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Abstract Transformer-based methods have been popular for a variety of visual perception tasks due to their better global modeling

via attention. However, a plain transformer-based architecture is known for lacking inductive biases, which will impede the performance

in multi-task learning (MTL) of dense prediction due to the incapability of capturing task-relevant prior information. To this end, we

propose the task prior attention network (TPANet), which introduces task-relevant prior information into the whole architecture. Our

TPANet consists of three tailored modules: task prior extractor, adaptive task mixing, and cross attention modules. First, the proposed

task prior extractor is applied for introducing task-relevant prior information with inductive biases via convolution for each task, adapting

them to the downstream module simultaneously. Second, for task interaction efficiency, our method relies on the adaptive task mixing

equipped with spatial and channel mixing to capture the task interaction. Third, the proposed cross attention module is leveraged to

query task-specific feature maps with task-relevant prior information via query-based attention. Our method allows compatibility with

different backbones. TPANet (with Swin-L) performance surpasses the previous state-of-the-art by a large margin of +4.6 mIoU on

NYUD-v2 and +0.8 mIoU on PASCAL-Context dataset, demonstrating the potential of our method as a robust MTL model.
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1 Introduction

Humans use all of their visual senses to accomplish different vision tasks in everyday activities. While in practical
scenarios, many AI applications can be designed as multi-task systems to conduct multiple vision tasks simultane-
ously. Thus, multi-task learning (MTL) [1] is an integral part of the computer vision domain. The potential benefit
of the multi-task model compared to the single-task model is an efficient prediction with fewer parameters and less
computational cost. Such success and good properties of MTL frameworks have inspired many following studies
that apply them in various computer vision tasks.

Convolutional neural networks (CNNs) [2] achieve great success in domains such as videos, images and text.
The CNN-based MTL methods improve the domain-specific information for multiple tasks and also enjoy great
improvement in dense prediction such as [3–7]. However, these CNN-based MTL methods tend to focus only on the
local visual information, neglecting the global information. Recently, the transformer-based methods [8–10] show
remarkable success in a wide range of computer vision fields. Therefore, recent advances in MTL of dense prediction
mainly leverage transformers for further enhancing the MTL performance via the self-attention mechanism. The
transformer-based MTL methods [11–14] capture the long-range dependency and global relationships of all tasks
by stacking self-attention blocks. The typical transformer-based MTL models, MulT [11] and MTFormer [15],
develop a self-task attention framework via multi-head self-attention to learn effective feature maps for multiple
task predictions. Adopting Swin Transformer [10] as the backbone to generate multi-scale features, MulT [11]
designs a decoder via a shared attention mechanism for the respective tasks and further improves the performance
of each vision task.

However, a well-known drawback of using a plain transformer for vision tasks is that inductive biases will be
lacking due to the pure-attention architecture [16,17]. In MTL, inductive biases are particularly important because
they can bring task-relevant prior information, which facilitates the extraction of rich task-dependent local features.
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Figure 1 (Color online) Previous transformer-based MTL framework vs. our framework. (a) Previous transformer-based MTL framework (e.g.,

MTFormer) is designed by stacking plain self-attention. (b) We propose a novel method to boost MTL performance by introducing task-relevant

prior information into self-attention. Compared to the previous method, our method designs a non-shared decoder for each task and thus could

provide task-relevant prior information.

In this paper, our aim is to develop a method to introduce the task-relevant prior information with inductive bias
into the plain transformer-based MTL architecture to boost the task performance for MTL of dense prediction.

We illustrate the differences between the previous framework and our framework in Figures 1(a) and (b). We
point out two crucial differences. First, we develop a simple yet efficient task prior extractor module to produce
task-relevant prior information with rich inductive biases for every task in Figure 1(b). Then, the task-relevant prior
information is leveraged in transformer via self-attention. Second, as shown in Figure 1(b), we design a non-shared
decoder for each task. To connect different task decoders, we design an adaptive task mixing module to interact
adaptively among different tasks. The whole architecture is dubbed as TPANet due to the task prior attention
that learns to solve the lack of task-relevant prior information for MTL of dense prediction. Specifically, we design
three made-to-order modules for TPANet, including task prior extractor, adaptive task mixing, and cross attention.
Task prior extractor is proposed to focus on producing task-relevant prior information with inductive bias into
transformer architecture for each individual task. Task-relevant prior information with the introduced inductive
biases can be adopted to promote local visual information for individual tasks. Adaptive task mixing consists of
spatial and channel mixing. Adaptive task mixing is employed to learn adaptive task interactions for all tasks. The
other core module is cross attention, which is adopted to produce task-specific feature maps for task prediction and
further enhance performance. The proposed TPANet model shows a large superiority to the existing models (shown
in Figure 2). The implementation of our method is available at https://github.com/yangyangxu0/TPANet.

The contributions of this work are three-fold.
(1) We propose a novel MTL method, named TPANet, which is effective, efficient and robust by introducing

task-relevant prior information into transformer-based architecture to facilitate task-dependent local information
for MTL of dense prediction.

(2) We design the task prior extractor module to produce task-relevant prior information. Adaptive task mixing is
adopted to perform task interactions. Cross attention is proposed to incorporate the task-relevant prior information
into the task-specific features via a query-based self-attention.

(3) We evaluate the TPANet on two challenging benchmarks, including NYUD-v2 [18] and Pascal-Context [19].
Extensive experiments demonstrate that TPANet achieves state-of-the-art results in a variety of metrics. We also
perform ablations to investigate how it benefits from different modules.

