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Appendix A Proof of Theorem 1

Proof. We establish the hardness of the POCTA problem by transforming it into an instance of a classical NP-hard

problem, known as the 0-1 knapsack problem, which can be described as follows. Given a set of items I and a backpack

B with maximum capacity cB , where each item has two properties, i.e., weight wi and value vi, the 0-1 knapsack problem

aims to select a subset of items that maximizes the total value in the backpack. It is subject to two conditions: (i) the total

weight of the items in B is no more than cB , and (ii) each item can be selected only once.

We consider an instance of the POCTA problem as follows. Given a set of tasks T and a set of workers W , the POCTA

problem aims to find a subset Tsub of T that maximizes the total platform profit. It satisfies two conditions: (i) the size of

Tsub does not exceed cw · |W |, and (ii) each task τ in T is assigned to at most one worker w in W . It is obvious that the

instance of the POCTA problem can be mapped to the 0-1 knapsack problem. Therefore, the proof is completed.

Algorithm A1 Multi-round bipartite graph matching

Input: A set of workers Wt, a set of tasks Tt;
Output: A matching plan Mt;

1: Bt ← ∅ and Mt ← ∅;;
2: for each pair (w, τ) ∈ Wt × Tt do

3: if the matching instance (w, τ) is valid then

4: u(w, τ)← Calculate matching reward;

5: Bt ← Bt
⋃
{(w, τ, u(w, τ))};

6: end if

7: end for

/∗ Multiple-round KM Matching ∗/
8: Build the weighted bipartite graph Gb based on Bt;

9: while Gb ̸= ∅ do

10: Find the optimal matching M ′
t in Gb using KM algorithm;

11: Mt ←Mt ∪M ′
t;

12: Update Gb based on M ′
t;

13: end while

Return: Mt

Appendix B Task assignment for the POCTA problem

Appendix B.1 Multi-round bipartite graph matching

For the MBiGM algorithm, given a set of workers Wt and tasks Tt in the t-th matching batch bt, we construct a weighted

bipartite graph Gb = (Wt, Tt, Et), where Et denotes the set of valid matching edges between workers and tasks. Each edge

e ∈ Et links a worker w ∈ Wt and a task τ ∈ Tt if the matching of w and τ is valid. The edge is associated with a weight

that indicates the matching revenue u(w, τ) for w serving τ . The Kuhn-Munkres (KM) algorithm [1] is widely adopted for

efficiently solving one-to-one assignment problems in bipartite graphs, where each left node is matched to at most one right

node. However, in the POCTA problem, each worker may be assigned multiple tasks. Therefore, we design MBiGM to

derive the optimal matching plan Mt based on Gb.

Algorithm A1 presents the pseudo-code of MBiGM, which first computes edge weights in Gb (Lines 2–7), followed by

task assignment using the KM algorithm (Lines 8–13). In each round, we update Gb based on M ′
t by removing matched

pairs and updating the statuses of the corresponding tasks and workers. We finally return the matching plan Mt.

Complexity analysis. The time complexity of MBiGM is O(k ·max{n3,m3}), where k,m, n are the number of matching

rounds, workers, and tasks, respectively.
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Algorithm B1 Breaking-based task packing assignment

Input: A set of workers Wt, a set of tasks Tt;
Output: A matching plan Mt;

1: Gb ← ∅, Mt ← ∅;
/∗ Step1: Task packing ∗/

2: MD ← Compute distances between tasks in Tt;
3: TreeZ ← Perform hierarchical clustering on MD;

4: ΓT ← fcluster(TreeZ , δ);

/∗ Step2: Package breaking ∗/
5: for Each package Γτ ∈ ΓT do

6: WΓτ

1 ← Find the candidate workers by using the index strategy TBIL and dτ
max;

7: if WΓτ

1 ̸= ∅ then

8: WΓτ

2 ← Filter workers with valid schedule constraint;

9: if WΓτ

2 ̸= ∅ then

10: Gb ← Gb ∪ {(wi,Γ
τ , [u(wi,Γ

τ ),∆g(wi,Γ
τ )])|wi ∈ WΓτ

2 };
11: else

12: Γτ
1 ,Γ

τ
2 ← SplitPackage(Γτ , c′max);

13: Gb ← Gb ∪ {(wi,Γ
τ
1 , [u(wi,Γ

τ
1 ),∆g(wi,Γ

τ
1 )])|wi ∈ WΓτ

1 , cwi
⩾ c′max };

14: ΓT ← ΓT \ {Γτ} ∪ {Γτ
2};

15: end if

16: else

17: Γτ
s ← Remove the tasks with tmin from Γτ ;

18: if Γτ
s ̸= ∅ then

19: ΓT ← ΓT ∪ {Γτ
s};

