x|→∞ V (x, i) = ∞. Therefore, one can define R = R(C, H, ε) such that

inf
|y|>R,j∈S

V (y, j) >
1

ε
H̄. (6)

Applying (5) and (6), it yields

(

inf
|y|>R,j∈S

V (y, j)

)

· P
{

τ tk < t+H
}

6 EV
(

Xξ,i((t+H) ∧ τ tk), r
i((t+H) ∧ τ tk)

)

I{τ t
k
<t+H}

6 EV
(

Xξ,i((t+H) ∧ τ tk), r
i((t+H) ∧ τ tk)

)

6 H̄.

This means that P {τ tk < t+H} 6 ε.

Lemma 3. Under Assumptions 1–3, the family of transition probabilities {p(t, ξ, i; dζ × {j}) : t > 0} is tight, for
ξ ∈ C, i ∈ ×S.

Proof. First, we show that for any ε1, ε2 > 0 and (ξ, t, i) ∈ C ×R+ ×S, there exists ~ = ~(ε1, ε2, C) > 0 such that

P











sup
t−h6t1<t26t

t2−t16~

∣

∣Xξ,i(t2)−Xξ,i(t1)
∣

∣ > ε1











6 ε2. (7)

By Lemma 2, there exists R1 = R1(C, h,
ε2
2 ) such that the following statement holds:

P

{

sup
t6s6t+h

‖Xξ,i
s ‖ 6 R1

}

> 1−
ε2
2
.

It is also assumed that ‖ξ‖ 6 R1 for all ξ ∈ C. For i ∈ S, let R2 = sup|x|∨|y|6R1
{|f(x, y, i)|, |g(x, y, i)|}. For each

s ∈ R+, define σs = inf
{

u > s : ‖Xξ,i
u ‖ > R1

}

. Let h0 ∈ [0, h]. By the Burkholder-Davis-Gundy inequality (see [1]),
for any t1 ∈ [t, t+ h− h0],

E

(

sup
t2∈[t1,t1+h0]

∣

∣Xξ,i(σt1 ∧ t2)−Xξ,i(t1)
∣

∣

4

)

6 8E sup
t2∈[t1,t1+h0]

∣

∣

∣

∣

∫ σt1
∧t2

t1

f(Xξ,i(s), Xξ,i(s− δ(s)), ri(s))ds

∣

∣

∣

∣

4

+ 8E sup
t2∈[t1,t1+h0]

∣

∣

∣

∣

∫ σt1
∧t2

t1

g(Xξ,i(s), Xξ,i(s− δ(s)), ri(s))dB(s)

∣

∣

∣

∣

4

6 8E

(

∫ t1+h0

t1

I{σt1
>s}

∣

∣f(Xξ,i(s), Xξ,i(s− δ(s)), ri(s))
∣

∣ ds

)4

+ 8CpE

(

∫ t1+h0

t1

I{σt1
>s}

∣

∣g(Xξ,i(s), Xξ,i(s− δ(s)), ri(s))
∣

∣

2
ds

)2

6 8R4
2h

4
0 + 8CpR

4
2h

2
0
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6 h2
0

(

8R4
2h

2 + 8CpR
4
2

)

:= h2
0K̃, (8)

where Cp is the coefficient of the Burkholder-Davis-Gundy inequality. Consequently, together with Chebyshev
inequality and (8), one gets

1

h0
P

{

I{σt>t+h} sup
t16t26t1+h0

∣

∣Xξ,i(t2)−Xξ,i(t1)
∣

∣ >
ε1
3

}

6
81

ε41h0
E

(

I{σt>t+h} sup
t16t26t1+h0

∣

∣Xξ,i(σt1 ∧ t2)−Xξ,i(t1)
∣

∣

4
)

6
81

ε41
K̃h0. (9)