2 Related work

2.1 Multi-task learning of dense prediction

The MTL method for dense prediction is proposed to train a single deep neural network to simultaneously perform
semantic segmentation, depth estimation and object detection tasks. The MTL approaches [7, 13] can precisely
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Figure 2 (Color online) Performance comparison between the proposed TPANet and existing MTL models. Segmentation accuracies on

NYUD-v2.

capture relationships among different types of data and then are naturally well-suited for dealing with multiple visual
tasks simultaneously in dense prediction. The potential benefits of the multi-task model compared to the single-
task model are efficient prediction, fewer parameters and less computational cost. The MTL approaches [20–24]
directly use the shared representation to perform all dense predictions simultaneously. However, these methods
fail to conduct the task interactions and thus fail to capture complementary information among tasks. Follow-up
papers have improved how to perform the task interaction in MTL of dense prediction. Refs. [13–15,25–30] aimed
to use the interaction information between tasks to promote performance. The proposed [30] method develops
an MTL model, which is used for mining and leveraging the latent interaction cues by leveraging the powerful
transformer. More recently, a transformer-based method in [13] proposes cross-task reasoning via a task-relevant
query self-attention [31] for boosting the MTL. Similarly, MTFormer [15] presents that information from different
task domains can benefit each other, and they conduct cross-task reasoning via shared self-attention among the
tasks. Although the transformer-based frameworks have achieved the best performance in the multiple computer
vision domains compared to CNN-based frameworks, existing transformer-based MTL frameworks employ stacked
self-attention while have not explored the effectiveness of self-attention with inductive biases in the MTL domain.

2.2 CNNs and transformers

The inductive biases are hard-coded into the architecture of CNNs [2] in the form of strong constraints on the
locality and weight sharing [32]. Ref. [33] designed a prior learning module to learn the pixel’s difficulty prior to guild
adaptive segmentation. Vision transformer [8] is the first method that applies plain self-attention to vision tasks and
achieves better performance. Then, the transformer-based methods are applied to multiple vision tasks, including
classification [8, 10, 17], object detection [9, 34], and semantic segmentation [35–37]. To jointly model global and
local information, the methods [38–46] employ the parallel individual convolution and transformer branches, while
inductive biases from convolutions are introduced into transformers [47]. For example, Mobile-Former [39] leverages
the advantages of convolution at local processing and transformer at global interaction. Specifically, the transformer
in Mobile-Former employs fewer patch tokens that are randomly initialized to learn global information. While
48vitaev2 [48], 49MGSNet [49], and 50SOT-Net [50] adopt multi-stage guidance for task-specific representation
learning, our method emphasizes inductive bias injection via task-prior extractors and attention. Besides, whether
inductive bias can still help transformer-based MTL models achieve better performance remains unexplored. This
paper introduces such an inductive bias to the transformer-based MTL model by utilizing multiple convolutions
in the task prior extractor to encode task-relevant prior information with the convolutional inductive bias into the
task-specific feature. Experimental results confirm that introducing task-relevant prior information with inductive
biases can reach higher performance in MTL of dense prediction.
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Figure 3 (Color online) Illustration of the multi-task baseline with Swin Transformer that performs dense predictions. In our framework, the

backbone can support CNNs-based and transformer-based models. The original input image feature is H × W × 3, where the H, W , and 3 are

the height, width, and image channel, respectively. C denotes the channel. The multi-task model performs semantic segmentation (‘SemSeg’),

saliency estimation (‘Sal’) and boundary detection (‘Bound’) tasks.

3 Approach

3.1 Overall architecture

As shown in Figure 3, we describe the multi-task baseline model. The framework of our TPANet is summarized
in Figure 4. In the following, we first show the multi-task and single-task baselines in Subsection 3.2. Then we
introduce how we capture the task-relevant prior information with inductive biases and their respective character-
istics (Subsection 3.3, Figure 4(a)). Then, we introduce our spatial mixing and channel mixing in the adaptive
task mixing module for adaptive task interaction (Subsection 3.4, Figure 4(b)). Further, we show a cross attention
module for querying task-specific features (Subsection 3.5, Figure 4(c)). Finally, we show the loss functions of the
all tasks (Subsection 3.6).

3.2 Multi-task and single-task baselines

Our TPANet model is compatible with both CNN-based backbones and transformer-based backbones. We extract
the features of each stage from the CNN or transformer backbones, as shown in Figure 3.

First, for the multi-task baseline method, the input image ximg ∈ R
H×W×3 is first fed into the backbone (swin

or HRNet), where the image is processed through four stages. We carefully collect the output of each stage of the
backbone. Second, the stage 2, stage 3 and stage 4 feature maps are up-sampled to match the resolution of the
stage 1 output feature (R

H
4
×W

4
×C) via bilinear interpolation. Thus, after up-sampling, the stage 2, 3, and 4 output

feature map is up-sampled to R
H
4
×W

4
×2C , R

H
4
×W

4
×4C and R

H
4
×W

4
×8C , respectively. Finally, we concatenate the

four stage outputs along with the channel dimension to obtain a feature map x ∈ R
H
4
×W

4
×15C , where H , W , and

C are the height, width, and channel of the image feature, respectively. In this way, we aggregate the multi-scale
feature maps from the backbone as a shared feature map (x ∈ R

H
4
×W

4
×15C). The image feature from the backbone

is then used by the task-specific heads to perform the dense predictions for every task. Single-task baseline also
employ the shared feature map (x ∈ R

H
4
×W

4
×15C). Unlike the multi-task baseline, the single-task baseline trains

an individual model for each task. Therefore, when a single-task model is used for multiple vision tasks, multiple
models need to be trained, and more training time is spent. The potential benefit of the multi-task model compared
to the single-task model is an efficient prediction with fewer parameters and less computational cost. However, on
some tasks, the single-task model performs better than the multi-task model.

We use the baseline and proposed modules for our TPANet multi-task method. Our TPANet contains three
tailored designs, including (a) a task prior extractor module for providing task-relevant prior information from the
convolution, (b) an adaptive task mixing module for conducting task interaction, and (c) a cross attention module
for querying the task-specific feature map with task-relevant information. Finally, we obtain multiple feature maps
according to the task number, which can be used to conduct dense prediction tasks.
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Figure 4 (Color online) Illustration of the TPANet framework. Our TPANet consists of three key designs: (a) task prior extractor,

(b) adaptive task mixing, and (c) cross attention. We first process an image by backbone to generate feature maps. (a) Task prior extractor

provides task-relevant prior information from the convolution. The outputs of the task prior extractor are concatenated along the channel

dimension before passing them through (b) adaptive task mixing. We adapt the adaptive task mixing via spatial and channel mixing for task

interaction. Cross attention (c) generates a task-specific feature map F̂ ′ corresponding to a specific task, which is then fed into the task-specific

head to complete the final prediction.