20: end if

21: end if

22: end for

/∗ Step3: Multi-round matching ∗/
23: while Gb ̸= ∅ do

24: E ← Sort pairs of Gb in descending order of ∆V (w,Γτ );

25: while |E| ̸= ∅ do

26: (w,Γτ )← Obtain the first pair in E;
27: if ∆V (w,Γτ ) is the maximum of (wi,Γτ ) in Gb then

28: Mt ←Mt ∪ {(w,Γτ )};
29: Remove the pairs of (wi,Γτ ) in E;
30: end if

31: Remove the pairs of (w,Γτ
j ) in E;

32: end while

33: Update Gb based on Mt;

34: end while

Return: Mt

Appendix B.2 Packing-aware matching operator

Algorithm B1 outlines three steps of the BTPA algorithm, i.e., task packing (lines 2-4) and package breaking (lines 5-22),

and a multi-round matching mechanism (lines 23-34). We elaborate on each step below.

Task packing. To reduce computational overhead, we group spatially proximate tasks (e.g., in the same neighborhood or

on the same street) into a single package Γτ . The pairwise distance between any two tasks in Γτ satisfies π(lτi , lτj ) ⩽ δ, where

δ is a predefined threshold indicating the maximum allowable separation. We employ a δ-distance truncated dendrogram-

based task packing technique to generate task packages (Lines 2–4). We adopt the δ-distance truncating dendrogram task

packing technique to pack tasks into packages (lines 2-4). Specifically, we first compute the spatial distance matrix MD for

tasks in Tt, followed by hierarchical clustering on MD to group tasks by proximity. We then apply the function fcluster(·)
to truncate clusters where intra-cluster distances do not exceed δ, thereby obtaining the package set ΓT in accordance with

the packing policy.

Package breaking. After task packing, we identify workers who can feasibly serve each package Γτ . Due to task deadline

constraints, the reachable distance for Γτ is determined by the minimum remaining time tmin across all tasks in the

package, computed as dτmax = tmin × Vmax, where Vmax denotes the maximum allowable traffic speed. We also adopt the

Time-Bounded Inverted Lists (TBIL) method [2] to index workers and update their status, thereby accelerating candidate

worker retrieval. Note that dτmax serves as the initial search radius, but in some cases, no reachable worker can be found

within this range. To address this, we design a package-breaking strategy (Lines 7–19), where tasks with the smallest

remaining time tmin are iteratively removed to form a sub-package Γτ
s until a candidate worker set WΓτ

1 is found or the

package becomes empty. We then refine the candidate set to WΓτ

2 , which includes only those workers who satisfy the valid

scheduling constraints (as defined in Definition 3) for the entire package. If no such workers exist, we invoke the function

SplitPackage(Γτ , c′max), which greedily selects workers capable of executing the largest number of tasks in the package.

Here, c′max denotes the maximum remaining cw of worker w ∈WΓτ

1 . Finally, we add the candidate matching pair (w,Γτ ),

along with its dual weights [u(w,Γτ ),∆g(w,Γτ )], to the bipartite graph Gb (Lines 10 and 13).

Multi-round matching mechanism. We sort all edges Gb in descending order according to the matching value ∆V (w,Γτ ) =

u(w,Γτ )−∆g(w,Γτ ) (line 24). Note that we do not leverage ∆V (w,Γτ ) to replace the dual weights in Gb. Because, in the

breaking operator, we need to examine their effects separately. In each round (lines 25-31), we choose the matching pair
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the rate of improvement in TP slows down. This phenomenon
can be explained that increasing wc does not alter the total
number of workers, leading to some tasks still struggling to
find suitable workers due to constraints such as task deadlines.
Notably, algorithms based on packing strategies, i.e., PBO and
BTPA, are more susceptible to the effects of small wc.

3) Mutual Experiment: We finally investigate the effect of
task prediction on task assignment optimization.
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(c) F VS ACC
Fig. 8. Matching results on CD and HK datasets with different F values.

Exp-6: Effect of future time steps. Fig. 8 (a)(b) reports the
effects of future time steps F on the result of our four proposed
solutions on both HK and CD datasets. Fig. 8 (c) presents the
performance of our proposed prediction network MVSTAnet
in metric ACC when changing F. Intuitively, as F increases, the
matching algorithm should also continue to expand in terms
of TP. However, we find that when F increases to a certain
extent, such as F=2 on the HK dataset, further increasing
F does not bring a greater degree of TP improvement. We
analyzed that there are two main reasons: i) predicting more
time steps poses heightened challenges for models, as shown
in Fig. 8 (c), which may bring more prediction errors; ii) as for
Equ 3, distant future predictive information have diminishing
impacts on current task assignments. Consequently, while the
TP increases with the extension of future time steps, the rate
of improvement eventually trends to 0.
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(c) Error VS ACC

Fig. 9. Matching results on CD and HK datasets with different prediction
error values.

