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Abstract Prompt tuning has emerged as a promising method for adapting pre-trained models to downstream tasks or aligning with
human preferences. Prompt learning is widely used in natural language processing (NLP) but has limited applicability to reinforcement
learning (RL) due to the complex physical meaning and environment-specific information contained within RL prompts. Directly ex-
tending prompt-tuning approaches to RL is challenging because RL prompts guide agent behavior based on environmental modeling and
analysis, rather than adjusting the prompt format for downstream tasks as widely used in NLP. In this work, we propose the prompt-
tuning decision transformer (DT) algorithm to address these challenges by using trajectory segments as prompts to guide RL agents
in acquiring environmental information and optimizing prompts via black-box tuning to enhance their ability to contain more relevant
information, thereby enabling agents to make better decisions. Our approach involves randomly sampling a Gaussian distribution to
fine-tune the elements of the prompt trajectory and using the preference ranking function to find the optimization direction, thereby
providing more informative prompts and guiding the agent toward specific preferences in the target environment. Extensive experiments
show that with only 0.03% of the parameters learned, Prompt-Tuning DT achieves comparable or even better performance than full-model
fine-tuning in few-shot settings. Our research represents a pioneering contribution to the development of prompt-tuning techniques within
RL, offering a promising avenue for optimizing large-scale pre-trained RL agents for tasks tailored to specific preferences.
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1 Introduction

Pre-trained large-scale models (PLMs) [1-4] have proven to be highly effective for a wide range of tasks due to
their high transferability and competitive performance on downstream tasks with limited target data. However,
full-model fine-tuning requires updating and storing all the parameters of the PLM, which is memory-intensive
and impractical for maintaining a separate set of parameters for each task during inference. Recently, prompt-
tuning [5, 6] has emerged as a promising alternative to full-model fine-tuning, allowing for the effective adaptation
of pre-trained models to specific downstream tasks and human preferences. By freezing the pre-trained model’s
parameters and tuning only the prompts, prompt-tuning approaches have demonstrated comparable performance
to full-model fine-tuning methods across various model scales and tasks [7-9].

Offline reinforcement learning (offline RL) is a data-driven approach that learns an optimal policy from trajecto-
ries collected by a set of behavior policies, without requiring access to the environments. This approach is critical
in many settings, where online interactions are expensive or dangerous. However, offline RL struggles with gener-
alization to unseen tasks and adaptation to preferences, as the agent may not find a good policy in the test tasks
due to the distribution shift. Recent works address this challenge through offline meta-RL, which leverages the
algorithmic learning perspective [10-12]. In contrast, we aim to investigate the power of prompt-tuning methods
with PLMs. Nonetheless, unlike natural language processing (NLP) prompts, RL prompts are more complex and
contain environment-specific information, which may be vulnerable to the prompt learning process. Additionally,
prompt-tuning approaches from NLP cannot be directly applied to RL prompts, as RL prompts guide agent behav-
ior based on environmental modeling and analysis rather than adjusting the prompt format for downstream tasks.
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Therefore, there is an urgent need to develop novel prompt-tuning techniques specifically tailored to RL that can
guide agents toward specific preferences in the target environment.

In this paper, we propose a novel algorithm called prompt-tuning decision transformer (DT) as an approach to
tackle the challenge of generalization in offline RL from the perspective of prompt tuning. Our approach leverages
trajectory segments as prompts to guide RL agents in acquiring target environmental information and optimizes
prompts via black-box tuning to enhance their ability to contain more meaningful information. Prompt-tuning is
essential in RL as it enables pre-trained agents to make better decisions by providing more informative prompts.
This contrasts with the limitations inherent in straightforward prompt-based adaptation methods [13]: the process of
generating high-quality trajectory prompts involves significant investments of time and resources, and the prompt’s
effectiveness is constrained by the model’s input capacity for conditioning prompts [8]. As a result, despite the
progress made in prompt-based adaptation, downstream task quality still lags far behind that of full-model fine-
tuning methods.

In our prompt-tuning offline RL framework, we first pre-train the agent using offline trajectories from various
tasks within the same environment. For each task, the agent learns to predict a target trajectory by conditioning
on a trajectory prompt sampled from the same task. During evaluation, the agent is presented with a new task and
a small set of new trajectories for fine-tuning the prompt. Our approach perturbs each element of the prompt by
randomly sampling from a Gaussian distribution to avoid catastrophic deviations and employs a preference ranking
function along with a ranking algorithm to determine the optimization direction. In this experiment, we revisit
conventional prompt tuning in the context of RL and demonstrate that our Prompt-Tuning DT outperforms these
baselines. Notably, by optimizing only 0.03% of the model parameters, Prompt-Tuning DT achieves performance
comparable to full-model fine-tuning and surpasses other parameter-efficient methods. Our work contributes to the
advancement of prompt-tuning approaches in RL, providing a promising direction for optimizing PLMs for specific
preferences and downstream tasks.