3.3 Task prior extractor module

We design the task prior extractor to produce the task-relevant prior information with inductive bias from convo-
lution. In particular, each task has an independent Conv & BN block that generates one task-specific prior feature
incorporating inductive bias. The output of a shared Conv & BN layers block is then added to each task-specific
feature. We introduce additional inductive biases into task-specific features, inspired by local window attention with
CNN [10] and the reduction cell with CNN [48]. These convolutional operations encode well-established inductive
biases such as locality, translation invariance, and spatial continuity, which are intrinsic to CNN architectures. By
embedding these task-relevant prior information, the proposed task prior extractor module enhances the model’s
learning efficiency.

Conv & BN block. The feature map x is fed into the task prior extractor module. As shown in Figure 4(a), the
number of the Conv & BN block is according to the task numbers in the task prior extractor module. We leverage
a convolution with batch normalization (Norm) to obtain a task-specific feature map F t

te (t ∈ [1, T ], t indicates task
number) for each task. This procedure can be written as

F t
te = Norm(Wt(x) + bt), (1)

where Wt is the the learnable weights; bt is the learnable bias. According to the task number, we collect the
task-specific feature maps {F1

te,F2
te, . . . ,FT

te} ∈ R
H
4
×W

4
×D where D is the channel dimension.

Conv & BN layers block. Convolutions naturally equip with inductive bias and compute local correlation for
neighbor pixels. It specializes in capturing local features (i.e., boundaries and corners). We design the Conv & BN
layers block to introduce the task-relevant prior information and locality inductive biases from multiple convolution
layers into TPANet. We also analyze the effect of Conv & BN layers block depths. Specifically, 3 × 3 convolution
layers generate more task-relevant prior information and then add it to the task-specific feature maps (i.e., Eq. (1)).
The feature map x from the backbone is fed directly into a Conv & BN layers block to extract the inductive biases
(Depth = 1 in practice). Such an output feature is considered to have task-relevant prior information, i.e.,

Ftp = Norm(Wtp(x) + b), (2)

where the Wtp is the the learnable weights; the Ftp ∈ R
H
4
×W

4
×D. Next, the feature map is employed to element-wise

add with each F t
te, which could be formulated as

F t
tp = F t

te + Ftp, (3)

where F t
tp ∈ R

H
4
×W

4
×D is called task-relevant prior information. The complete set of features ET = [F1

te,F2
te, . . . ,FT

te],
(F t

tp ∈ ET ).
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3.4 Adaptive task mixing module

We first concatenate the collected features set ET along the channel, denoted as Ffu ∈ R
S×TD (S = H

4 × W
4 ), that

represents the fused feature map. The visual illustration of the proposed adaptive task mixing can be found in
Figure 4(b). The adaptive task mixing module consists of spatial mixing and channel mixing, which are responsible
for spatial and channel interaction, respectively. The MLP consists of two fully-connected layers and a GELU
nonlinearity:

MLP(x) = W2σ (W1 LN(x)) , (4)

where the W1 andW2 are learnable weights. LN is a layer norm operation. The σ is a nonlinearity function (GELU).
Spatial mixing. As shown in Figure 4(b), we first perform spatial mixing. Spatial mixing acts on spatial

dimension of Ffu (it is transposed input feature map FT
fu) and maps RS 7→ R

S . This spatial mixing is calculated
with residual connection:

F ′
fu = Ffu + Spatial-MLP(LN(Ffu)), (5)

where LN refers to LayerNorm; F ′
fu ∈ R

S×TD.
Channel mixing. Channel mixing acts on the channel dimension of Ffu (it is the transposed input feature map

from spatial mixing) and maps RTD 7→ R
TD. This channel mixing equation is expressed with a residual connection

as follows:

F ′′
fu = F ′

fu +Channel-MLP(LN(F ′
fu)), (6)

where F ′′
fu ∈ R

S×TD. The adaptive task mixing module can facilitate spatial and channel interactions.
We can perform a split operation along the channel dimension of the feature to match the dimension of a single

task:

Split(F ′′
fu) = {F1,F2, . . . ,FT }, (7)

where FT ∈ R
S×D.

3.5 Cross attention module

As shown in Figure 4, this module is leveraged to increase task awareness by a query-based transformer to integrate
the task-relevant prior and task interaction information. We follow [47] to multi-head self-attention (MHSA) in
computing similarity:

MHSA(Q,K, V ) = softmax

(

QKT

√
d

)

V, (8)

where Q, K, and V are the query, key, and value matrices. d is the query/key dimension. The cross attention
module is applied to generate task-specific features via self-attention.

F t
tp and FT are then processed by a cross attention module to generate the task-specific feature map. As shown

in Figure 4(c), we leverage a shared MHSA in a cross attention module for a task. This process can be formulated
as follows:

F̂a = MHSA(Q = FT ,K = FT , V = FT ), (9)

where FT is applied as query, key, and value from (7). We then develop query-based self-attention:

F̂q = MHSA(Q = F t
tp,K = FT , V = FT ), (10)

in which the F t
tp is applied as query from (3); F̂T is applied as the key and value in MHSA. Notice that in

practice, the weights of MHSA are shared in (9) and (10) in the cross attention module. We use element-wise adds,
represented as

F̂ = F̂a + F̂q + F t
tp + FT , (11)

where F̂ ∈ R
S×D. Finally, it is fed into MLP with a residual connection to get the output feature:

F̂ ′ = MLP(F̂) + F̂ . (12)

As shown in Figure 4, each task corresponds to a cross attention module. We feed the feature map F̂ ′ to a
task-specific head to get the final prediction.
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Table 1 The task-specific hyper-parameters and losses of our TPANet framework.