Exp-7: Effect of prediction error. Fig. 9 (a)(b) illustrates
the impact of prediction errors on task assignment optimiza-
tion. As shown in Fig. 9 (c), across various prediction models
under default settings, their prediction errors are different.
Clearly, smaller prediction errors (indicative of higher preci-
sion) are associated with a higher TP. Besides, it also says that
MVSTAnet is the superior one among all prediction models
with the highest prediction performance for task assignment
optimization.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the POCTA problem for profit-driven
ITSs. We propose the PPTA framework to solve the POCTA
problem by maximizing the overall profit of the platform. We

devise the MVSTAnet to predict future the distributions of
crowdsensing tasks for our task pricing model and develop
the online matching algorithm, BROTA, that finds the best
task assignment between vehicle-based mobile workers and
crowdsensing tasks. Our comprehensive experiments on real-
world datasets validated the advancement of our proposed
methods across diverse parameter settings.

As for future work, we attempt to extend this work in
two directions. First, our task price model also relies on
accurate worker supply prediction. Intuitively, the distribution
of workers and tasks is correlated. Thus, we intend to design an
end-to-end network to jointly predict worker-task distributions.
Second, the traffic conditions in intelligent transportation sys-
tems are complex. In our problem settings, we simply assume
workers have constant speeds and select the shortest paths,
which is too ideal. Therefore, we intend to develop a deep-
learning-based travel time predictor to evaluate the travel time
of workers.
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Figure B1 Matching results on CD and HK datasets with different F .

(w,Γτ ) with the highest matching value, and update related matching pairs in Et that associated with w and Γτ . At the

end of each round, we update Gb according to the current matching plan Mt (line 33). Finally, BTPA outputs the final

optimal matching plan Mt.

Complexity analysis. The time complexity of BTPA is O(m2 logm + pn + pn log pn), where m, n, and p denote the

number of tasks, workers, and packages, respectively. Specifically, O(m2 logm) is incurred by the task packing step, O(pn)

arises from the package breaking process, and O(pn log pn) accounts for the multi-round matching procedure.

Table B1 Matching results on HK dataset by varying δ values.

δ Metrics 10 25 50 100 200

BTPA
TP 60883.73 56761.86 53867.23 53464.38 50993.01

BPT 658.13 535.13 423.14 327.13 234.13

PBO
TP 57384.72 55127.77 53031.55 52143.44 47562.24

BTR 435.16 371.14 314.16 226.61 134.16

Appendix C Additional experiments

Detail of experimental parameters. The detailed experimental settings for the proposed methods in task prediction

and task assignment are summarized as follows:

• Task prediction. For MVSTAnet training, we adopt the Adam optimizer with a mini-batch size of 48, a hidden size of

64, a learning rate of 0.005, and 1000 training epochs. The dataset is divided into training, testing, and validation sets in

the ratio of 70%, 20%, and 10%, respectively. The entire road network is partitioned into 100 non-overlapping regions of

equal size (i.e., |R| = 100), and each day is discretized into 24×60 min
∆t

time steps, where we set ∆t = 15 minutes in default

for task prediction. The lengths of the three temporal input sequences (i.e., closeness XC , period XP , and trend XQ) are

set to be equal, i.e., lc = lp = lq = P .

• Task Assignment. We use data from the HK dataset on May 1st and the CD dataset on November 1st, spanning the

period from 6:00 to 13:00, which includes both idle (6:00–8:00) and peak (9:00–13:00) hours, to evaluate the performance

of task matching algorithms. A total of 15,237 and 57,961 order instances are observed in the HK and CD datasets,

respectively, during the selected period. We set the matching batch size to 20 seconds and the prediction time step to 2

minutes. Besides, we set coefficients α = β = ϵ = 0.5, and λ = 0.8 by default. To more clearly investigate the effect of

supply and demand on prices, we set the fare of the task as fτ = 10.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

breaking strategy. Among these, BRMB yields the highest
profit but requires more batch processing time, followed by
BRBT, OTA, BTPA, PBO, and SIDF*.

Exp-5: Effect of wc. Fig.7 (e)(f) and Fig.7 (h)(l) report the
results as the values of worker’s maximum expected number
of tasks (a.k.a, capacity of worker) wc are adjusted. A higher
value of wc intuitively implies that each worker is qualified
for a greater number of tasks. As anticipated, the BPT and
TP of all algorithms accordingly increase. It is noteworthy
that once wc reaches a certain threshold (e.g., wc=30 in the
HK dataset), the rate of improvement in TP slows down.
This phenomenon can be explained that increasing wc does
not alter the total number of workers, leading to some tasks
still struggling to find suitable workers due to constraints
such as task deadlines. Notably, algorithms based on packing
strategies, i.e., PBO and BTPA, are more susceptible to the
effects of small wc. For instance, after task packaging, BTPA
needs to employ a disruptive strategy multiple times to identify
candidate workers, inevitably resulting in increased search
time costs.