Putting h0 =
ε41ε2

162K̃
, it follows from the Corollary on p. 83 of [26] that, for each t ∈ R+,

P











sup
t6t1<t26t+h

t2−t16h0

∣

∣Xξ,i(t2)−Xξ,i(t1)
∣

∣ > ε1











6 P {σt < t+ h}+ P











I{σt>t+h} sup
t6t1<t26t+h

t2−t16h0

∣

∣Xξ,i(t2)−Xξ,i(t1)
∣

∣ > ε1











6 ε2. (10)

Since ξ ∈ C, it follows from Arzelà-Ascoli theorem that there is h′ > 0 satisfying

sup
−h6t1<t260
t2−t16h′

∣

∣Xξ,i(t2)−Xξ,i(t1)
∣

∣ = sup
−h6t1<t260
t2−t16h′

|ξ(t2)− ξ(t1)| 6 ε1. (11)

Letting ~ = h0 ∧ h′ and then Eq. (7) is given by (10) and (11).
Furthermore, one can derive with Lemma 2 that for ε > 0, there is R3 > 0 satisfying

P
{

|Xξ,i(t)| > R3

}

6 ε, (12)

for t ∈ R+.
According to (7) and (12), we can derive from Theorem 7.3 in [26] and {p(t, ξ, i; dζ×S) : (t, ξ, i) ∈ R+×C×S} is

tight. As the transition probabilities of ri(t) are by themselves tight, family {p(t, ξ, i; dζ×{j}) : (t, ξ, i) ∈ R+×C×S}
can be shown to be tight. This completes the proof.

Below, we must thoroughly investigate the discretization aspect concerning the two solutions of the system (1)
that originate from distinct initial values. In order to proceed, it becomes imperative to introduce another pertinent
assumption to ensure a comprehensive analysis.

Assumption 5. There exist functions V ∈ C2(Rn × S;R+), U3 ∈ C(Rn;R+) and c4 ∈ C(Rn × Rn;R+), as well
as a nonnegative constants c5 such that V (·, i), U3(·) vanish only at 0 for i ∈ S, c4(x1, x2) > c5h̄ with x1 − x2 6= 0
and that

LV (x1, x2, x̄1, x̄2, i) 6 −c4(x1, x2)U3(x1 − x2) + c5U3(x̄1 − x̄2).

Lemma 4. Under Assumptions 1, 2, 3, 5, for any ε > 0 and ξ, η ∈ C, there is M = M(ε, C) such that

P
{

‖Xξ,i
t −Xη,i

t ‖ < ε
}

> 1− ε, (13)

for i ∈ S, t > M .

Proof. The proof is presented in two steps.
Step 1. Initially, it is shown that for any ρ, l > 0,

lim
t→∞

P
{

Aρ,l
t

}

= 0 uniformly in ξ, η ∈ C,
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where
Aρ,l

t =
{

ω : ‖Xξ,i
t ‖ ∨ ‖Xη,i

t ‖ 6 l, |Xξ,i(t)−Xη,i(t)| > ρ
}

.

To simplify the notation, let

Uρ,l
3 = min{U3(x− y) : |x| ∨ |y| 6 l, |x− y| > ρ},

cρ,l4 = min{c4(x, y) : |x| ∨ |y| 6 l, |x− y| > ρ} − c5h̄.

By Assumption 5 and generalized Itô formula, it can be demonstrated

EV
(

Xξ,i(t)−Xη,i(t), ri(t)
)

6 V (ξ(0)− η(0), i) + c5h̄

∫ t

−h

U3

(

Xξ,i(s)−Xη,i(s)
)

ds

− E

∫ t

0

c4
(

Xξ,i(s), Xη,i(s)
)

U3

(

Xξ,i(s)−Xη,i(s)
)

ds

= V (ξ(0)− η(0), i) + c5h̄

∫ 0

−h

U3 (ξ(s)− η(s)) ds

− cρ,l4 E

∫ t

0

I{Aρ,l
s }U3

(

Xξ,i(s)−Xη,i(s)
)

ds. (14)