Task (t) λt Lt

Semantic segmentation (‘SemSeg’) 1.0 Cross entropy loss

Human parts segmentation (‘PartSeg’) 2.0 Cross entropy loss

Depth estimation (‘Depth’) 1.0 L1 loss

Saliency estimation (‘Sal’) 5.0 Cross entropy loss

Surface normal estimation (‘Normal’) 10.0 L1 loss

Boundary detection (‘Bound’) 50.0 Binary cross entropy loss

The cross-attention modules are non-shared, meaning that attention weights and parameters are not reused across
tasks. This design allows each task to exploit its task-specific priors in a tailored manner. The output of each cross-
attention module is subsequently fed into the corresponding task-specific prediction head (e.g., SemSeg, Depth,
Saliency, etc.). Each task-specific head comprises three components: a bottleneck, a final prediction layer, and an
upsampling module to restore the original spatial resolution. The bottleneck employs a Conv-BN-ReLU block to
reduce the dimensionality of the shared features and refine them according to the target task’s requirements, ensuring
that the shared representation is effectively adapted to each task’s unique feature space. The final prediction layer
applies a 1 × 1 convolution to map the adapted features to the appropriate number of output channels (e.g., the
number of semantic classes, a single channel for depth, etc.). Finally, the upsampling layer uses bilinear interpolation
to resize the logits to the original input resolution, enabling dense prediction.

3.6 Overall loss functions

The multi-task loss is a key component in multi-task learning, representing the combined loss function that is
optimized across multiple related tasks simultaneously. The formulation of the multi-task loss depends on the
specific tasks and their corresponding functions. The overall TPANet loss Ltotal is the weighted sum of the presented
loss components:

Ltotal =

T
∑

t=1

λtLt (13)

with λt being a hyper-parameter weighting in a task loss Lt. T denotes the total number of tasks (t ∈ [1, T ]) (see
Table 1).

The NYUD-v2 dataset contains four tasks: semantic segmentation (SemSeg), depth estimation (Depth), surface
normal estimation (Normal), and boundary detection (Bound). The losses can be written as

Ltotal = λsegLseg + λdepthLdepth + λnormalLnormal + λboundLbound, (14)

where λseg = 1.0, λdepth = 1.0, λnormal = 10.0, λbound = 50.0. Lseg is cross entropy loss, which computes the cross
entropy loss between the input and target. Ldepth and Lnormal are L1Loss, which measures the mean absolute error
(MAE) between each element in the input and target. Lbound is a binary cross entropy loss, which measures binary
cross entropy between target and input logits.

The PASCAL-Context contains five tasks: SemSeg, human parts segmentation (PartSeg), saliency estimation
(Sal), Normal, and Bound tasks. The losses can be written as

Ltotal = λsegLseg + λpartsegLpartseg + λsalLsal + λnormalLnormal + λboundLbound, (15)

where λseg = 1.0, λpartseg = 2.0, λsal = 5.0, λnormal = 10.0, and λbound = 50.0. Lseg, Lpartseg and Lsal are cross
entropy losses, which compute the cross entropy loss between input and target. Lnormal is L1Loss, which measures
the MAE between each element in the input and target. Lbound is a binary cross entropy loss, which measures
binary cross entropy between target and input logits.

3.7 Algorithm pseudocode

We include the pseudocode of our TPANet model in Algorithm 1. Our TPANet consists of three tailored modules:
task prior extractor, adaptive task mixing and cross attention modules.
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Algorithm 1 Framework of TPANet.

Require: ximg ; task-learning rate: 0.00002;

Ensure: multi-task model Θmt;

1: while iteration 6 40k do

2: if task prior extractor is used then

3: Update Ft
te by (1) and (2);

4: Update Ft
tp by (3);

5: end if

6: if adaptive task mixing is used then

7: Update F
′

fu by (5);

8: Update F
′′

fu by (6);

9: end if

10: if cross attention is used then

11: Update F̂ by (9)–(11);

12: Update F̂
′
by (12);

13: end if

14: Calculate multi-task loss via (13);

15: Update the model parameters Θmt on loss using back propagation;

16: end while

17: Perform multi-task predictions using model Θmt.

4 Experiment

4.1 Experimental setup

NYUD-v2 dataset and metrics. NYUD-v2 comprises RGB and Depth frames. 795 images are used for training
and 654 images for testing. NYUD-v2 is adopted for SemSeg, Depth, Normal and Bound tasks by providing dense
labels for every image. There are four evaluation metrics to evaluate our model: mean Intersection over Union
(mIoU) for the SemSeg task, root mean square error (rmse) for the Depth task, mean Error (mErr) for the Normal
task, and optimal dataset scale F-measure (odsF) for the Bound task. Key experiments are repeated three times,
reporting mean and standard deviation (i.e., std.).

PASCAL-Context dataset and metrics. PASCAL-Context training and validation contain 10103 images,
while testing contains 9637 images. PASCAL-Context is usually adopted for SemSeg, PartSeg, Sal, Normal, and
Bound tasks by providing annotations for the whole scene. There are five evaluation metrics to compare our model
with other multi-task models: mIoU for the SemSeg and PartSeg tasks, mErr for the normal task, odsF for the
bound task, and maximum F-measure (maxF) for the saliency task. The average per-task performance drop (∆m)

is used to quantify multi-task performance. ∆m = 1
T

∑T

i=1(Fm,i − Fs,i)/Fs,i × 100%, where m, s and T mean
multi-task model, single-task baseline and task numbers. ∆m: higher is better.

Implementation details. We conduct experiments on two publicly popular MTL datasets, NYUD-v2 [18]
and PASCAL-Context [19]. For all experiments, we use CNN-based architectures (i.e., HRNetV2p-W18-Small
(HRNet18) [2], hrnetv2p-w48 (HRNet48)) and transformer-based architectures (i.e., Swin-Tiny (Swin-T), Swin-
Small (Swin-S), Swin-Base (Swin-B), Swin-Large (Swin-L) [10]) as our backbone for TPANet, respectively. As
shown in Figure 4, our Conv & BN block in the task prior extractor and cross attention module numbers changes
dynamically according to the number of tasks. For example, when we have five tasks, our method can automatically
generate five Conv & BN blocks and five cross-attention modules. Our models are optimized using the AdamW
policy. We use a learning rate of 0.00002 with a weight decay of 0.000001 and train the model for 40000 iterations.
The dropout number (κ) in MLP is 0. We report our results for κ ∈ {0, 0.1, 0.2, 0.3}. We use the κ = 0 setting in
our model.

