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Abstract With the rapid advancement of sensing and wireless technologies, intelligent transportation services (ITSs) have significantly
enhanced the quality of public travel by capturing real-time traffic conditions. In practice, ITS platforms face bottlenecks in compre-
hensively acquiring urban traffic dynamics due to occasional sensor failures and coverage deficiencies, which, in turn, affect the quality
of ITSs. To address these issues, crowdsensing, as an emerging computing paradigm, assigns traffic status sensing tasks (e.g., taking
photos) to vehicle-based mobile participants (a.k.a. workers), improving the timeliness and spatial coverage of traffic monitoring. The
above process raises a hot topic, i.e., online crowdsensing task assignment. Most existing methods primarily consider travel costs as the
basic factor for pricing models to incentivize workers to complete crowdsensing tasks. However, due to the neglect of supply-demand
dynamics in task pricing, these methods still suffer from imbalanced distributions of workers and tasks. In this paper, we propose a
novel profit-aware online crowdsensing task assignment (POCTA) problem, which aims to maximize overall revenue by incorporating a
supply-demand-aware pricing model. This model dynamically adjusts task prices based on current and predicted supply-demand condi-
tions. We develop an efficient two-stage framework, predict-then-assign, to solve the POCTA problem. In the prediction stage, we build
the end-to-end multi-view spatio-temporal attention network to predict the distributions of future crowdsensing tasks. In the matching
stage, we propose the break-and-rematch online task assignment algorithm, which iteratively invokes a packing-aware matching operator
and an adaptive assignment-breaking operator to optimize task assignment. Extensive experiments on two real-world datasets validate
the efficiency and effectiveness of our proposed solutions.
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1 Introduction

With the development of sensing and wireless technologies, intelligent transportation services (ITSs) in smart
cities continue to improve the quality of life for urban residents. However, despite the widespread deployment of
costly devices (e.g., sensors and cameras) and tracking infrastructure (e.g., monitors and radars), ITSs still face
bottlenecks in comprehensively collecting ITS-related information (e.g., traffic conditions and accident reports).
These bottlenecks arise from issues such as occasional sensor failures and blind spots caused by insufficient coverage,
especially during emergencies like large-scale power outages [1-3]. To address these limitations, as illustrated in
Figure 1, crowdsensing (a manual way) has emerged as a promising service paradigm [1,4,5]. It leverages a
large number of transportation participants equipped with smart devices to collect traffic data, thereby effectively
compensating for the lack of comprehensive traffic information. A typical crowdsensing service involves three key
parties: crowdsensing tasks, vehicle-based mobile workers (workers in short), and the platform, where mobile workers
carrying smart devices travel to designated locations to complete crowdsensing tasks assigned by the platform. This
process raises a central problem in ITSs, online crowdsensing task assignment [5-7], which aims to determine the
optimal matching between mobile workers and crowdsensing tasks.

In the literature, current studies related to online crowdsensing task assignment can be divided into two categories
based on optimization objectives: maximizing the number of completed tasks and maximizing overall profit. Meth-
ods in the first category (e.g., [3,8]) prioritize improving the task completion ratio. However, these approaches may
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Figure 1 (Color online) Illustration of two ways to collect ITS-based information.

neglect economic sustainability, as completing more tasks does not necessarily lead to higher profitability for the
platform. In practice, commercial platforms often emphasize maximizing profits when assigning tasks. Therefore,
profit-oriented strategies (e.g., [5,9,10]) explicitly aim to optimize platform revenue. Several studies [5,10-15] ex-
plore flexible pricing models that incentivize both platforms and mobile workers by taking into account the real-time
states of workers and tasks. Zhao et al. [10] proposed a task pricing model that incorporates temporal constraints to
encourage the completion of near-expiry tasks. Li et al. [11] introduced a fair pricing mechanism in which each task
receives a discount from its original distance-based cost. These profit-driven mechanisms undoubtedly motivate
workers and improve platform revenues to some extent. However, the supply-demand dynamics of crowdsensing
tasks critically influence service pricing. Adaptive task pricing based on this relationship can guide mobile work-
ers toward areas with a surplus of tasks but a shortage of workers, thereby alleviating service delays caused by
insufficient workforce availability. Despite the significance of supply-demand dynamics, recent studies [10,11,14] on
ITS-based task assignment have seldom incorporated this factor into their pricing strategies in an effective man-
ner. Besides, given a batch of workers and tasks, existing studies [5,9,10, 14] typically derive the current optimal
matching plan in a one-shot fashion based on the optimization objective. However, such strategies often overlook
long-term benefits, which may lead to suboptimal assignment quality. Since prior assignments may influence future
matching pairs, adaptively breaking low-quality assignments allows workers to be reassigned to more suitable tasks
in subsequent rounds.

In this paper, we investigate the profit-aware online crowdsensing task assignment (POCTA) problem, which
involves incentivizing workers to move toward worker-undersupplied (or high-demand) areas through demand-
supply-aware pricing. Given a set of vehicle-based mobile workers and a set of crowdsensing tasks, the goal of
the POCTA problem is to find the optimal task assignment by maximizing overall profit. However, solving the
POCTA problem with supply-demand-aware pricing faces two main challenges. First, an effective pricing model
relies on predicting the demand for future tasks, but accurately forecasting task distributions from complex spa-
tiotemporal dependencies is non-trivial. Second, crowdsensing tasks and mobile workers arrive at the platform
dynamically in the form of streams, making it difficult to find an optimal solution in an online scenario. Thus,
designing efficient matching algorithms to assign tasks to mobile workers is another challenge. To address these
challenges, we propose an efficient two-stage framework, predict-then-assign (PTA), which integrates task prediction
and task assignment. Specifically, in the task prediction stage, we construct an end-to-end, deep learning-based
network, the multi-view spatio-temporal attention network (MVSTAnet), to predict the arrival patterns of future
crowdsensing tasks. The pricing model then dynamically adjusts task prices based on supply-demand conditions
to incentivize mobile workers to complete the assigned tasks. In the task assignment stage, we devise the deep
reinforcement learning (DRL)-based break-and-rematch online task assignment (BROTA) algorithm, which itera-
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tively uses the matching and breaking operators to adaptively assign tasks to the most suitable workers. Our main
contributions are summarized as follows.

e We study the POCTA problem based on a supply-demand-aware pricing model, which aims to find the best
task assignment with the goal of maximizing the platform’s overall profit. We also theoretically analyze the hardness
of the POCTA problem.

e We develop a powerful multi-view task prediction model, MVSTAnet, to predict the arrival regions of potential
tasks. In MVSTAnet, we introduce the dual-path residual connection GCN module to capture both similarity and
geographic dependencies among spatial regions. We also design the dual-channel spatio-temporal attention module
to effectively extract short-term local and long-term global spatiotemporal dependencies.

e We propose an efficient DRL-based task assignment algorithm, BROTA, which consists of matching and break-
ing operators. BROTA iteratively breaks assignments with lower profit and higher incurred supply-demand gaps,
then rematches the broken assignments to optimize task assignment from a long-term perspective.

e Extensive experiments on two real-world datasets validate the desirable performance of our solutions across a
range of parameter settings.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 formally defines the
POCTA problem. Section 4 presents the proposed solutions. Extensive experiments are presented in Section 5,
followed by the conclusion and future work in Section 6.

2 Literature review
In this section, we survey the related studies on spatiotemporal task prediction and online task assignment.