Letting t → ∞, it follows that for any ρ, l > 0,

∫ ∞

0

P
{

Aρ,l
s

}

ds 6
1

Uρ,l
3 cρ,l4

(

V (ξ(0)− η(0), i) + c5h̄

∫ 0

−h

U3 (ξ(s)− η(s)) ds

)

< ∞. (15)

We claim that limt→∞ P
{

Aρ,l
t

}

= 0, for any ρ, l > 0. If not, there exist some ρ0, l0 > 0 so that limt→∞ P
{

Aρ0,l0
t

}

>

0. Then there exist m > 0 and an increasing sequence tn with tn ↑ ∞ satisfying

P
{

Aρ0,l0
tn

}

= P
{

‖Xξ,i
tn

‖ ∨ ‖Xη,i
tn

‖ 6 l0, |Xξ,i(tn)−Xη,i(tn)| > ρ0

}

> m, ∀ n ∈ N. (16)

There exist sufficiently small ~ > 0 for ε1 = ρ0/3, ε2 = m/8 application of (7) such that for ζ = ξ, η ∈ C,

P

{

sup
tn6s6tn+~

∣

∣Xζ,i(s)−Xζ,i(tn)
∣

∣ >
ρ0
3

}

6
m

8
. (17)

From (16) and (17), it follows that for s ∈ [tn, tn + ~],

P
{

∣

∣Xξ,i(s)−Xη,i(s)
∣

∣ >
ρ0
3

}

> m−
m

8
−

m

8
=

3m

4
.

Considering Lemma 3, it can be observed that R4 = R4(C,m) > l0 satisfying P
{

‖Xξ,i
t ‖ 6 R4

}

> 1 − m
4 , for

arbitrary ξ ∈ C and t > 0. One derives that for s ∈ [tn, tn + ~],

P
{

‖Xξ,i
s ‖ ∨ ‖Xη,i

s ‖ 6 R4, |Xξ,i(s)−Xη,i(s)| >
ρ0
3

}

> P
{

|Xξ,i(s)−Xη,i(s)| >
ρ0
3

}

− P
{

‖Xξ,i
s ‖ ∨ ‖Xη,i

s ‖ 6 R4

}C

>
3m

4
− 2

m

4
=

m

4
,

where
{

‖Xξ,i
s ‖ ∨ ‖Xη,i

s ‖ 6 R4

}C
stands for the complement of

{

‖Xξ,i
s ‖ ∨ ‖Xη,i

s ‖ 6 R4

}

. This implies that for all

n ∈ N,
∫ tn+~

tn
P
{

A
ρ0
3
,R4

s

}

ds >
m~

4 . Consequently,
∫∞

0 P
{

A
ρ0
3
,R4

s

}

ds = ∞, which contradicts (15). We therefore

conclude that

lim
t→∞

P
{

Aρ,l
t

}

= 0. (18)
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Immediately, a proof of the consistency of the above ξ, η ∈ C is given, i.e., for any ε, ρ, l > 0, there exists
T ρ,l
ε = T ρ,l

ε (C) > 0 such that for arbitrary ξ, η ∈ C and all t > T ρ,l
ε we have

P
{

‖Xξ,i
t ‖ ∨ ‖Xη,i

t ‖ 6 l, |Xξ,i(t)−Xη,i(t)| > ρ
}

< ε.

Considering Lemma 3, a constant R5 = R5(C, ε) > l can be found such that P
{

‖Xξ,i
t ‖ > R5

}

< ε
6 , for arbitrary

ξ ∈ C. Put V ρ,R5 = min
{

V (x − y, i) : |x| ∨ |y| 6 R5, |x− y| > ρ
}

. Since V (0, i) = U3(0) = 0 and V , U3 are
continuous, for any ε > 0, it is possible to choose ~0 > 0 satisfying for ξ, η ∈ C with ‖ξ − η‖ 6 ~0

V (ξ(0)− η(0), i) + c5h̄

∫ 0

−h

U3 (ξ(s)− η(s)) ds <
ε

6
V ρ,R5 . (19)

Consequently, if ‖ξ − η‖ 6 ~0, according to (14) and (19), it yields

P
{

‖Xξ,i
t ‖ ∨ ‖Xη,i

t ‖ 6 R5, |Xξ,i(t)−Xη,i(t)| > ρ
}

6 P
{

|Xξ,i(t)| ∨ |Xη,i(t)| 6 R5, |Xξ,i(t)−Xη,i(t)| > ρ
}

6
1

V ρ,R5
EV

(

Xξ,i(t)−Xη,i(t), ri(t)
)

6
ε

6
.