Baselines. We adopt the standard practice of evaluating our proposed method against the single-task and multi-
task baseline versions, which are based on HRNet [2] and swin transformer [10] in our case. Baselines consist of
the single-task baseline and multi-task baseline. The single-task baseline network is trained using a backbone and
task-specific head for a task. Furthermore, the multi-task baseline network is trained using a shared backbone and
multiple task-specific heads for multiple tasks. In Tables 2 and 3, we list the single-task and multi-task performance
using different backbones on multiple vision tasks.

4.2 Results

Results on 4-task NYUD-v2. In Table 2, we first report the four task results in different metrics on the
NYUD-v2 dataset. We also provide a quantitative evaluation of the computational cost (GFLOPs) and parameters.
Table 2 shows a comparison with the state-of-the-art approaches. Following [7], we use the same backbone and
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Table 2 We report the comparison of the MTL models with the state-of-the-art on the NYUD-v2 dataset. ‘↓’: lower is better. ‘↑’: higher is

better. ∆m denotes the average per-task performance drop. Swin-⋄ indicates that the specific swin model is uncertain. ‡ denotes results not

reported in InvPT [30] but from our test.

Model Backbone
Params FLOPs SemSeg (mIoU)↑ Depth (rmse)↓ Normal (mErr)↓ Bound (odsF)↑ ∆m↑

(M) (G) Mean Std. Mean Std. Mean Std. Mean Std. (%)

Single-task baseline HRNet18 16.09 40.93 38.02 0.14 0.6104 0.0041 20.94 0.08 76.22 0.07 0.00

Multi-task baseline HRNet18 4.52 17.59 36.35 0.26 0.6284 0.0034 21.02 0.06 76.36 0.05 −1.89

Cross-Stitch [3] HRNet18 4.52 17.59 36.34 0.55 0.6290 0.0051 20.88 0.04 76.38 0.07 −1.75

Pad-Net [4] HRNet18 5.02 25.18 36.70 0.16 0.6264 0.0021 20.85 0.03 76.50 0.06 −1.33

PAP [24] HRNet18 4.54 53.04 36.72 0.31 0.6178 0.0065 20.82 0.03 76.42 0.07 −0.95

PSD [6] HRNet18 4.71 21.10 36.69 0.55 0.6246 0.0036 20.87 0.07 76.42 0.13 −1.30

NDDR-CNN [5] HRNet18 4.59 18.68 36.72 0.31 0.6288 0.0037 20.89 0.02 76.32 0.07 −1.51

MTI-Net [27] HRNet18 5.50 32.42 36.61 0.15 0.6270 0.0048 20.85 0.03 76.38 0.07 −1.44

ATRC [7] HRNet18 5.06 25.76 38.90 0.43 0.6010 0.0046 20.48 0.02 76.34 0.12 1.56

TPANet (ours) HRNet18 5.18 27.02 39.43 0.31 0.5931 0.0040 20.39 0.02 76.39 0.07 2.18

Single-task baseline Swin-T 115.08 161.25 38.02 0.21 0.6104 0.0035 20.94 0.06 76.22 0.13 0.00

Multi-task baseline Swin-T 32.50 96.29 38.78 0.28 0.6312 0.0032 21.05 0.08 75.60 0.08 −3.74

MQTransformer [13] Swin-T 35.35 106.02 43.61 0.32 0.5979 0.0024 20.05 0.05 76.20 0.06 0.31

InvPT [30] Swin-T 60.14‡ 162.52‡ 44.27 0.35 0.5589 0.0026 20.46 0.04 76.10 0.09 2.59

TPANet (ours) Swin-T 34.69 164.9 46.51 0.26 0.5987 0.0023 20.71 0.03 76.90 0.05 2.71

Single-task baseline Swin-S 200.33 242.63 48.92 0.28 0.5804 0.0036 20.94 0.08 77.20 0.14 0.00

Multi-task baseline Swin-S 53.82 116.63 47.90 0.34 0.6053 0.0025 21.17 0.05 76.90 0.09 −1.96

MQTransformer [13] Swin-S 56.67 126.37 49.18 0.31 0.5785 0.0031 20.81 0.04 77.00 0.07 1.59

MTFormer [15] Swin-⋄ 64.03 117.73 50.56 – 0.4830 – – – – – 4.12

TPANet (ours) Swin-S 53.34 185.25 50.90 0.24 0.5603 0.0022 20.05 0.03 78.20 0.06 3.19

Single task baseline Swin-L 789.96 819.93 56.46 0.28 0.508 0.0047 19.38 0.09 78.8 0.14 0.00

Multi-task baseline Swin-L 204.96 316.87 54.53 0.34 0.532 0.0039 19.51 0.07 78.3 0.08 −2.36

InvPT [30] Swin-L 292.7‡ 417.27‡ 51.76 0.28 0.5020 0.0028 19.39 0.05 77.60 0.06 −2.22‡

