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Appendix A Proof of Theorem 1

Proof. We establish the hardness of the POCTA problem by transforming it into an instance of a classical NP-hard
problem, known as the 0-1 knapsack problem, which can be described as follows. Given a set of items Z and a backpack
B with maximum capacity cp, where each item has two properties, i.e., weight w; and value v;, the 0-1 knapsack problem
aims to select a subset of items that maximizes the total value in the backpack. It is subject to two conditions: (i) the total
weight of the items in B is no more than cpg, and (ii) each item can be selected only once.

We consider an instance of the POCTA problem as follows. Given a set of tasks 7 and a set of workers W, the POCTA
problem aims to find a subset T, of T that maximizes the total platform profit. It satisfies two conditions: (i) the size of
Tsub does not exceed ¢y - |[W], and (ii) each task 7 in 7T is assigned to at most one worker w in W. It is obvious that the
instance of the POCTA problem can be mapped to the 0-1 knapsack problem. Therefore, the proof is completed.

Algorithm A1 Multi-round bipartite graph matching

Input: A set of workers Wy, a set of tasks Ty;
Output: A matching plan Mq;

1: By < 0 and M; + 0;;

2: for each pair (w,7) € Wy X Ty do

3: if the matching instance (w, 7) is valid then

4: w(w, 7) < Calculate matching reward;
5: By «+ By U{(w, 7, u(w, 7)) };
6: end if
7: end for
/% Multiple-round KM Matching */

8: Build the weighted bipartite graph G; based on By;

9: while G, # () do

10: Find the optimal matching M] in G, using KM algorithm;
11: M + MU M;;

12: Update G, based on M;;

13: end while

Return: M,

Appendix B Task assignment for the POCTA problem
Appendix B.1 Multi-round bipartite graph matching

For the MBiGM algorithm, given a set of workers W; and tasks 7+ in the ¢-th matching batch b, we construct a weighted
bipartite graph G, = (W4, T¢, &), where & denotes the set of valid matching edges between workers and tasks. Each edge
e € & links a worker w € W} and a task 7 € T; if the matching of w and 7 is valid. The edge is associated with a weight
that indicates the matching revenue u(w, 7) for w serving 7. The Kuhn-Munkres (KM) algorithm [1] is widely adopted for
efficiently solving one-to-one assignment problems in bipartite graphs, where each left node is matched to at most one right
node. However, in the POCTA problem, each worker may be assigned multiple tasks. Therefore, we design MBiGM to
derive the optimal matching plan M; based on Gy.

Algorithm A1l presents the pseudo-code of MBiGM, which first computes edge weights in G, (Lines 2-7), followed by
task assignment using the KM algorithm (Lines 8-13). In each round, we update G based on M, by removing matched
pairs and updating the statuses of the corresponding tasks and workers. We finally return the matching plan M;.
Complexity analysis. The time complexity of MBiGM is O(k - maz{n3, m3}), where k, m,n are the number of matching
rounds, workers, and tasks, respectively.
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Algorithm B1 Breaking-based task packing assignment

Input: A set of workers Wy, a set of tasks Ty;
Output: A matching plan My;
1: Gy < 0, My < 0;
/% Stepl: Task packing */

2: Mp < Compute distances between tasks in T;
Treez < Perform hierarchical clustering on Mp;
7 « fcluster(Treez, d);

/% Step2: Package breaking */

W

5: for Each package I'” € I'” do
6: WIFT < Find the candidate workers by using the index strategy TBIL and d;,,.;
7: if WI # 0 then
8: WQFT < Filter workers with valid schedule constraint;
9: if W7 # 0 then
10: Gy < Gp U {(w;, I'7, [u(w;, '), Ag(w;, T7)])|w; € VV2FT I
11: else
12: I'7, T3 « SplitPackage(T™, ), 0.);
13: Gy + Go U {(wi, T, [u(w;, T]), Ag(wi, TT)Dws € W', cuw; > chaw b
14: 7 « 7T\ {T7}yu {5}
15: end if
16: else
17: I'7 + Remove the tasks with %,,;, from I'T;
18: if I'7 # 0 then
19: 7«17 u{r7};
20: end if
21: end if
22: end for
/% Step3: Multi-round matching */