2.1 Spatiotemporal task prediction

In the field of ITSs, spatiotemporal task prediction [3,16] involves predicting future task arrival patterns based
on intricate spatial and temporal dependencies. Deep learning methods are powerful in learning complex feature
representations from large-scale data and have been widely used to address the above challenges [17-19]. Recurrent
neural network (RNN) and its variations, such as long short-term memory (LSTM) and gated recurrent unit
(GRU), have presented their powerful capabilities in capturing temporal dependencies [17,20,21]. Additionally,
graph convolutional network (GCN) [17,18] has been applied to handle graph-structured data, effectively capturing
spatial dependence. While these methods have shown promising results, they often oversimplify the correlations
between spatial and temporal features as separate components rather than interdependent factors. To this end,
recent advances [17,21] focus on developing integrated frameworks that merge multiple modules to capture diverse
features, including spatial, temporal, and contextual. Zhao et al. [17] introduced an integration network, the
temporal graph convolutional network (T-GCN), which combines GCN and GRU to achieve remarkable performance
in traffic forecasting. However, these models tend to overlook the differential contributions of temporal and spatial
features in the prediction process. To address this gap, attention mechanisms have been increasingly employed to
assign varying weights to spatial and temporal features. Zheng et al. [18] proposed the graph multi-attention network
(GMAN), comprising multiple spatiotemporal attention blocks to address distinct influences of spatiotemporal
factors. In light of these studies, we aim to develop an integrated DL-based model that accurately predicts the
arrival regions of future tasks. Different from existing models [3,17,18], our proposed MVSTAnet emphasizes the
dynamic correlations between spatial and temporal features, further improving prediction accuracy.

2.2  Online task assignment

Online task assignment refers to finding suitable workers for sequentially arriving tasks. In the literature, some
approaches focus on maximizing the number of completed tasks [3], while others prioritize maximizing overall
profit [5,9,10]. However, mainstream methods often yield sub-optimal solutions by focusing primarily on local task
assignment and overlooking the potential benefits of long-term predictions [22,23]. For commercial platforms, profit
optimization is a top priority, prompting many studies [3,12,20,24] to incorporate long-term predictive information
to improve short-term task assignment. Tong et al. [15] proposed dynamically adjusting task prices based on future
demand and supply distributions, and Ren et al. [25] designed a hybrid batch processing framework to optimize
task assignment through worker payment adjustments aligned with supply-demand dynamics. While these methods
enhance task assignment, they fail to develop a supply-demand-aware pricing model that incentivizes workers to
move to high-demand areas. Such guidance could improve task matching quality and increase overall profit. In
this paper, our POCTA framework introduces a demand-supply-guided pricing model that encourages workers to
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Table 1 Notation and description.

Notation Description
T A set of crowdsensing tasks
w A set of mobile workers
g A graph
§ The packing threshold of packing policy
P/F The number of past/future time steps
(e, ) The shortest distance of two locations
price(T) The supply-demand-aware price of a crowdsensing task
u(s, ) The matching revenue of an assignment
U(M) The total profit of the platform
X /Yiia The input/output sequence
Ag(+) The supply-demand gap value

relocate, thereby maximizing long-term profit. This distinguishes existing studies [10,11, 13] from the goal of our
POCTA problem.

3 Models and problem formulation

In this section, we first present several preliminary definitions, then formally define the POCTA problem and prove
its hardness. Table 1 lists the main notations of this paper.

3.1 System model

In ITSs, the general system model for the POCTA problem involves crowdsensing tasks, mobile workers, and the ITS
platform, operating as follows: crowdsensing tasks dynamically arrive at the platform with essential information,
such as location and fare. Mobile workers periodically update their status, e.g., current location, to the ITS platform.
The platform then calculates the matching values (e.g., matching revenue) for candidate matching pairs, and finds
suitable vehicle-based mobile workers for crowdsensing tasks while maximizing the overall profit of the ITS platform.

In our system model, we establish the POCTA problem on a road network represented by the undirected graph
Gn = (Vo, Ey), where V,, denotes the set of road intersections and FE,, denotes the set of road segments. Each
road segment e;; € E,, connects two road intersections /; and I; ({;,1; € V;,). We next introduce the definitions of
crowdsensing task and vehicle-based mobile worker.

Definition 1 (Crowdsensing task). A crowdsensing task is denoted by a four-entry tuple 7 = (I,,t,,t%, f,),
indicating that 7 is published on the platform at time ¢, and locates at the road intersection I, € V,, with a
published fare f, and expire time ¢Z.

Note that each crowdsensing task (task in short) 7 must be assigned to an available worker before its deadline t2
or cannot be allocated thereafter. Following [5,25], we omit the task processing time, i.e., once the assigned worker
arrives at [, the task 7 is considered to be completed.

Definition 2 (Vehicle-based mobile worker). A vehicle-based mobile worker w € W is denoted as a five-entry
tuple w = (L, Cw, tws ti, Tw), where l,, € V,, is the current location, t,, is the arriving time, tﬁ, is the leaving time,
¢y 18 the maximum number of tasks that w expects to complete and T, represents the set of tasks assigned to w
but not yet completed.

Mobile workers equipped with vehicles (workers in short) can travel freely on the road network G,,. For ease of
presentation, we denote ¢,, = ¢,, — |Cy| as the remaining maximum expected number of tasks that w could perform,
where C,, is a set recording completed tasks. Following the settings in [5,22,23,26], a worker goes offline either after

completing c,, tasks (i.e., &, = 0) or after deadline time t%.

Definition 3 (Schedule). Given a worker w with m assigned tasks 7, = {71,...,7m}, the schedule S,, of w is
denoted by Sy, = (11, ..., - ), where I, € V,, is a location that will be reached by w.

Following existing studies [5,9,14], we assume that workers always follow the shortest path between two locations
in their schedules. In addition, we do not reorder tasks in the current schedule S,, when inserting a new task, as
reordering all locations in S, incurs significant computational overhead and is unsuitable for real-time scenarios
where task insertions occur frequently [5,9,14]. We consider S,, is valid if it satisfies the following constraints for

all 7 € T,.
e Deadline constraint. The worker w must arrive at [, before task deadline t¢ and worker deadline ¢4 .
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Figure 2 (Color online) Curves of SDE%7 price(7) and pay(w, 7). (a) Supply-demand degree; (b) price model; (¢) worker payment.

e Maximum expected number constraint. The cumulative assigned tasks C,, of w cannot exceed the maximum
expected number c¢,,, i.e., ¢, = 0.
e Invariable constraint. Once a task 7 is assigned to the worker w, it cannot be changed.

3.2 Price model

A key objective of ITS platforms is to incentivize more workers to complete tasks while maximizing the platform’s
profit [5,9,15,27]. Intuitively, when a region is undersupplied with workers, the platform tends to raise task prices to
attract available workers. To this end, we design a supply-demand-aware pricing model based on two core insights:
(i) task prices should accurately reflect changes in supply and demand; and (ii) pricing should effectively incentivize
workers to relocate to undersupplied regions, thereby reducing supply-demand gaps and increasing platform profit.