3) Mutual Experiment: We finally investigate the effect of
task prediction on task assignment optimization.
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(c) F VS ACC
Fig. 8. Matching results on CD and HK datasets with different F values.

Exp-6: Effect of future time steps. Fig. 8 (a)(b) reports the
effects of future time steps F on the result of our four proposed
solutions on both HK and CD datasets. Fig. 8 (c) presents the
performance of our proposed prediction network MVSTAnet
in metric ACC when changing F. Intuitively, as F increases, the
matching algorithm should also continue to expand in terms
of TP. However, we find that when F increases to a certain
extent, such as F=2 on the HK dataset, further increasing
F does not bring a greater degree of TP improvement. We
analyzed that there are two main reasons: i) predicting more
time steps poses heightened challenges for models, as shown
in Fig. 8 (c), which may bring more prediction errors; ii) as for
Equ 3, distant future predictive information have diminishing
impacts on current task assignments. Consequently, while the
TP increases with the extension of future time steps, the rate
of improvement eventually trends to 0.
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(c) Error VS ACC

Fig. 9. Matching results on CD and HK datasets with different prediction
error values.

Exp-7: Effect of prediction error. Fig. 9 (a)(b) illustrates
the impact of prediction errors on task assignment optimiza-
tion. As shown in Fig. 9 (c), across various prediction models
under default settings, their prediction errors are different.
Clearly, smaller prediction errors (indicative of higher preci-
sion) are associated with a higher TP. Besides, it also says that
MVSTAnet is the superior one among all prediction models
with the highest prediction performance for task assignment
optimization.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the POCTA problem for profit-driven
ITSs. We propose the PPTA framework that maximizes the
overall profit of the platform for dynamically arriving workers
and tasks. We devise the MVSTAnet for precise demand
prediction and an online matching algorithm, BROTA, that
finds the best task assignment between tasks and workers. Our
comprehensive experiments on real-world datasets validated
the advancement of our proposed methods across diverse
parameter settings.

As for future work, we attempt to extend this work in two
directions. First, our task price model also relies on accurate
worker supply prediction, so we intend to design a powerful
model to predict future worker distribution. Second, cross-
platform task assignment can integrate more workers and tasks
in a larger scope, so we plan to develop a novel supply-
demand-aware pricing model to guarantee the fair revenues of
all involved parties (platform, workers, and task publishers).
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Figure C1 Matching results on CD and HK datasets with different prediction error values.

Exp-1: Effect of δ. We examine the effect of package size δ on the performance of packing algorithms PBO [2] and BTPA.

As shown in Table B1, increasing the value of δ leads to a decline in TP for both PBO and BTPA. This is attributed to

the inherent trade-off in packing strategies, which sacrifice task quality to improve computational efficiency. As the package

size enlarges, the corresponding loss in task quality also increases. Moreover, BTPA suffers less performance degradation

compared to PBO, as it incorporates a package-breaking mechanism that mitigates quality loss. Therefore, in practical

scenarios, both BTPA and PBO offer viable trade-offs between computational efficiency and task quality.

Exp-2: Effect of F . Figure B1 (a)(b) report the effects of varying future time steps F on the performance of matching

algorithms, and Figure B1 (c) presents the accuracy (ACC) of our proposed prediction model MVSTAnet under different

F values. As F increases, the TP of matching algorithms generally improves. However, we observe that beyond a certain

threshold (e.g., F = 2 in the HK dataset), further increases in F do not yield significant gains in TP. We attribute this

to two main factors: (i) forecasting a greater number of future time steps increases the model’s prediction difficulty, as

evidenced by the drop in ACC in Figure B1 (c), leading to higher prediction errors; and (ii) the marginal benefit of distant

future information for current task assignment diminishes over time. Consequently, although TP increases with longer

forecasting horizons, the marginal improvement gradually approaches zero.
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Exp-3: Effect of prediction error. Figure C1 (a)(b) illustrate how prediction errors affect task assignment optimization.

As shown in Figure C1 (c), under default settings, different prediction models exhibit varying levels of prediction error. It is

evident that smaller prediction errors, which indicate higher model precision, are associated with improved TP. Furthermore,

MVSTAnet consistently outperforms other models by achieving the highest prediction accuracy and, consequently, delivering

the best task assignment outcomes.
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