Due to the compactness of C, there exist ξi ∈ C, i = 1, 2, . . . , n such that for any ξ ∈ C, ξi can be found such that
‖ξ − ξi‖ 6 ~0. According to (18), there exists T ρ,R5

ε > 0 such that

P
{

‖Xξu,i
t ‖ ∨ ‖Xξv,i

t ‖ 6 R5, |Xξu,i(t) −Xξv,i(t)| >
ρ

3

}

6
ε

6
,

for all 1 6 u, v 6 n and t > T ρ,R5
ε . With respect to ξ, η ∈ C, one can identify ξu, ξv so that ‖ξ − ξu‖ 6 ~0 and

‖η − ξv‖ 6 ~0. Then, for any t > T ρ,R5
ε ,

P
{

‖Xξ,i
t ‖ ∨ ‖Xη,i

t ‖ 6 l, |Xξ,i(t)−Xη,i(t)| > ρ
}

6 P
{

‖Xξ,i
t ‖ ∨ ‖Xη,i

t ‖ 6 R5, |Xξ,i(t)−Xη,i(t)| > ρ
}

6 P
{

‖Xξ,i
t ‖ ∨ ‖Xξu,i

t ‖ 6 R5, |Xξ,i(t)−Xξu,i(t)| >
ρ

3

}

+ P
{

‖Xξu,i
t ‖ ∨ ‖Xξv,i

t ‖ 6 R5, |Xξu,i(t)−Xξv,i(t)| >
ρ

3

}

+ P
{

‖Xξv,i
t ‖ ∨ ‖Xη,i

t ‖ 6 R5, |Xξv ,i(t)−Xη,i(t)| >
ρ

3

}

+ P
{

‖Xξu,i
t ‖ > R5

}

+ P
{

‖Xξv,i
t ‖ > R5

}

< ε,

as desired.
Step 2. Consider any ε > 0. There exist R6 = R6(C, h, ε), according to Lemma 3, so that for any ξ ∈ C and

t ∈ R+,

P
{

‖Xξ,i
s ‖ 6 R6, s ∈ [t, t+ h]

}

> 1−
ε

16
. (20)

Consider τt = inf{s > t : ‖Xξ,i
s ‖∨‖Xη,i

s ‖ > R6}. Then, it yields from (20) that P {τt < t+ h} = P{‖Xξ,i
s ‖∨‖Xη,i

s ‖ >
R6, s ∈ [t, t + h]} 6 ε

8 . Making use of the similar methods of proof as in (9), for any 0 < h0 < h and t 6 s1 6

s1 + h0 6 t+ h, it follows that

1

h0
P

{

I{τt>t+h} sup
s16s26s1+h0

∣

∣Xξ,i(s2)−Xξ,i(s1)
∣

∣ >
ε

3

}

6
81

ε4
K̂h0, (21)

where K̂ is a constant associated with C, R6, and ε.
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Consider m0 ∈ N such that 81
ε4
K̂h0 6

ε
8h with h0 = h

m0
. According to (21), for k = 0, . . . ,m0 − 1, it follows that

P

{

{τt > t+ h} ∩

{

sup
s∈[t+kh0,t+(k+1)h0]

∣

∣Xξ,i(s)−Xξ,i(t+ kh0)
∣

∣ >
ε

3

}}

6
ε

8h
h0.