Specifically, we divide the road network G, into N non-overlapping spatial regions R = {Ry,..., Ry}, where
each region is a subgraph of G, (i.e., R = (Vg, Eg) with Vg C V,, and Er C E,,), and is responsible for reporting
its supply and demand conditions. We assume that all tasks within the same region and time share the same
supply-demand status. To quantify these conditions in region R at time ¢, we employ the supply-demand degree
SDY% [25], which is calculated as

0, if k-ny, > n: orn, =0,
spt, — J L, if ny =0 and n, # 0, (1)
k- Ny
—tanh <1n " ) , otherwise,
n,

where n,, and n, denote the numbers of workers and tasks in region R, respectively; k is a parameter that adjusts
for the relative numbers of workers and tasks; and ¢ refers to the ¢-th time step (i.e., a time interval). Figure 2(a)
illustrates how the value of SD% varies with different values of k. We approximate k using the average capacity ¢,
of workers in region R, calculated as k = Y| €y, /T, which can be estimated from historical data. Based on the
supply-demand degree, we formally introduce our supply-demand-aware pricing model.

Definition 4 (Supply-demand-aware price). Given a task 7 with fare f., the supply-demand-aware price price(r)
at the time step ¢ comprises basic price pay; and supply-demand-based price pay',, which is calculated as

price(r) = a - pay; + (1 — @) - payg. (2)

The curve of price(7) is shown in Figure 2(b). Clearly, price(r) is anchored by the base price pay; and primarily
influenced by the supply-demand-based price pay!,. In practice, the platform can proactively adjust the preference
coefficient «v to control the relative contributions of these two components [5]. The base price pay ; may account for
multiple factors such as task completion time [10,14]. For simplicity, we set it equal to the task fare, i.e., pay =
The supply-demand-based price pay!, is calculated based on both current and predicted future supply-demand
conditions, i.e.,

F
payly = fr. Z N @ (SDH), (3)
i=0

where F' € Z* denotes the number of future time steps, and ®x(SD% ) = SD};T / Ef:o SD?T]' represents the

supply-demand-based contribution ratio (i,j € Z"). According to (3), there are two cases for determining pay!,.
The first case where at most one SD?J is non-zero, i.e., Zf:o SD};T = SD;:J , also includes two conditions. (i) All



Zhu G L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112106:6

supply-demand levels are zero. Since no supply-demand level affects the price, the supply-demand-based price pay’,
is 0. (ii) Only one supply-demand level is non-zero. The pay!, is determined by the only non-zero value SD%H .
In the common case, where more than one SDtgi are non-zero, we proportionally weight their contributions to
payl, using ®gq(-). In addition, since the influence of future predictions should decrease with time, we incorporate
an attenuation coefficient A to discount the impact of SD%H at later time steps [9]. To illustrate the operation of
supply-demand-aware pricing more intuitively, we provide a running example as follows.

Example 1. Consider a matching pair (w, 7), where task 7 is located in the region R with a fare f; = 10. We set
a=0.5, A =0.8, and F' = 2. Suppose that the values of SDgi varying i € [0, F] are 1, 0 and 0.5. According to (3),
the SD-based contribution ratios ®4q(+) varying time steps i € [0, F] are 0.67, 0, and 0.33. The supply-demand-aware
price for the worker w is price(r) = 0.5 x 10+ 0.5 x 10 x (0.8° x 0.67 + 0.8 x 0+ 0.8% x 0.33) =5+ 5 x 0.88 = 9.4.

3.3 Problem formulation

Based on the aforementioned system and pricing models, in what follows, we first define the objective function (i.e.,
matching revenue) of the POCTA problem, which is used to evaluate the quality of each worker-task assignment.
We then formally define the POCTA problem.

Definition 5 (Matching revenue). Given a mobile worker w and a crowdsensing task 7, the matching revenue of
matching pair (w,7) € W x T can be calculated as u(w, 7) = f — pay(w, 7), where pay(w, 7) is the payment of w.

Since workers exhibit varying levels of efficiency and quality in task execution, we consider worker payment
pay(w, ) to be determined by multiple factors, including supply-demand conditions, detour distance, and task
remaining time, which is calculated by

pay(w, T) = price(r) (ﬁAw +(1- B)Atw), (4)

where price(7) denotes the supply-demand-aware price, and © = A7 + (1 — 8)At,, is a discount function with
range [0,1]. Here, 8 is a parameter that balances the influence of detour distance and task urgency. Specifically,

Ar(w, ) represents the detour ratio incurred by inserting task 7 into the current schedule S,, of w, and is computed
W(li,li+1)
W(li,l.,-)+71'(l.,- ,li+1)

At,, is the task response ratio, which is calculated as At,, = 1 —

, where 7(-,-) is the shortest distance between two locations; and
td—t.
td—t,
in our worker payment model, the platform’s profit is positively influenced under the following three conditions:
(i) the supply-demand condition is globally balanced or oversupplied; (ii) the detour distance between workers and
tasks is minimized; and (iii) tasks are assigned as early as possible.

As stated above, the platform’s profit is inversely related to worker payments; thus, maximizing overall profit en-
tails minimizing total payments to workers. According to (4), the worker payment lies within the range [0, price(7)].
However, intuitively, workers should not be unpaid or underpaid. To address this, we introduce a guaranteed pay-
ment f3 for completing task 7 to ensure a minimum benefit for each worker. For simplicity, we assume f; is positively
correlated with the task fare, i.e., f, = €f,, where € is a tunable scaling factor. As illustrated in Figure 2(c), when
pay(w,T) < fp, the platform pays the worker w the guaranteed amount fj,; otherwise, the worker receives pay(w, 7)
and thereby gains additional rewards. We next provide the formal definition of task assignment.

as Am(w,T) = miny¢gs, -1 1 —

, where t. is the current time. Obviously,

Definition 6 (Task assignment). Given a set of tasks 7 and a set of workers W, task assignment refers to the
platform finding a matching plan M = {(w, 7)|w € W, T € T} that satisfying both workers’ and tasks’ constraints.

In the POCTA problem, tasks arrive at the platform dynamically in the form of streams [14,28]. Following the
method proposed in [5,9,14,26], we divide the stream of tasks into batches (b1, ..., b,) and assign tasks at the end
of each batch. Any unassigned tasks in the current batch b; will be handled in the subsequent batch b; ;. Based
on the system and price models defined above, the POCTA problem can now be formally defined as follows.

Definition 7 (POCTA problem). Given a set of crowdsensing tasks 7 and a set of vehicle-based mobile workers
W, the POCTA problem aims to find the best task assignment M with platform profit

UM) = Z u(w, 7), (5)

(w,7)eEM

s.t., (i) U(M) > maxpem U(M;), (i) 3, cp Wwi, 7) < 1, (iii) Y2, o7 I(w, ;) < Gw, where M records all task
assignment plans, 7, C 7 denotes the tasks assigned to worker w, and I(-, -) is an indicator function that returns 1
if task 7 is assigned to worker w and 0 otherwise. Eq. (i) indicates that the task assignment plan M is optimal in M,
maximizing the platform’s profit U(M); Eq. (ii) ensures that each task 7 is assigned to at most one worker [5,9,14];
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Figure 3 (Color online) Overview of the PTA framework for the POCTA problem.

Eq. (iii) states that a worker w can be assigned one or multiple tasks, as long as their schedule S,, remains valid
after inserting the assigned tasks.
We finally theoretically analyze the complexity of the POCTA problem in Theorem 1.

Theorem 1. The POCTA problem is NP-hard.
Proof. The proof is shown in Appendix A.