23: while G, # 0 do
24: & < Sort pairs of G;, in descending order of AV (w,I'7);
25: while |€| # 0 do

26: (w,T7) + Obtain the first pair in &;

27: if AV(w,T7) is the maximum of (w;,'7) in G then
28: My < M, U{(®w,T7)};

29: Remove the pairs of (w;, ") in &;

30: end if

31: Remove the pairs of (w,I']) in &;

32: end while

33: Update G, based on My;
34: end while

Return: M,

Appendix B.2 Packing-aware matching operator

Algorithm B1 outlines three steps of the BTPA algorithm, i.e., task packing (lines 2-4) and package breaking (lines 5-22),
and a multi-round matching mechanism (lines 23-34). We elaborate on each step below.

Task packing. To reduce computational overhead, we group spatially proximate tasks (e.g., in the same neighborhood or
on the same street) into a single package I'". The pairwise distance between any two tasks in I'" satisfies 7 (I, , lr; ) < 6, where
§ is a predefined threshold indicating the maximum allowable separation. We employ a §-distance truncated dendrogram-
based task packing technique to generate task packages (Lines 2-4). We adopt the d-distance truncating dendrogram task
packing technique to pack tasks into packages (lines 2-4). Specifically, we first compute the spatial distance matrix Mp for
tasks in T¢, followed by hierarchical clustering on Mp to group tasks by proximity. We then apply the function fcluster(-)
to truncate clusters where intra-cluster distances do not exceed §, thereby obtaining the package set I'7 in accordance with
the packing policy.

Package breaking. After task packing, we identify workers who can feasibly serve each package I'". Due to task deadline
constraints, the reachable distance for I'" is determined by the minimum remaining time #pi, across all tasks in the
package, computed as df .. = tmin X Vinax, where Vinax denotes the maximum allowable traffic speed. We also adopt the
Time-Bounded Inverted Lists (TBIL) method [2] to index workers and update their status, thereby accelerating candidate
worker retrieval. Note that dJ,,. serves as the initial search radius, but in some cases, no reachable worker can be found
within this range. To address this, we design a package-breaking strategy (Lines 7-19), where tasks with the smallest
remaining time iy are iteratively removed to form a sub-package I'T until a candidate worker set WIFT is found or the
package becomes empty. We then refine the candidate set to WQFT, which includes only those workers who satisfy the valid
scheduling constraints (as defined in Definition 3) for the entire package. If no such workers exist, we invoke the function
SplitPackage(I'T, ¢l .« ), Which greedily selects workers capable of executing the largest number of tasks in the package.
Here, cl,,, denotes the maximum remaining c,, of worker w € WIFT. Finally, we add the candidate matching pair (w,I'"),
along with its dual weights [u(w,I'"), Ag(w,T'")], to the bipartite graph G, (Lines 10 and 13).

Multi-round matching mechanism. We sort all edges Gy, in descending order according to the matching value AV (w,I'7) =
u(w,I'") — Ag(w,I'") (line 24). Note that we do not leverage AV (w,I'") to replace the dual weights in G,. Because, in the
breaking operator, we need to examine their effects separately. In each round (lines 25-31), we choose the matching pair
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Figure B1 Matching results on CD and HK datasets with different F'.

(w,T7) with the highest matching value, and update related matching pairs in & that associated with w and T'7. At the
end of each round, we update G, according to the current matching plan M; (line 33). Finally, BTPA outputs the final
optimal matching plan M;.