Hence

P
{

{τt > t+ h} ∩ Cξ,i
t

}

6
ε

8h
h0m0 =

ε

8
,

where

Cξ,i
t =

{

∃k ∈ {0, . . . ,m0 − 1} : sup
s∈[t+kh0,t+(k+1)h0]

∣

∣Xξ,i(s)−Xξ,i(t+ kh0)
∣

∣ >
ε

3

}

.

As a result,

P
{

{τt > t+ h}\Cξ,i
t

}

> 1−
ε

8
−

ε

8
= 1−

ε

4
. (22)

Analogously, it has

P
{

{τt > t+ h}\Cη,i
t

}

> 1−
ε

4
. (23)

Due to the uniform convergence indicated in Step 1, it is possible to find T0 = T0(C, ε) so that for t > T0, it holds
that

m0−1
∑

k=0

P

{

‖Xξ,i
t+kh0

‖ ∨ ‖Xη,i
t+kh0

‖ 6 R6,
∣

∣Xξ,i(t+ kh0)−Xη,i(t+ kh0)
∣

∣ >
ε

3

}

6
ε

4
,

which hints at the fact that P{Dt} 6 ε
4 , where ∃k ∈ {0, . . . ,m0 − 1},

Dt =

{

k : ‖Xξ,i
t+kh0

‖ ∨ ‖Xη,i
t+kh0

‖ 6 R6,
∣

∣Xξ,i(t+ kh0)−Xη,i(t+ kh0)
∣

∣ >
ε

3

}

.

Thus, for t > T0,

P

{

{τt > t+ h}\Dt

}

> 1−
ε

8
−

ε

4
= 1−

3ε

8
. (24)

It is noticed that the event
{

τt > t+ h, sup
t6s6t+h

∣

∣Xξ,i(s)−Xη,i(s)
∣

∣ < ε

}

will necessarily occur, if events {τt > t + h}\Cξ,i
t , {τt > t + h}\Cη,i

t and {τt > t + h}\Dt occur simultaneously.
Together with (22)–(24), it holds that for t > T0,

P

{

τ > t+ h, sup
t6s6t+h

∣

∣Xξ,i(s)−Xη,i(s)
∣

∣ < ε

}

> 1−
7ε

8
. (25)

By the definition of the norm ‖ · ‖, one has

P
{

‖Xξ,i
t+h −Xη,i

t+h‖ < ε
}

> P

{

τt > t+ h, sup
t6s6t+h

∣

∣Xξ,i(s)−Xη,i(s)
∣

∣ < ε

}

. (26)

So, according to (25) and (26), it follows that for all t > T0, P
{

‖Xξ,i
t+h −Xη,i

t+h‖ < ε
}

> 1 − ε. The proof is

completed.
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Let Ch := C([−h, 0];Rn). Let Ph denote the family of probability measures on the measurable space Ch. For
P1, P2 ∈ Ph, define metric dL by

dL(P1, P2) = sup
ϕ∈L

∣

∣

∣

∣

∫

Ch

ϕ(ξ)P1(dξ)−

∫

Ch

ϕ(ξ)P2(dξ)

∣

∣

∣

∣

,

where

L = {ϕ : Ch → R, |ϕ(ξ) − ϕ(η)| 6 ‖ξ − η‖ and |ϕ(ξ)| 6 1 for ξ, η ∈ Ch}.

Lemma 5. Let Assumptions 1, 2, 3, 5 hold. Then,

lim
t→∞

dL(p(t, ξ, i; · × ·), p(t, η, j; · × ·)) = 0,

uniformly in (ξ, η, i, j) ∈ C × C × S × S.

Proof. Consider kij = inf
{

t > 0 : ri(t) = rj(t)
}

. Subsequently, it becomes evident that kij < ∞ almost surely
due to the ergodic property of the Markov chain (refer to [27]). Consequently, there exists T1 > 0, for any ε > 0
and i, j ∈ S such that P {kij 6 T1} > 1− ε

6 .