4 Solutions for POCTA problem

In this section, we first present the PTA framework and then detail our proposed solutions.
4.1 Framework overview

As shown in Figure 3, the PTA framework is designed to effectively address the POCTA problem by maximizing
the platform’s profit. It comprises two main stages: task prediction and task assignment. Specifically, ) given a
stream of crowdsensing tasks and vehicle-based mobile workers, @) PTA first employs the DL-based MVSTAnet
to predict the future spatiotemporal distribution of tasks at the regional level. Then the price model adaptively
adjusts the task price based on the predicted supply-demand conditions to incentivize workers to move with demand
orientation. In the second stage, 3) PTA utilizes the BROTA algorithm, which iteratively applies a packing-aware
matching operator and an adaptive assignment-breaking operator to identify the optimal task assignment.

4.2 Multi-view spatio-temporal attention network

The supply-demand-aware price model suggests that we need to predict both supply and demand conditions at
the regional level. For worker supply prediction, we adopt the arrival time method introduced in [12], which has
been shown to be effective because workers are traceable and their mobility patterns are predictable. For task
demand prediction, we propose the DL-based MVSTAnet, which effectively captures three types of correlations.
(i) Temporal correlation: the demand in a given time step is often influenced by previous time steps. For example,
in the context of crowdsensing, if demand (e.g., detecting congestion) increases in previous time steps, it is likely to
continue increasing in subsequent steps. (ii) Spatial correlation: the demand conditions of adjacent or similar regions
may affect each other. For instance, when demand (e.g., taking pictures) surges in a city’s central business district,
it often triggers increased demand in nearby regions due to spatial and functional connectivity. (iii) Spatiotemporal
correlation: the demand conditions of a region at time step ¢ may be influenced by its adjacent regions in earlier time
steps. For instance, if traffic conditions worsen in a region, commuters may seek alternative routes in surrounding
areas, thereby increasing demand (e.g., detecting congestion) in neighboring regions during subsequent time steps.

The MVSTAnet structure, shown in Figure 4, comprises three main components: the temporal correlation view
Vr, spatial correlation view Vg, and spatiotemporal correlation view Vgr. MVSTAnet takes as input historical
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Figure 4 (Color online) Overview of the MVSTAnet.
task observations [X;_p,..., X;] € RP*V | the road network Gn = (Vn, Ey), and auxiliary factors [¢—p, ..., 1]
(e.g., weather and events), to predict future task distributions [Y;41, ..., Y r] € REXN where N is the number of

regions, and P and F' denote the numbers of past and future time steps, respectively. Specifically, Vr takes three
types of temporal sequences as input, closeness (X¢), period (Xp), and trend (X¢), and captures their hidden
temporal features (Hco, Hp, and Hg) using GRUs. In Vg, we construct the similarity-aware graph G, and distance-
aware graph G4, and propose the dual-path residual connection GCN (DR-GCN) module to capture the similarity
and geographic correlations of regions in the road network. In Vg7, we integrate temporal and spatial features
(Hes and Hepgs), and feed them into the dual-channel spatio-temporal attention (DCSTA) module to extract
both short-term local (Hg) and long-term global (Hig) spatiotemporal dependencies. Finally, the spatiotemporal
features Hgr are projected into the prediction results via fully connected layers (FCs). For model training, we

use the loss function loss = ||Y — Y||2 + whlyeg to measure the error between predicted results [}A/Hl, ..., Y ] and
ground truth [Yi41,..., Y4 ], where w is a hyperparameter and L,es is the Ly regularization term used to alleviate
overfitting.

Temporal correlation modeling view Vp. Given a sequence of historical data, we divide it into three segments
along the temporal dimension [21]: recent, daily, and weekly periodic time steps. These segments generate three
types of temporal sequences: closeness X¢ = [X;—1,, X (1.-1),. -, X¢]; period Xp = [Xi—1,5p, Xi—(1,—1)xp>- -
Xip); and trend Xq = [X¢—1,xq, Xi—(1,~1)xq> - - -» Xt—q|- Here, I, I, and I; denote the number of time steps; p is
the daily time interval (e.g., 24 h per day); and ¢ is the weekly interval (e.g., 24 x 7 h per week).

Since task release is significantly influenced by external factors, we use the contextual factor fusion (CFF) module
to integrate three external factors, i.e., weather, date (day of the week), and time (time of day), into the historical
data using feature embedding techniques, followed by FCs. We then introduce GRU models to capture the temporal
dependencies hidden in X¢, Xp, and Xg. GRU is a commonly used model for processing time series data, employing
multiple gates to regulate the retention and removal of features within a sequence.

Spatial correlation modeling view Vg. Accurate prediction of task demand requires effective modeling of
intricate spatial dependencies hidden in input sequences. According to the functional characteristics and physical
proximity of regions [16, 20, 21], there are two main types of spatial correlations: semantic relationships and ge-
ographical distribution. Specifically, semantic relationships describe that similar functional regions often exhibit
similar demand changes; geographical distribution points that the proximity of regions affects task distribution due
to the mobility of tasks and workers. To this end, we construct two graphs, namely, the similarity-aware graph and
the distance-aware graph, to model the above two types of spatial correlations.

e The similarity-aware graph is denoted as Gy = (R, As), where R € R is the region set, A, € RV*N is
similarity matrix of regions. We calculate each edge weight A7 ; € A, using the cosine similarity between feature
vectors R, and R;, which incorporate properties such as points of interests’ (POIs in short) types, the number of
POIs of each type, and historical demand observations.

e The distance-aware graph is denoted as Gq = (R, A4), where A5 € R¥*¥ is proximity matrix of N regions R.
The weight Aﬁ ; € Aq of each edge is determined by the Euclidean distance between regions R; and R;.

It is important to note that G, and G, can also be extended to other graphs according to specific prediction
targets, such as the trajectory similarity graph and the connectivity-aware graph [16,17,20,21]. Since G; and
Gq are non-Euclidean graph structures that lack translation invariance, traditional discrete convolution, which
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relies on translation invariance, cannot be directly applied to non-Euclidean data. GCNs consisting of multiple
convolutional layers are effective at processing such non-Euclidean structures [16-18]. They operate directly on
the structural information of graphs and capture local patterns by aggregating features from neighboring nodes.
However, traditional GCNs mainly capture local spatial correlations, which may limit their ability to model global
dependencies. This is because even if some nodes are far apart in the graph structure, there may still be functional
similarities.

We hence propose the DR-GCN module, which mainly exploits the graph attention network (GAT) to effectively
model semantic and geographical spatial correlations. GAT usually comprises a set of self-attention (SA) layers and
GOCN layers [16,29]. We also apply residual connection after SA layers to alleviate gradient vanishing and stabilize
network training. Moreover, for modeling spatial dependency in G4, we use a standard GCN that performs a 1-hop
diffusion process in each layer, enriching a node’s feature vector by linearly combining the features of its neighbors.
The GCN layer is defined as

hish =0 (D*%AD*%thl) : (6)

where W is a trainable weight matrix, and D=2 AD™ 2 is the symmetric normalized laplacian with A=D-A. For
modeling spatial dependency in G, we adopt a globally consistent convolution approach, termed PGCN, which uses
point-wise mutual information (PPMI) to encode semantic information and capture global correlations between
nodes [30,31]. The PGCN layer is formulated as

hish =0 (D*%PD*%thl) , (7)

where P is a PPMI matrix calculated from random walks in the graph [30]. After capturing both semantic and
geographical spatial features using GCN and PGCN;, respectively, we finally concatenate them to obtain the fused
spatial representation Hg.