InvPT [30] ViT-L 402.1‡ 555.57‡ 53.56 0.21 0.5183 0.0031 19.04 0.06 78.10 0.06 –

TPANet (ours) Swin-L 205.61 378.58 56.42 0.17 0.5018 0.0026 19.02 0.03 79.10 0.06 0.82

training setting for a fair comparison. We find that the TPANet model outperforms InvPT in terms of multi-tasking
performance (ours 46.51 vs. InvPT 44.27). When equipped with Swin-S as the backbone, the TPANet achieves
comparable performance at 50.90 mIoU with a significant parameter (53.34M). Concretely, our TPANet model
outperforms the previous best by +0.34 (ours 50.90 vs. MTFormer 50.56) on the SemSeg task while performing
worse on the depth task. The poor depth estimation accuracy is because MTFormer only performed two tasks while
we performed four. Even when compared to state-of-the-art models with a similar number of parameters, our method
can yield the highest mIoU and ranks first on the Swin-S. Note that both our TPANet and InvPT [30] use Swin-L
as the backbone and our approach outperforms InvPT on all tasks, especially SemSeg (ours: 56.42 mIoU vs. InvPT:
51.76 mIoU) and Bound (ours: 79.1 odsF vs. InvPT: 77.6 odsF). Furthermore, the prior art InvPT [30] using ViT-
L as backbone trains the MTL model with 402.1M and 555.57G FLOPs. Our TPANet surpasses the InvPT [30]
using ViT-L by a considerable margin while using fewer parameters (205.61M) and GFLOPs (378.58G). This
demonstrates the strong performance of our TPANet model using different backbones across semantic segmentation,
depth estimation, surface normal estimation and boundary detection tasks. As shown in Table 2, our TPANet
benefits from the advantages of both task-relevant prior information and query-based transformer that shows strong
performance on all the metrics. From these quantitative (Table 2) and qualitative results, TPANet demonstrates
the ability to make highly accurate predictions across a wide range of tasks, while using fewer parameters and
GFLOPs.

Results on 5-task PASCAL-Context. As shown in Table 3, we further evaluate our method on the PASCAL-
Context dataset and then report the five task results in different metrics. To show the effectiveness and friendly
compatibility of our TPANet, we conduct experiments using different backbones, e.g., HRNet18 [2], Swin-T, Swin-
S, Swin-B, and Swin-L [10]. Specifically, using HRNet-18, our TPANet method outperforms the MQTransformer
baseline by 1.06 mIoU on the SemSeg task. Experimental results of our method with Swin-B show significant
improvements compared to the multi-task baseline. With the large transformer-based Swin-B as the backbone, our
model achieves 75.56 mIoU, surpassing the much stronger MTFormer baseline by +1.41 mIoU on the SemSeg task.
TPANet achieves competitive performance on other tasks as well as on PASCAL-Context. The results show that
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Table 3 We report a comparison of the MTL models on the PASCAL-Context dataset. ∆m denotes the average per-task performance drop

(higher is better). Swin-⋄ indicates that the specific swin model is uncertain.

Model Backbone
SemSeg PartSeg Sal Normal Bound

∆m (%)↑
(mIoU)↑ (mIoU)↑ (maxF)↑ (mErr)↓ (odsF)↑

Single-task baseline HRNet18 62.23 61.66 85.08 13.69 73.06 0.00

Multi-task baseline HRNet18 51.48 57.23 83.43 14.10 69.76 −6.77

PAD-Net [4] HRNet18 53.60 59.60 65.80 15.3 72.50 −4.41

ATRC [7] HRNet18 57.89 57.33 83.77 13.99 69.74 −4.45

MQTransformer [13] HRNet18 58.91 57.43 83.78 14.17 69.80 −4.20

TPANet (ours) HRNet18 59.97 58.21 84.13 13.92 69.86 −3.22

Single-task baseline Swin-T 67.81 56.32 82.18 14.81 70.90 0.00

Multi-task baseline Swin-T 64.74 53.25 76.88 15.86 69.00 −3.23

MQTransformer [13] Swin-T 68.24 57.05 83.40 14.56 71.10 1.07

TPANet (ours) Swin-T 69.08 57.61 82.54 14.46 71.20 1.42

Single-task baseline Swin-S 70.83 59.71 82.64 15.13 71.20 0.00

Multi-task baseline Swin-S 68.10 56.20 80.64 16.09 70.20 −3.97

MQTransformer [13] Swin-S 71.25 60.11 84.05 14.74 71.80 1.27

TPANet (ours) Swin-S 71.59 60.38 83.20 14.65 72.00 1.36

Single-task baseline Swin-B 74.91 62.13 82.35 14.83 73.30 0.00

Multi-task baseline Swin-B 73.83 60.59 80.75 16.35 71.10 −3.81

MTFormer [15] Swin-⋄ 74.15 64.89 67.71 – – 2.41

TPANet (ours) Swin-B 75.56 64.91 83.46 14.67 73.10 1.3

Single task baseline Swin-L 79.26 68.92 83.84 14.28 74.50 0.00

Multi-task baseline Swin-L 77.35 63.86 82.87 14.84 73.10 −3.33

TPANet (ours) Swin-L 78.11 68.01 83.65 14.38 74.80 −0.67

Figure 5 (Color online) Qualitative results of our TPANet compared with the previous MTL methods (i.e., ATRC and InvPT) on the PASCAL-

Context dataset. The visualizations (notice the red boxes) emphasize the accuracy and efficiency of our TPANet in multiple vision tasks. From

top to bottom: ATRC [7], InvPT [30], TPANet (ours) and ground truth (GT).

our TPANet is relatively robust to varying CNN-based and transformer-based backbones. Finally, we also report
dense prediction results for the PASCAL-Context in Figure 5. These results show the good generalization ability
of our TPANet models.
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Table 4 Ablation studies on NYUD-v2 dataset using a Swin-T backbone. Task prior extractor (TPE), adaptive task mixing (ATM), and cross

attention (CA) modules are the parts of our model. ‘S Only’ means ATM with spatial mixing only. ‘w/’ indicates “with”. The best results are

in bold.