Let Ωξ,i =
{

ω ∈ Ω : sup−h6t6T1

∣

∣Xξ,i(t, ω)
∣

∣ 6 R′
}

. Combined with Lemma 3, there is a sufficiently large R′ > 0
so that P (Ωξ,i) > 1 − ε

12 . Let us now fix arbitrary ξ, η ∈ C and i, j ∈ S. Define Λ = {kij 6 T1} ∩ Ωξ,i ∩ Ωη,j .
Consider ϕ ∈ L and t > T1,

∣

∣

∣
Eϕ(Xξ,i

t )− Eϕ(Xη,j
t )
∣

∣

∣
6 2P {kij > T1}+ E

(

I{kij6T1}

∣

∣ϕ(Xξ,i
t )− ϕ(Xη,j

t )
∣

∣

)

6
ε

3
+ 2P (Ω− Λ) + E

(

IΛE
∣

∣X ξ̄,λ(t− kij)−X η̄,λ(t− kij)
∣

∣

)

,

where ξ̄ = Xξ,i
kij

, η̄ = Xη,j
kij

and λ = ri(kij) = rj(kij). It is noted that ‖ξ|| ∨ ‖η‖ 6 λ for any ω ∈ Λ, it is possible

to employ Lemma 4 to find that there exists T2 > 0 so that for T1 + T2 6 t, E
∣

∣X ξ̄,λ(t− kij) −X η̄,λ(t − kij)
∣

∣ 6
ε
3 ,

whenever ω ∈ Λ. Then, it is easy to obtain that for t > T1 + T2,
∣

∣

∣
Eϕ(Xξ,i

t )− Eϕ(Xη,j
t )
∣

∣

∣
6 ε. Since ϕ are arbitrary,

we must have supϕ∈L

∣

∣

∣
Eϕ(Xξ,i

t )− Eϕ(Xη,j
t )
∣

∣

∣
6 ε, ∀t > T1 + T2, which is dL(p(t, ξ, i; · × ·), p(t, η, j; · × ·)) 6 ε, for

(ξ, η, i, j) ∈ C × C × S × S.

Lemma 6. Under Assumptions 1, 2, 3, 5, the family {p(t, ξ, i; dζ × {j}) : t > 0} is Cauchy for any ξ ∈ Ch, i ∈ S
with metric dL, in the space Ph.

Proof. Fix ξ ∈ Ch, i ∈ S. Equivalently, it is necessary to prove that, there is T3 > 0 for ε > 0 such that
dL(p(u+ v, ξ, i; · × ·), p(u, ξ, i; · × ·)) 6 ε, for v > 0 and u > T3. This is equivalent to

sup
ϕ∈L

∣

∣

∣
Eϕ(Xξ,i

u+v)− Eϕ(Xξ,i
u )
∣

∣

∣
6 ε. (27)

By Lemma 3, there exists an R0 > 0 so that P{ω ∈ Ω : ‖Xξ,i
v ‖ 6 R0} > 1− ε

4 , ∀v > 0. As a result, for u, v > 0 and
ϕ ∈ L, it yields

∣

∣

∣
Eϕ(Xξ,i

u+v)− Eϕ(Xξ,i
u )
∣

∣

∣
=
∣

∣

∣
E
(

E(ϕ(Xξ,i
u+v) | Fv)

)

− Eϕ(Xξ,i
u )
∣

∣

∣

6
ε

2
+
∑

j∈S

∫

ZR0

∣

∣Eϕ(Xη,j
u )− Eϕ(Xξ,i

u )
∣

∣ p(v, ξ, i; dη × {j}),

where ZR0
= {x ∈ Ch : ‖x‖ 6 R0}. Then by Lemma 5, there is a positive integer T3 such that ∀u > T3,

supϕ∈L

∣

∣Eϕ(Xξ,i
u )− Eϕ(Xη,j

u )
∣

∣ < ε
2 , whenever (ξ, i) ∈ ZR0

× S. We, therefore, obtain for u > T3 and v > 0,
∣

∣

∣
Eϕ(Xξ,i

v+u)− Eϕ(Xξ,i
u )
∣

∣

∣
6 ε. So Eq. (27) we asserted must hold, as it holds for any ϕ ∈ L. Consequently, the

family {p(t, ξ, i; dζ × {j}) : t > 0} is a Cauchy sequence.