Spatiotemporal correlation modeling view Vgr. In the context of our POCTA framework, task prediction
involves two primary types of spatiotemporal correlations: short-term local and long-term global correlations.
Short-term correlations capture the influence of adjacent times and regions on future task prediction, while long-
term correlations reflect the impact of semantically related but distant times and regions. To this end, we design the
DCSTA module to assign dynamic weights to the spatiotemporal features associated with both types of correlations.

For short-term local spatiotemporal correlation, we concatenate the closeness temporal feature Ho and spatial
feature Hg into short-term spatiotemporal feature Heog. For long-term global spatiotemporal correlation, we con-
catenate closeness, period, and trend features Hc, Hp, Hg and spatial feature Hg into long-term spatiotemporal
feature Hopgs. We feed both Hog and Hepgs into the DCSTA module, which primarily consists of the spatio-
temporal network (STAnet) block and a gated fusion technique. The STAnet block is employed to assign adaptive
attention weights to the spatiotemporal features across various spatial regions and temporal steps. Specifically, as
shown in Figure 4, given the input feature H;_; of the (I — 1)-th block, the STAnet block first uses the multi-head
attention mechanism to learn the feature representation of multiple feature spaces. Then, a two-layer feed forward
neural network (FFNnet) is used to further learn the interactions among latent features. The process of an STAnet
block can be formulated as

headé— = Attention(WleH[ + WjKl H, + WJ-VZ Hy), (8a)
MultiHead(H;) = Concat(head!, ..., head’ )W, (8b)
i = (ReLu(ﬁfW{)) Wi, (8¢c)

where head denotes the result of the j-th self-attention layer of the STAnet block; WQL WKL and WVL are weight
matrices of query, key, and value subspaces, respectively; MultiHead(H;) denotes the result of the multi-head
attention layer; H* i is the result of the residual connection; ReLu is a nonlinear activation function; H; is the result
of the FFNnet layer.

The gated fusion technique enhances the performance and robustness of the models by filtering out the noise and
redundancy in the feature fusion process. Thus, in the DCSTA module, we use a gated fusion to adaptively fuse
Hg and Hg to output the dual attention feature H,, which is formulated as

H=2®Hg+ (1-2)® Hyg, (9a)
z=0(HaW,1 + HigW.2 +0.), (9b)

where W1, W2 and b, are learnable parameters, and z is the gate. After passing through the FC layers, we finally
obtain the predicted results [Yi41,..., Yiir].
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4.3 Dynamic price-aware crowdsensing task assignment

In this subsection, we present the proposed BROTA algorithm for task assignment and detail its main components,
i.e., matching operator and breaking operator.

4.3.1 Break-and-rematch online task assignment

In the POCTA problem, maximizing the platform’s profit means minimizing worker payment pay(w,7) (referring
to (4)), which is dominated by three aspects: detour distance, response time, and supply-demand price. A higher
matching revenue of the assignment pair (w,7) usually suggests that (i) the detour distance between w and 7 is
lower; (ii) the task 7 is completed soon; and (iii) the region where task 7 is located enjoys worker oversupplied or
supply-demand balance conditions. Evidently, if condition (iii) is satisfied, then conditions (i) and (ii) are more likely
to be achieved. However, in practice, the number of workers is limited, usually much smaller than the number of
tasks. Hence, achieving global worker oversupply or balanced supply-demand conditions is a stringent requirement.
To this end, we propose the BROTA algorithm, which iteratively uses breaking and matching operators to optimize
task assignment, i.e., breaking the matching pairs with lower profit and higher supply-demand imbalance, and
rematching the broken sides of workers and tasks. We adopt a batch-based processing mode that accumulates
dynamically arriving tasks and matches them with suitable workers within each batch. Compared with the instance
processing mode (i.e., tasks are processed sequentially in the order of arrival), the batch-based mode typically results
in higher matching quality [3,9,10,14,32]. This is because the matching batch can include more candidate workers
and tasks, thereby increasing the likelihood of optimal task assignment.

The pseudo-code of BROTA is presented in Algorithm 1. Given a stream of tasks 7, a set of workers W
and a batch size Ab, BROTA first accumulates a batch of tasks in 7; (lines 4-6). Then, when the cumulative
timeline teym reaches the batch size Ab, BROTA performs supply-demand prediction (lines 8-11) and break-and-
rematch assignment (lines 12-27), respectively. Specifically, in the supply-demand prediction step, BROTA first
retrieves available workers W, € W that satisfy worker constraints. It then encodes historical task sequences
X = [Xi—p,..., Xy, auxiliary factors ¢» = [)i—p,...,¢;] and road network G, = [Gs,Gq]. After that BROTA
obtains the future spatiotemporal patterns of tasks Y = M,(Gn; X, 1) with the proposed MVSTAnet, and the
future spatiotemporal patterns of workers Z = [Zt+1, /A r] with the arrival time method [12]. In the break-
and-rematch matching step, BROTA first calls the matching operator to generate the initial task assignment M. Tt
then filters out matching pairs M that incur a large supply-demand gap, while assignments M that help balance
the supply-demand gap (e.g., workers in oversupplied regions are guided to tasks in undersupplied regions) are
stored in M;. BROTA finally iteratively invokes the breaking and matching operators s times to break and repair
the worker-task matching and output the optimal result M. Here & is the maximum number of tasks assigned to
a single worker in the current batch.

4.3.2  Packing-aware matching operator

For the matching operator, a typical solution is to model the relationship between workers W; and tasks 7T; in b;
as a weighted bipartite graph G, and to find the optimal matching plan M; based on G,. We first introduce the
multi-round bipartite graph matching algorithm (MBiGM), which invokes the Kuhn-Munkres (KM) algorithm [33]
multiple times to derive the optimal task assignment in G,. However, MBiGM incurs significant computational
overhead due to the repeated construction and updating of the bipartite graph. To address this limitation, we next
propose the breaking-based task packing assignment (BTPA) algorithm, which achieves a balance between efficiency
and effectiveness by incorporating task-packing and package-breaking strategies, along with several acceleration
techniques. BTPA models the relationships between workers and task packages (i.e., grouped tasks) within a batch
as a dual-weighted bipartite graph G, = (W;,T7,&,), where each edge e;j € & is associated with two weights
[u(w,T7), Ag(w,T'7)], representing the matching revenue and supply-demand gap increment, respectively. The
weight Ag reflects the impact of assigning a task package I'” to worker w on the overall supply-demand balance.
Ag > 0 indicates that the gap is either unchanged (e.g., assignments performing in the same region) or worsened
(e.g., assignment leads to oversupply or undersupply); conversely, Ag < 0 indicates that the supply and demand
gap is alleviated.

In the BTPA algorithm, we group spatially adjacent tasks (e.g., located on the same street or in the same
neighborhood) into a single package I'". The pairwise distance between any two tasks satisfies (I, l,,) < 0, where
6 is a predefined threshold that represents the maximum allowable intra-package distance. After task packing,
we identify reachable workers W'~ for each package I'". We also adopt time-bounded inverted lists (TBIL, our
proposed method in [5]) for worker indexing and status updates to accelerate the search for candidate workers. It
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Algorithm 1 Break-and-rematch online task assignment.

Input: A stream of tasks 7, a set of workers W, and a batch size Ab.

Output: A matching plan M.