Complexity analysis. The time complexity of BTPA is O(m?logm + pn + pnlogpn), where m, n, and p denote the
number of tasks, workers, and packages, respectively. Specifically, O(m? logm) is incurred by the task packing step, O(pn)
arises from the package breaking process, and O(pnlogpn) accounts for the multi-round matching procedure.

Table B1 Matching results on HK dataset by varying & values.

4 Metrics 10 25 50 100 200
BTPA TP 60883.73 56761.86 53867.23 53464.38 50993.01
BPT 658.13 535.13 423.14 327.13 234.13
PBO TP 57384.72 55127.77 53031.55 52143.44 47562.24

BTR 435.16 371.14 314.16 226.61 134.16

Appendix C Additional experiments

Detail of experimental parameters. The detailed experimental settings for the proposed methods in task prediction
and task assignment are summarized as follows:

e Task prediction. For MVSTAnet training, we adopt the Adam optimizer with a mini-batch size of 48, a hidden size of
64, a learning rate of 0.005, and 1000 training epochs. The dataset is divided into training, testing, and validation sets in
the ratio of 70%, 20%, and 10%, respectively. The entire road network is partitioned into 100 non-overlapping regions of
equal size (i.e., |R| = 100), and each day is discretized into w time steps, where we set At = 15 minutes in default
for task prediction. The lengths of the three temporal input sequences (i.e., closeness X¢, period Xp, and trend Xq) are
set to be equal, i.e., lc =1, =1y = P.

e Task Assignment. We use data from the HK dataset on May 1st and the CD dataset on November 1st, spanning the
period from 6:00 to 13:00, which includes both idle (6:00-8:00) and peak (9:00-13:00) hours, to evaluate the performance
of task matching algorithms. A total of 15,237 and 57,961 order instances are observed in the HK and CD datasets,
respectively, during the selected period. We set the matching batch size to 20 seconds and the prediction time step to 2
minutes. Besides, we set coefficients &« = 8 = ¢ = 0.5, and A = 0.8 by default. To more clearly investigate the effect of
supply and demand on prices, we set the fare of the task as fr = 10.
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Figure C1 Matching results on CD and HK datasets with different prediction error values.

Exp-1: Effect of §. We examine the effect of package size 6 on the performance of packing algorithms PBO [2] and BTPA.
As shown in Table B1, increasing the value of § leads to a decline in TP for both PBO and BTPA. This is attributed to
the inherent trade-off in packing strategies, which sacrifice task quality to improve computational efficiency. As the package
size enlarges, the corresponding loss in task quality also increases. Moreover, BTPA suffers less performance degradation
compared to PBO, as it incorporates a package-breaking mechanism that mitigates quality loss. Therefore, in practical
scenarios, both BTPA and PBO offer viable trade-offs between computational efficiency and task quality.

Exp-2: Effect of F. Figure Bl (a)(b) report the effects of varying future time steps F' on the performance of matching
algorithms, and Figure B1 (c) presents the accuracy (ACC) of our proposed prediction model MVSTAnet under different
F values. As F increases, the TP of matching algorithms generally improves. However, we observe that beyond a certain
threshold (e.g., F = 2 in the HK dataset), further increases in F' do not yield significant gains in TP. We attribute this
to two main factors: (i) forecasting a greater number of future time steps increases the model’s prediction difficulty, as
evidenced by the drop in ACC in Figure B1 (c), leading to higher prediction errors; and (ii) the marginal benefit of distant
future information for current task assignment diminishes over time. Consequently, although TP increases with longer
forecasting horizons, the marginal improvement gradually approaches zero.
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Exp-3: Effect of prediction error. Figure C1 (a)(b) illustrate how prediction errors affect task assignment optimization.
As shown in Figure C1 (c), under default settings, different prediction models exhibit varying levels of prediction error. It is
evident that smaller prediction errors, which indicate higher model precision, are associated with improved TP. Furthermore,
MVSTAnet consistently outperforms other models by achieving the highest prediction accuracy and, consequently, delivering
the best task assignment outcomes.
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