With the above lemmas prepared, it is time to describe the main results in this work.

Theorem 2. Under Assumptions 1, 2, 3, 5, system (1) with initial data (2) is stable in distribution.
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Proof. In line with given definition, the objective is to establish the existence of a probability measure µ(·× ·), so
that the transition probability {p(t, ξ, i; · × ·) : t > 0} weakly converges to µ(· × ·) ∈ Ch × S for any (ξ, i) ∈ Ch × S.
Given the well-established understanding that weak convergence of a probability measure is a metric concept (as
detailed in [28]), it is imperative to demonstrate that

lim
t→∞

dL(p(t, ξ, i; · × ·), µ(· × ·)) = 0.

Then by Lemma 6, {p(t, ξ, i; · × ·) : t > 0} is Cauchy with metric dL in the space Ph. Thus there exists a unique
µ(· × ·) ∈ Ch × S such that

lim
t→∞

dL(p(t, 0, 1; · × ·), µ(· × ·)) = 0.

Then for (ξ, i) ∈ Ch × S, it follows from Lemma 5 that

lim
t→∞

dL(p(t, ξ, i; · × ·), µ(· × ·)) 6 lim
t→∞

dL(p(t, ξ, i; · × ·), p(t, 0, 1; · × ·)) + lim
t→∞

dL(p(t, 0, 1; · × ·), µ(· × ·))

= 0,

as required.
In order to derive a practical corollary, we introduce a new assumption that can be more readily verified in

real-world applications compared with Assumption 5.

Assumption 6. There are positive constants p, q, a5 with p > 2 and q > 2 as well as a function a4(·, ·) ∈
C(Rn × Rn;R+) such that a4(x1, x2) > a5h̄ when x1 − x2 6= 0 and

(x1 − x2)
T (f(x1, x̄1, i)− f(x2, x̄2, i)) +

q − 1

2
|g(x1, x̄1, i)− g(x2, x̄2, i)|

2

6 −a4(x1, x2)|x1 − x2|
2 + a5|x̄1 − x̄2|

2,

for all x1, x2, x̄1, x̄2 ∈ Rn and i ∈ S.

Letting V (x, i) = |x|q. The similarity in treatment to that of Assumption 4 is so pronounced that it has been
omitted, leading to the direct presentation of the next corollary about Theorem 2.

Corollary 2. Under Assumptions 1, 2, 4, 6, the system (1) with initial value (2) is stable in distribution.

4 Example

While constraints on page space limit our discussion to one specific example, it is essential to note that the theoretical
findings presented in this paper are thoroughly illustrated.

Consider the scalar HSDDE described by

dX(t) = f(X(t), X(t− δ(t)), r(t))dt + g(X(t), X(t− δ(t)), r(t))dB(t), (28)

on t > 0, with initial value implied but not explicitly stated. Here, f and g represent the coefficients defined as
follows:

f(x, y, 1) = −b11x
3 + b12xy, g(x, y, 1) = b13x cos(y), f(x, y, 2) = −b21x

3 + b22xy, g(x, y, 2) = b23x sin(y),

for x, y ∈ R, where b11, b12 are arbitrary positive numbers, S = {1, 2}. Furthermore, the time delay function δ(t)
is defined as

δ(t) =

∞
∑

m=0

{

(0.15 + 0.2(t− 2m))I[2m,2m+1)(t) + (0.3− 0.2(t− 2m− 1))I[2m+1,2(m+1))(t)
}

.