1: M+ 0, tecum < 0, and Tz < 0;

2: Initialize the task prediction model M), matching operator M, , and breaking operator Mp;
3: while time line ¢ is not terminal do

4: for each new arriving task 7 € T do

5: T < T UT;

6: Remove 7 from T;

/* Step 1: supply-demand prediction */

7: if Ab == tcum then

8: Retrieve available workers W; € W that satisfy worker constraints;

9: Encoding historical task sequences X, auxiliary factors ¢ and road network G, ;
10: Obtain the future spatiotemporal patterns of tasks Y = My (Gns; X, 9);
11: Obtain the future spatiotemporal patterns of workers Z = [Zi11, ..., Zt+r| with the arrival time method [12];

/% Step 2: break-and-rematch assignment */
12: MtI < initialize task assignment with matching operator M, (W, T;);
13: MtG7 MtB < Split MrI considering incurred supply-demand gap;
14: My + My |JME;
15: for k <~ 0 to k do
16: MtB + Invoke breaking operator My (Y, Z, MtB);
17: Update Wy and T; based on MtB;
18: ME + Invoke matching operator M,.(W;, T7);
19: if Ry(MP) > Ri(MP) then
20: MEB « ME;
21: end if
22: k<« k+1;
23: end for
24: M + M UMP and M < M My;
25: teum < 0, Tz < 0 and My + 0;
26: end if

27: end for

28: tecum ¢ teum + 1;
29: end while
Return: M.

partitions the road network into grid cells and constructs an inverted list for each cell based on workers’ reachable
areas and time intervals. When searching for candidate workers for a task, TBIL first identifies adjacent grid cells
and then further filters workers within those cells. This approach avoids searching all workers globally, thereby
improving search efficiency. There are also cases where the package cannot find a valid worker. Hence, we design a
package-breaking policy, i.e., tasks with the minimum remaining time #,,;, are successively removed to generate a
new package I'T until candidate workers W " are found or greedily selecting workers who can perform the maximum
number of tasks in the package. Finally, we model the bipartite graph G, where candidate matching pair with dual
weights (w,T'7, [u(w,T'7), Ag(w,T'7)]) and find the best task assignment M; in the multiple rounds manner. Note
that we normalize u(w,'") and Ag(w,T'") to pose equal impact. Due to the space limitation, we detail the MBiGM
algorithm and BTPA algorithm in Appendixes B.1 and B.2.

4.3.3 Adaptive assignment breaking operator

Intuitively, for the breaking operator, reducing matching pairs that break the supply-demand equilibrium and worsen
worker oversupply could further improve the long-term profits of the platform. However, we should note that in our
POCTA problem, breaking matching pairs is a dynamic and complex decision-making process affected by multiple
factors (e.g., supply-demand conditions and distance). Traditional heuristic methods, e.g., greedy methods, cannot
make long-term optimal decisions. To this end, we adopt a DRL-based method as the breaking operator to learn
breaking strategies. We define the breaking decision process as the model of multi-agent Markov decision process
(MMDP) DP=(W,S, A, P, R,~), which is detailed below.

Agent w; € W. In our MMDP, each worker is treated as an agent. We assume that all agents are homogeneous
due to their similar capacity to complete spatial tasks. It is worth noting that the number of agents may differ in
each matching round.

State s; € S. We denote the joint state of all agents as s;. Then, the state si € s; of an agent w; is presented as a
six-entry tuple st = (A, Aty,,nd,n? 0", nid). All six entries are normalized to range [0, 1]. Specifically, Am; and
At,,, represent the detour ratio and response time ratio, respectively (as detailed in (4)). The entry 1! denotes the

proportion of assignments whose supply-demand gap is greater than the matching pair (w;, ;). It is computed as

9 _ HweW:|Ag(w,mi)>Ag(wi,7i)}|
n = [W.

, where W, is a set of candidate workers of 7, and Ag(w;, 7;) represents the potential

r
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increase in the global supply-demand gap after virtually completing (w;, 7;). Similarly, ¥ denotes the proportion
of matching pairs with a profit lower than that of (w;, 7;). The entry n;"? represents the proportion of assignments
assigned to w; in the current batch b, that have a supply-demand gap lower than that of (w;, 7;). Clearly, n;"? reflects
the potential loss in supply-demand balance if the assignment (w;,7;) is removed. More specifically, if |7;‘3| > 0,

Tt A T A 1yl :
n'e = s €T, q(TT,TJI)> glws )}I if [74,] =0, 77“”7 = 0, where T is a set of tasks assigned to the worker w;
_ I%708DE, fz |
in the ¢t-th batch. The entry ns¢ R” specifies the supply-demand gap between the region

where w; is located and that of 7; over the next F time steps. It reflects the future supply-demand impact on the
agent’s break-or-not decision.

Action a; € A. At each time step ¢, the action of agent w; is defined as a} € {0,1}, where a = 1 or 0 represents
the break-or-not decision for a matching edge of w;. The joint action a; of all agents thus represents a sequence of
break-or-not decisions for the entire task assignment at t.

Immediate reward R =S x A — R. We evaluate the effectiveness of the breaking operations in task assignment
based on the current profit Ry(M;) = us(M;) — gap{?(M;) from the rematching operation. As such, the cumulative
reward is typically defined as the sum of rewards obtained by agents over a series of future time steps starting from
a certain time step, formulated as

Ri(st,at) = Rey1 + YRipo + - + 4" ' Rypn, (10)

where R; is the cumulative reward starting from time step ¢; v"~'R;;,, is the immediate reward obtained at time
step t + n; v is the discount factor, which ranges between 0 and 1 and determines the relative importance of future
rewards compared to immediate rewards.

As mentioned above, since the number of agents can vary in each matching round, the dimensions of the action a;
and state s; often differ from those of as41 and s¢y1. To address this, we adopt the centralized learning framework
proposed in [28,34], which uses a single neural network to model the decisions of all agents, with shared weights
across agents. We leverage double deep Q-network (DDQN) to solve the decision problem in the above MMDP
model. DDQN mitigates overestimation bias in Q-learning by using a target network for action selection, which
enhances stability and convergence. We train the networks using the mini-batch backpropagation algorithm to
minimize the loss:

L(0) = [Qt(stvaﬁ@) - <7"t +v max Q (i1, ae41;0 )>:|25 (11)

ary1€A

where 6 and 6’ are learnable parameters of behavior and target Q-networks [35], respectively.

5 Evaluation

In this section, we first detail the experimental settings and then evaluate the performance of the proposed methods
on two real-world datasets.

5.1 Experiment settings

Datasets and parameters. We conduct experiments on two real-world datasets [5,9,11,14]: Chengdu (CD for
short) dataset comprising 7065937 orders in November 2016, and Haikou (HK) dataset including 14160170 orders
from May 1 to October 31, 2017. Each instance records five properties: index, origin, destination, departure time,
and arrival time. These two datasets are sourced from Didi Chuxing). The road networks for Chengdu (with 290517
nodes and 20343 edges) and Haikou (with 135521 nodes and 6377 edges) are extracted from OpenStreetMap?. The
experimental parameter settings, including their default values (highlighted in bold), are configured in Table 2.
Due to space limitations, the detailed experimental settings and several extensive experiments are provided in
Appendix C.