(a) Ablation on modules

Model
SemSeg Depth Normal Bound

(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

Multi-task baseline 38.78 0.6312 21.05 75.6

w/TPE 43.44 0.6124 20.83 76.4

w/TPE+ATM(S Only) 44.03 0.6092 20.82 76.4

w/TPE+ATM(Full) 44.21 0.6080 20.97 76.6

w/TPE+ATM+CA 46.49 0.5987 20.71 76.9

(b) Ablation on four-scale features

Scale
SemSeg Depth Normal Bound

(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

1/32 36.89 0.6175 22.85 75.9

1/16, 1/32 41.64 0.6177 22.75 76.4

1/8, 1/16, 1/32 42.10 0.6163 22.78 76.4

1/4, 1/8, 1/16, 1/32 46.49 0.5987 20.71 76.9

4.3 Ablation studies

Ablation on the proposed modules. Our ablation studies explore the utility of using different modules in
our method. We refer to our full method as TPANet and consider the following ablations: (1) w/ TPE: with the
task prior extractor module; (2) w/ TPE+ATM: with the task prior extractor and adaptive task mixing modules;
(3) w/ TPE+ATM+CA: with the task prior, adaptive task mixing and cross attention modules. We perform
ablations to investigate how it benefits from the task-relevant prior information. As shown in Table 4(a), our
model achieves strong accuracy performance when equipped with the task prior extractor module. We find that
qualitative results using TPE can gain 4.6 mIoU on SemSeg task compared to multi-task baseline. These results
demonstrate that introducing task-relevant prior information might be an effective way to facilitate local visual
modeling and improve task performance. It can be observed that, with ATM and CA modules, TPANet achieves
better performance when compared with the baseline. Thus, the qualitative results show that ATM can effectively
adapt to task interactions along spatial and channel dimensions. Further, the non-shared cross attention is designed
to be suitable for multiple vision scenarios. The task-relevant prior extracted by TPE guides the cross-attention
module to focus on task-discriminative regions, improving feature aggregation and inter-task consistency. This
interaction further enhances the model’s contextual reasoning across tasks.

Ablation on the scales. The four-scale features (1/4, 1/8, 1/16 and 1/32) come from the four stages in the
backbone network. Table 4(b) lists the experimental results, showing that the performance can be consistently
improved with the value of the scale number. We conduct an experiment only using a 1/32 feature and achieve
good performance. This indicates that 1/32 features have rich semantic information. We notice that our model
achieves the best performance when using four-scale features from the backbone. This demonstrates that multi-scale
features can provide more semantic information, which would be beneficial for pixel-level vision tasks.

4.4 Hyperparameter analysis

Impact of the dropout number. We test TPANet with different dropout numbers, listed in Table 5. In the
cross attention module, dropout operations exist for the MLP in the cross attention module. To explore the impact
of the number of dropouts in our model, we set the dropout numbers κ ∈ {0, 0.1, 0.2, 0.3, 0.5}. The default dropout
number setting is 0.1 in our model.

Effectiveness of the depth of Conv & BN layers. In Table 6, we analyze the effect of Conv & BN layers
depth. As shown in Table 6, the final performance gets (slightly) increased with a deeper Conv & BN layers. Note
that a depth of 1 is a competitive choice compared to a 3-depth Conv & BN layers, it significantly reduces the
computation cost while only marginally sacrificing the accuracy by +0.26 on the SemSeg task. As the Conv &
BN layers depth increases, the overall performance shows an increasing trend. The results demonstrate that the
task-relevant prior information with inductive bias provided by 3× 3 convolution contributes to MTL performance
improvement. To balance computational effort and performance, we choose a Conv & BN layers depth of 1 as the
default setting.
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Table 5 Impact of the dropout (κ). We perform this ablation using Swin-T as the backbone on the NYUD-v2 dataset.

κ
SemSeg Depth Normal Bound

(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

0 46.49 0.5987 20.71 76.90

0.1 46.29 0.5967 20.82 76.80

0.2 46.42 0.6078 20.63 76.90

0.3 46.41 0.6073 20.66 76.90

0.5 46.26 0.6089 20.67 76.70

Table 6 Effectiveness of varying depth of Conv & BN layers using Swin-T in task prior extractor module on NYUD-v2 dataset.

Depth
SemSeg Depth Normal Bound

(IoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

1 46.49 0.5987 20.71 76.9

2 46.36 0.5975 20.62 76.9

3 46.63 0.5930 20.77 77.0

Table 7 NYUD-v2 performance comparison, using Swin-B and Swin-L. We compare our model with the InvPT [30].

Method Backbone
SemSeg Depth Normal Bound

(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

Multi-task baseline Swin-B 51.44 0.5813 20.44 77.0

InvPT [30] Swin-B 50.97 0.5071 19.39 77.3

TPANet (ours) Swin-B 53.09 0.5322 19.31 77.4

Multi-task baseline Swin-L 51.44 0.5813 20.44 77.0

InvPT [30] Swin-L 51.76 0.5020 19.39 77.6

TPANet (ours) Swin-L 56.34 0.5019 19.02 79.10

Table 8 Ablation on the cross attention module. We design two optional formats: a non-shared cross attention module and a shared cross

attention module. We perform this ablation using Swin-T as the backbone on the NYUD-v2 dataset.

Format
SemSeg Depth Normal Bound

(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

Non-shared 46.49 0.5987 20.71 76.9

Shared 46.29 0.5967 20.82 76.8

Table 9 Ablation studies on NYUD-v2 dataset using a Swin-T backbone. Cross attention (CA) module uses different attention mechanisms

using Swin-T as the backbone on the NYUD-v2 dataset. ‘w/’ and ‘w/o’ indicates “with” and “without”.

Format
SemSeg Depth Normal Bound

(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

CA(w/ task prior) 46.49 0.5987 20.71 76.9

CA(w/o task prior) 46.19 0.6017 20.82 76.5

Comparison across different backbones. In Table 7, we further compare our TPANet against more standard
multi-task baselines and InvPT [30], which are pre-trained with the image dataset. On nearly all tasks, our TPANet
method outperforms the supervised baselines and the previous best method InvPT [30]. Specifically, our TPANet
method further outperforms the standard multi-task baselines and InvPT [30] on both the Swin-B (2.12 mIoU
improvement on SemSeg) and Swin-L (4.59 mIoU improvement on SemSeg) backbones. Moreover, performance
can further be improved by adopting larger transformer-based models as backbones; our method is still effective,
efficient and robust. Experimental results demonstrate that our method achieves competitive performance with
existing methods, and the performance can achieve performance leadership on different backbones on the NYUD-v2
dataset.

Effectiveness of non-shared and shared cross attention module. An important design decision of our
TPANet is the non-shared cross attention module. As shown in Table 8, we compare different configurations (i.e.,
non-shared cross attention and shared cross attention). In fact, the non-shared cross attention module achieves
better accuracy while requiring +0.2 mIoU, +0.11 mErr and +0.1 odsF. Thus, we use the non-shared cross attention
module in TPANet.