This equation constitutes a simplified version of the HSDDE food chain model (see [29, 30]). Notably, the time
delay function δ(t) meets Assumption 1 with h1 = 0.1, h = 0.35 and h̄ 6 1/(1 − 0.2) = 1.25. To obtain the
existence and uniqueness result for the solution, let V (x, i) = |x|2. By a simple calculation, it is possible to obtain

LV (x, y, i) = −2bi1|x|4 + 2bi2|x|2|y| + b2i3|x|
2|y|2 6

b2i2
bi1

− bi1
2 |x|4 +

2b2i2+b4i3
2bi1

|y|4. And then it yields LV (x, y, i) 6

β1 − β2|x|4 + β3|y|4, where β1 = max
{

b212
b11

,
b222
b21

}

, β2 = min
{

b11
2 , b21

2

}

, β3 = max
{

2b212+b413
2b11

,
2b222+b423

2b21

}

. It is easy
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Figure 1 (Color online) Distribution of six different time points

t = 0.4 s, t = 1.5 s, t = 6 s, t = 10 s, t = 15 s, t = 20 s.

Figure 2 (Color online) Difference between PDFs.

to note that for U1(x) = |x|2 and U2(x) = |x|4, Assumption 3 is satisfied, which implies that Theorem 1 holds. In
order to employ Theorem 2, for all x1, x2, x̄1, x̄2 ∈ Rn and i ∈ S, consider V (x, i) = |x|2. Based on Assumption 2,

LV (x1, x2, x̄1, x̄2, i) = (x1 − x2)
T (f(x1, x̄1, i)− f(x2, x̄2, i)) + |g(x1, x̄1, i)− g(x2, x̄2, i)|

2

6 (x1 − x2)
Tω1,l (|x1 − x2|+ |x̄1 − x̄2|) + ω2

2,l (|x1 − x2|+ |x̄1 − x̄2|)
2 ,

where x1 = Xξ,i(t), x2 = Xη,i(t), x̄1 = Xξ,i(t− δ(t)), and x̄2 = Xη,i(t− δ(t)). Assuming Xξ,i(t) < Xη,i(t), in other
words, x1 − x2 < 0, which yields LV (x1, x2, x̄1, x̄2, i) 6 −(ω1,l − 2ω2

2,l)|x1 − x2|2 + 2ω2
2,l|x̄1 − x̄2|2. Now, we need to

impose a certain requirement on these parameters to ensure that Assumption 5 is valid, which is ω1,l−2ω2
2,l > 2ω2

2,lh̄,

i.e. ω1,l > 4.5ω2
2,l. Thus by Theorem 2, with any given initial value {X(t) : −h 6 t 6 0} (where h = 0.35) and

r(0) = 1 or 2, system (28) is stable in distribution.
Finally, we verify the results with simulation, using the Euler-Maruyama method to simulate the sample, where

X(0) = 4, r(0) = 1, the time step dt = 10−3 s and sample size of 103. And, simply choose b11 = b21 = 3,
b12 = b13 = b22 = b23 = 2, γ1 = 5 and γ2 = 1. Then, from 103 probability density functions, we pick six time
points t = 0.4 s, t = 1.5 s, t = 6 s, t = 10 s, t = 15 s, t = 20 s and produce the bar graph of X(0.4), X(1.5), X(6),
X(10), X(15), X(20) in Figure 1, respectively. It is clear that the graphs are getting closer. Next, the difference
between probability distribution functions (PDFs) is measured using the Kolmogorov-Smirnov test (K-S test). The
difference between PDFs for the system (28) is shown in Figure 2, where it can be seen that the difference gradually
decreases, which indicates that PDFs at quite distant time points follow the same distribution.

5 Conclusion

The stability in distribution of a class of highly nonlinear HSDDEs has been thoroughly investigated in this study.
One of the major advancements lies in relaxing the requirement for the system’s time delay functions to be differ-
entiable, eliminating the necessity that its derivative is less than 1. Another significant progress is the allowance
for the coefficients of the system to exhibit high nonlinearity, thereby lifting the constraints imposed by classical
linear growth conditions and only necessitating compliance with the generalized Hasminskii-type conditions for
Lyapunov functions. Crucially, a novel theorem concerning the stability in distribution of the system has been
established, providing explicitly the sufficient criterion, which holds substantial value for the study of numerous
practical systems.
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