Metrics and implementation. We adopt three commonly used evaluation metrics in the prediction research
community [16-18,20] for task prediction comparison, i.e., mean absolute error (MAE), root mean squared error
(RMSE), and accuracy (Acc). For task assignment, we utilize two commonly used metrics in the spatial crowd-
sourcing community [5,16], i.e., the total profit of the platform (an effectiveness metric, TP) and batch processing

1) https://outreach.didichuxing.com.
2) http://www.openstreetmap.org.
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Table 2 Parameter settings. The default values are highlighted in bold.

Parameters Values

# of past time steps P 6, 12, 18, 24

# of future time steps F' 1, 2(HK), 3(CD), 4

# of tasks |T| (HK) (k) 4, 6, 8,10, 15
# of workers |W| (HK) (k) 0.4, 0.5, 0.6, 0.7, 0.8

# of tasks |T| (CD) (k) 20, 25, 30, 35, 50
# of workers |W| (CD) (k) 0.9, 1.2, 1.5, 1.8, 2.0
Maximum expected tasks ¢, 20, 25(HK), 30(CD), 35, 50

time (an efficiency metric, BPT). All methods are implemented in Python and PyTorch, and evaluated on a PC
equipped with an Intel 19-11900@2.50 GHz CPU, an NVIDIA GeForce RTX 3060 GPU, and 32 GB of memory.

Compared approaches. For task prediction, we compare MVSTAnet with four advanced solutions. (i) T-
GCN [17], an integrated network that effectively captures spatial and temporal correlations. (ii) GMAN [18],
extracts spatiotemporal correlations and assigns different weights using several well-designed attention modules.
(iii) STGCSL [20], an integrated network that captures spatial, temporal, and short-term spatiotemporal depen-
dencies. (iv) BSTGCNet [16], the latest task prediction network that explicitly models the correlations between
zones from the perspectives of similarity, proximity, and distance, and enables the extraction of deep non-Euclidean
spatial features. For task matching, we compare the proposed algorithms, including: (i) BROTA+BTPA (BRBT
in short), where BTPA serves as the match operator; (ii) BTPA; (iii) BROTA+MBiGM (referred to as BRMB),
where MBiGM serves as the match operator. We also compare these with the following state-of-the-art solutions.
(i) PBO [5], the latest packing-aware approach that packs suitable tasks into packages, while it lacks a package-
breaking mechanism. (ii) OTA [3], a predictive solution that applies a depth-first search procedure to identify a
valid task set (including real-time and future tasks) for each worker. (iii) SIDF* [6], a distance-based greedy method
that selects candidate workers for tasks with the shortest travel distances.

5.2 Analysis of experimental results

In this subsection, we examine the performance of MVSTAnet and BROTA.

5.2.1 FEwaluation of task prediction

We first compare MVSTAnet with other state-of-the-art networks.

Exp-1: effect of P. Table 3 shows the performance of MVSTAnet and other models in terms of RMSE, MAE,
and ACC for different P values (ranging from 6 to 24). For both the CD and HK datasets, the performance of
all models generally improves as P increases, since the inclusion of more historical data allows for richer feature
learning. However, we observed that the improvement in prediction performance is not linear with increasing P, but
rather gradually diminishes. We attribute this phenomenon to the following reasons: (i) the inherent limitations
of model capacity; (ii) the presence of outliers or irregular historical patterns in the data; and (iii) an excessive
amount of input may lead to overfitting. We explain the superiority of MVSTAnet as follows. Compared to T-
GCN, MVSTAnet captures richer spatial features and employs attention mechanisms to enhance robustness. In
contrast to GMAN and STGCSL, it can simultaneously model three types of correlations, i.e., spatial, temporal,
and spatiotemporal. Moreover, MVSTAnet outperforms BSTGCNet due to its DCSTA module, which captures
both short-term local and long-term global spatiotemporal correlations. This significantly enriches the model’s
understanding of historical patterns and further improves predictive accuracy.

Exp-2: effect of F'. Table 4 presents the performance of models with different F' values. It is observed that
as the F' value increases, the performance of all models gradually declines. This trend is attributed to the fact
that, with a fixed input sequence length, a larger output prediction horizon increases the difficulty of the prediction
task. Similar to the effect observed with increasing P, the performance initially decreases slowly with increasing F,
but then declines sharply beyond a certain point. For example, on the HK dataset, MVSTAnet’s accuracy drops
by only 3.36% when F increases from 1 to 2, but declines by 16.70% when F reaches 4. Likewise, MVSTAnet
outperforms other models in almost all metrics. For instance, on the CD dataset, MVSTAnet’s accuracy exceeds
that of T-GCN, GMAN, and BSTGCNet by a margin ranging from 1.85% to 3.99%. These results on varying I’
values further confirm the strong performance of MVSTAnet in task prediction.
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Table 3 Prediction results on CD and HK datasets with different P values. Bold values represent the best performance of all prediction
networks under the relevant metrics.

p Metric Haikou Chengdu
T-GCN  GMAN STGCSL BSTGCNet MVSTAnet T-GCN GMAN STGCSL BSTGCNet MVSTAnet
RMSE 6.1054 5.55 5.7236 5.3054 5.3257 2.9961 2.8821 3.0275 2.7225 2.6525
6 MAE 4.5096 4.1594 4.2945 3.8275 3.9135 2.2235 2.1901 2.2972 2.0372 1.9434
ACC 0.7836 0.8151 0.8115 0.8241 0.8223 0.6431 0.6565 0.6431 0.6735 0.6834
RMSE 5.4888 5.3758 5.3872 5.2738 5.1351 2.8534 2.8524 2.8551 2.6241 2.5561
12 MAE 4.2199 4.0015 4.0472 3.7537 3.541 2.1440 2.1435 2.1965 1.9372 1.8734
ACC 0.8005 0.8208 0.8187 0.8356 0.8407 0.6601 0.6606 0.6593 0.6861 0.6927
RMSE 5.3677 5.3492 5.3532 5.2531 5.1257 2.8334 2.8143 2.8291 2.5376 2.4882
18 MAE 4.0131 3.9867 3.8421 3.6218 3.5072 2.1601 2.1527 2.1653 1.8379 1.7797
ACC 0.8182 0.8213 0.825 0.8395 0.8457 0.6624 0.6634 0.6621 0.6981 0.7021
RMSE 5.3526 5.3154 5.3351 5.1033 5.0145 2.7721 2.7697 2.7721 2.4734 2.3718
24 MAE 3.9951 3.9886 4.1162 3.5492 3.3381 2.0961 2.0887 2.1219 1.7581 1.6729
ACC 0.8217 0.8273 0.8271 0.8419 0.8430 0.6698 0.6712 0.6651 0.7037 0.7045

Table 4 Prediction results on CD and HK datasets by varying F' values. Bold values represent the best performance of all prediction networks
under the relevant metrics.

Dataset r T-GCN GMAN STGCSL BSTGCNet MVSTAnet
1 0.8436 0.8551 0.8465 0.8641 0.8743
HK 2 0.8005 0.8208 0.8187 0.8356 0.8407
3 0.7482 0.7613 0.7525 0.7895 0.7857
4 0.6417 0.6773 0.6721 0.6919 0.7073
1 0.8135 0.8265 0.8331 0.8435 0.8534
D 2 0.7335 0.7541 0.7435 0.7657 0.7726
3 0.6601 0.6606 0.6593 0.6861 0.6927
4 0.6198 0.6212 0.6251 0.6437 0.6450
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Figure 5 (Color online) Matching results on CD and HK datasets by varying the values of |W|, |T| and c.. (a) |[W| vs. TP (HK); (b) |[W]|
vs. BPT (HK); (¢) |T| vs. TP (HK); (d) |T| vs. BPT (HK); (e) ¢y vs. TP (HK); (f) cw vs. BPT (HK); (g) |W| vs. TP (CD); (h) |[W] vs.
BPT (CD); (i) |T| vs. TP (CD); (j) |T| vs. BPT (CD); (k) cw vs. TP (CD); (1) ¢y vs. BPT (CD).