Effectiveness of the cross attention module using different attention mechanisms. Table 9 shows
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Figure 6 (Color online) Visualization of our TPANet for seman-

tic segmentation (second column), depth estimation (third column),

surface normal estimation (fourth column), and boundary detection

(fifth column) on the NYUD-v2 dataset.

Figure 7 (Color online) Visualization of our TPANet for semantic

segmentation (second column), human parts segmentation (third col-

umn), surface normal estimation (fourth column), saliency estimation

(fifth column), and boundary detection (sixth column) on PASCAL-

Context dataset.

an ablation study isolating the effect of the attention formulation within the cross attention module of TPANet.
Two variants are compared: query-based attention with task-relevant prior information and conventional self-
attention without task-relevant prior information. Across all tasks, the query-based attention with task priors
consistently delivers performance gains, improving segmentation accuracy (+0.30 mIoU), reducing depth (+0.003
rmse) and normal (+0.11 mErr), and enhancing boundary detection (+0.4 odsF). These consistent improvements
across multiple metrics demonstrate that task-relevant prior query-based attention provides a more effective fusion
strategy for multi-task dense prediction than standard self-attention.

4.5 Visualization and analysis

To demonstrate the capability of our TPANet in an intuitive perspective, we visualize the six task predictions of
the selected images, shown in Figures 5–7.

Visual comparisons. To gain insights into the learned representations, we conduct the visual comparisons
among tasks on the PASCAL-Context dataset. Figure 5 shows the visual comparison of different visualization
methods. We observe that our TPANet gives overall better visualizations than the baseline model, including the
whole tasks, as shown in Figure 5. For the segmentation task, in Figure 5, we observe that TPANet obtains
more precise semantic segmentation and human parts segmentation, where the red box highlights the semantic
information in some subfigures. Specifically, comparing ATRC [7] and InvPT [30] with our TPANet in the first and
second columns, we can see that ATRC [7] and InvPT [30] fail to distinguish the arms and hands of the two people.
We use red boxes to mark the exact locations and quickly find the semantic segmentation differences between the
three methods. While our TPANet successfully differentiates the two objects, suggesting that ours learn more
semantic features. In addition, the saliency (fifth column in Figure 5) and boundary (sixth column in Figure 5)
predictions using our model also focus on the region of the fertile semantic. These visual comparisons demonstrate
that our model can capture more local boundaries and textures and further prove that our TPANet introduces the
merit of CNN for capturing task-relevant prior information to transformer.

Visualization on 4-task NYUD-v2 dataset. To further analyze the property of our method, we show the
four vision task predictions (i.e., semantic segmentation, depth estimation, surface normal estimation, and boundary
detection) for qualitative results in Figure 6 on NYUD-v2. Each pixel was assigned a semantic label, such as wall,
floor, furniture, or object category. The visualization of these maps offered an understanding of the variety and
distribution of semantic classes within the scenes. We choose four samples from the dataset. As we can see, the
visualizations clearly show that our method with a Swin-B backbone is able to obtain good predictions on multiple
vision tasks. These findings facilitate a deeper comprehension of the dataset’s complexities and the TPANet’s
ability to capture relevant visual cues. Moreover, the insights gained from the visualization analysis are shown in
the context of improving scene understanding, depth estimation, and related tasks on similar indoor environments.
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Visualization on 5-task PASCAL-Context dataset. As shown in Figure 7, we show five vision task pre-
dictions (i.e., semantic segmentation, human parts segmentation, surface normal estimation, saliency estimation,
and boundary detection) from different types of images on the PASCAL-Context test set. The first and second
rows of images show many people scenes that can also be segmented very well. The third row of images shows that
our model can correctly distinguish between people and objects. The fourth, fifth, and sixth rows of images show
that our model recognizes the objects. Differences can be seen between semantic segmentation and human parts
segmentation. Figure 7 (the third row) shows a picture of a man walking towards a motorcycle and a car. On the
human parts segmentation task, our model only segments the human, ignoring the motorcycle and car. For some
qualitative segmentation examples, the fifth and sixth rows of images show the black on human parts segmentation
(the third column). Moreover, in other tasks, qualitative results also demonstrate good visual performance. These
qualitative results demonstrate that our model can capture more semantic features.

5 Discussion and limitation analysis

Discussion. TPANet introduces task-relevant prior information with inductive biases into the transformer, enabling
more precise and adaptive task-specific feature extraction. This combination allows the transformer and convolution
layers to focus on their respective strengths, namely modeling long-range dependencies and capturing local spatial
details. Compared to existing methods, TPANet effectively addresses the transformer’s limitations in local spatial
modeling by guiding attention through task-relevant prior information, thereby enhancing both performance and
balance in MTL across diverse dense prediction tasks. Moreover, TPANet excels in maintaining task balance. By
leveraging task-specific attention guided by task-relevant prior information, it mitigates overfitting to dominant
tasks, which is common in shared-encoder models, while still facilitating beneficial cross-task improvements in
semantic segmentation, human part segmentation, saliency estimation, surface normal estimation, and boundary
detection.

Limitation analysis. As shown in Figure 4, the use of task-specific cross-attention modules increases compu-
tational overhead, particularly when scaling to a large number of vision tasks. This is because TPANet, similar to
previous studies, relies on individualized cross-attention mechanisms for task interaction. To address this efficiency
challenge, model miniaturization through knowledge distillation is a promising direction and will be explored in
future work.

6 Conclusion

In this paper, we explore the inductive biases effect in transformer-based MTL architecture, named TPANet,
to effectively and efficiently perform dense predictions. By embedding task-relevant priors into the Transformer
framework, TPANet enhances locality modeling and strengthens cross-task representation learning. Our TPANet
achieves superior performance, especially on semantic segmentation, human part segmentation, depth estimation,
saliency estimation, surface normal estimation and boundary detection tasks, compared to other transformer-based
MTL architectures. Extensive experiments validate its superior accuracy, efficiency, and robustness.
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