5.2.2  Ewvaluation of task assignment

We next examine the performance of our proposed task assignment algorithms.

Exp-3: effect of |[W|. Figures 5(a), (b), (g), (h) illustrate the efficiency (i.e., BPT) and effectiveness (i.e.,
TP) of all algorithms as varying the values of |WW|. While increasing |WW| initially leads to higher TP and BPT
values, the growth rate gradually slows down owing to the diminishing marginal utility of additional workers and
the constraints imposed by task and worker deadlines. As expected, although SIDF* and PBO excel in efficiency,
they are local optimization methods. Thus, they are unable to achieve higher-quality task assignments. In contrast,
the break-and-rematch algorithms (BRMB and BRBT) incur higher computational costs due to graph breaking
and rematching. However, they deliberately trade off some efficiency to achieve greater effectiveness. For instance,
under the default settings in the HK dataset, BRBT incurs approximately 2.5 s of additional matching time to
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Table 5 Significance testing of the proposed methods.

Dataset Prediction (MVSTAnet VS T-GCN) Matching (proposed methods VS SIDF*)

Metric D Sp t-statistic Significant? Method D Sp t-statistic Significant?
RMSE 0.3215 0.04133 19.05 vV BRBT 28013.82 3461.27 19.82 vV

CD MAE 0.3157 0.0319 24.24 Vv BTPA 21535.55 1684.28 31.32 V4
ACC 0.0378 0.0063 14.70 vV BRMB 34611.44 4747.57 17.86 v
RMSE 0.3667 0.0269 33.39 Vv BRBT 7432.58 1775.5 10.25 Vv

HK MAE 0.6630 0.0451 36.01 vV BTPA 6117.63 605.53 24.78 v
ACC 0.0463 0.0088 12.89 Vv BRMB 11583.93 907.09 31.28 V4

achieve a 4.54% increase in TP compared to BTPA. In fact, the increase in BPT is generally acceptable in most ITS
applications, given the corresponding gain in profit. Compared to OTA, which assigns both real-time and future
tasks, our BTPA algorithm may not always achieve higher TP, but consistently outperforms in terms of BPT. This
difference arises because OTA directly guides workers to future task locations, while our method adjusts real-time
task prices based on anticipated supply and demand, indirectly guiding workers and influencing supply-demand
dynamics. However, both BRMB and BRBT achieve higher TP than OTA, which illustrates that our BROTA can
provide a higher quality of task assignment. Similar performance trends are observed across both datasets.

Exp-4: effect of |T|. Figures 5(c), (d), (i), (j) display the effect of varying |7| on the performance of all
algorithms. The results indicate that both BPT and TP steadily increase with the growth of |7 across both
datasets. This is because a larger | 7| provides workers with more opportunities to complete real-time tasks. Across
all values of |T|, BRMB and BRBT consistently achieve the highest TP, outperforming MBiGM and BTPA; this
demonstrates the effectiveness of the assignment-breaking strategy. Among them, BRMB yields the highest profit
but incurs more batch processing time, followed by BRBT, OTA, BTPA, PBO, and SIDF*.

Exp-5: effect of ¢,. Figures 5(e), (f), (k), (1) report the results as the values of workers’ maximum expected
number of tasks (i.e., worker capacity) ¢,, are adjusted. A higher value of ¢,, intuitively implies that each worker is
qualified for a greater number of tasks. As anticipated, the BPT and TP of all algorithms increase accordingly. It is
noteworthy that once ¢,, reaches a certain threshold (e.g., ¢,, = 30 in the HK dataset), the rate of improvement in
TP slows down. This phenomenon can be explained by the fact that increasing c¢,, does not alter the total number
of workers, leading to some tasks still struggling to find suitable workers due to constraints such as task deadlines.
Notably, algorithms based on packing strategies, i.e., PBO and BTPA, are more susceptible to the effects of small
C-

5.2.3  Significance testing

To validate the effectiveness of our proposed approaches and enhance the credibility of the results, we perform
paired t-tests comparing the performance of our methods with the baseline methods (T-GCN [17] and SIDF* [6]).
Specifically, we define the null hypothesis as Hy : ftproposed = Mbaseline; indicating no significant difference between
the proposed method and the baseline. The alternative hypothesis is denoted as Hi : fiproposed < Hbaseline (for error
metrics RMSE and MAE) or Hi : fiproposed > Mbaseline (for accuracy Acc and profit TP metrics), indicating that

the proposed method performs significantly better than the baseline. We calculated the t-statistic as t = ﬁ,

where D is the mean difference between paired observations, Sp is the standard deviation of the differences, and
n is the number of paired observations. For task prediction, we select data from 13:00-4:00 over 20 days from
the CD and HK datasets, and compute the average RMSE, MAE, and ACC for each day. For task assignment,
we conduct 20 rounds of experiments under default settings and record TP for each round. Thus, we obtain 20
statistical observations (i.e., n = 20) of RMSE, MAE, ACC, and TP. Hypothesis testing is performed with 19
degrees of freedom and a significance level of a = 0.025 (one-tailed). From the ¢-distribution table, for df = 19 and
o = 0.025 (one-tailed), the t-critical value is tg.025,19 = 2.093. Thus, if the ¢-statistic exceeds 2.093, we reject the
null hypothesis; otherwise, we fail to reject it.

As shown in Table 5, the significance test for the prediction models reveals that the t-statistic values for all
metrics (RMSE, MAE, and ACC) of our proposed MVSTAnet, compared to the baseline T-GCN on both the CD
and HK datasets, exceed the critical value of tg 92519 = 2.093 (with df = 19 and o = 0.025). Similarly, for task
matching, the t-statistic values of our proposed algorithms (BRBT, BTPA, and BRMB), compared to the baseline
SIDF* on TP, also exceed the t-critical value of 2.093. These results show statistically significant improvements at
the o = 0.025 level (p-value < 0.025), confirming the superiority of our methods over the baselines. Furthermore,
the significance tests confirm that our methods consistently outperform the baselines, as evidenced by the ¢-statistic
values exceeding the critical threshold.



Zhu G L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112106:16

6 Conclusion and future work

In this paper, we study the POCTA problem for profit-driven ITSs. We propose the PTA framework to solve the
POCTA problem by maximizing the platform’s overall profit. We devise MVSTAnet to predict the future distri-
bution of crowdsensing tasks for our task pricing model. Additionally, we develop the online matching algorithm,
BROTA, which assigns tasks optimally between vehicle-based mobile workers and crowdsensing tasks. Our compre-
hensive experiments on real-world datasets validate the effectiveness and efficiency of our proposed methods across
diverse parameter settings.

For future work, we aim to extend this research in two directions. First, we plan to leverage the decision-making
capabilities of large language models (e.g., DeepSeek and ChatGPT) to further optimize task assignment quality.
Second, we plan to investigate the problem of task assignment across multiple platforms to encompass a wider range
of workers and tasks, thus further enhancing the overall effectiveness of task assignment.
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