In summary, our main contributions are as follows.

e We propose Prompt-Tuning DT, a memory-efficient alternative to fine-tuning pre-trained agents that achieves
comparable performance to full-model fine-tuning methods.

e We present a prompt-tuning RL framework, which leverages a PLM’s API to enable streamlined customization
for specific preferences with minimal parameter modifications.

e We revisit conventional prompt tuning in the context of RL and demonstrate that Prompt-Tuning DT outper-
forms these baselines, highlighting its effectiveness as a few-shot learner for generalization in offline meta RL.

2 Related work

Offline RL. Offline RL has emerged as a promising paradigm for learning from fixed, limited datasets consisting of
trajectory rollouts from arbitrary policies [14]. However, deploying off-policy RL algorithms directly in the offline
setting can be challenging due to the distributional shift problem, which can result in a significant performance
drop [15]. To overcome this issue, model-free RL algorithms adopt various strategies, such as constraining the action
space of the policy [16] or introducing pessimism to the value function [17], to explicitly correct the distributional
mismatch between the behavior policy in the offline data and the optimized policy. In contrast, model-based RL
algorithms estimate the environmental reward and transition functions using offline data and require modifications
to the RL algorithm to avoid exploiting errors in the estimated model [18,19].

Offline RL has been increasingly viewed as a sequence modeling task, and transformer-based decision models
have been applied to this domain. The objective is to predict the next sequence of actions based on the sequence
of recent experiences, which includes state-action-reward triplets. This approach can be trained using supervised
learning, which makes it more suitable for offline RL and imitation learning. Several studies have explored the use
of Transformers in RL under the sequence modeling paradigm, including Gato [4], Graph DT [20], HarmoDT [21],
QT [22], DeMa [23], and the survey works [24,25]. In this study, we propose a novel approach that is based
on Prompt-DT [13] and incorporates prompt-tuning techniques to enhance its performance on downstream target
tasks.

Meta RL. Meta-learning algorithms [26,27] enable efficient learning of new tasks by learning the process of
learning itself. In the context of meta-RL, the objective is to generalize an agent’s knowledge from one task to
another. In recent years, several studies have delved into the problem of offline meta-RL. MBML [28] addresses a
scenario where task identity is spuriously inferred due to biased datasets and applies the triplet loss to robustify the
task inference with reward relabeling. BOReL [29] extends the online Meta-RL method VariBAD [30] to the offline
setup, where they assume known reward functions for each task and use reward relabelling to share data across



Hu S C, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112105:3

tasks with shared dynamics. On the other hand, MACAW [10] proposes an offline Meta-RL algorithm based on
MAML [31]. Their approach includes an advantage weighting loss and introduces a policy update in the inner loop
to theoretically increase the richness of the policy’s update and empirically improve adaptation performance and
stability. In this study, we investigate an alternative perspective on meta-RL using sequence modeling and prompt
engineering, which can achieve comparable or superior performance to traditional methods.

Prompt learning. Prompt learning is a promising methodology in NLP that involves optimizing a small subset
of parameters while leaving the main model architecture unchanged. The basic premise of prompt learning involves
presenting the model with a cloze test-style textual prompt, which the model is then expected to fill in with the
corresponding answer. Autoprompt [6] proposes an automatic prompt search methodology for efficiently finding
optimal prompts, while recent advancements in prompt learning have adopted trainable continuous embeddings
for prompt representation [5,8]. Prompt learning has also been applied to the vision-language domain, where
introducing continuous prompts into pre-trained vision-language models has led to significant improvements in
few-shot visual recognition and generalization performance [32,33]. While prompt learning reduces the number
of tunable parameters, back-propagation through the entire model is still necessary to calculate gradients and
update the small subset of parameters. Gradient-free methods have been proposed to optimize continuous [34] or
discrete [35] prompts. Despite the great success of prompt-tuning in the fields of NLP and CV, its application in
RL has not been thoroughly explored. Therefore, in this study, we propose the Prompt-Tuning DT method that
employs gradient-free methods to optimize continuous trajectory prompts with a preference ranking oracle. This
approach can be extended to a human-in-the-loop environment, where candidate prompts are ranked manually.

3 Preliminary

In this section, we first define the Markov decision process and provide a concise overview of the core components
of our algorithm, namely the decision transformer and ranking optimization. The decision transformer adapts
the transformer architecture for offline RL by formulating RL tasks as sequence modeling problems, enabling the
development of large-scale RL models. Additionally, we introduce a ranking optimization approach, which leverages
ranking data to optimize the model without the need for explicit gradient computation. These algorithms form the
basis of our approach illustrated in Section 4.

3.1 Markov decision process

The objective of RL is to learn a policy mg(a | s) that maximizes the expected cumulative discounted reward
E 207" R(st,ar)] in a Markov decision process (MDP). An MDP is formally defined as a six-tuple (S, A4, P,
R,~,dp), where S is the state space, A is the action space, P(s’ | s,a) : S x § x A — [0,1] describes the
environment dynamics, R : S X A — R is the reward function, v € [0, 1) is the discount factor, and dy is the initial
state distribution [36]. In the offline setting [14], instead of the online environment, a static dataset D = {(s,a, s’,7)},
collected by a behavior policy mg, is provided. Offline RL algorithms learn a policy entirely from this static offline
dataset D, without online interactions with the environment.

3.2 Decision transformer

Transformer [37], extensively studied in NLP [2] and CV [38], has also been explored in RL using the sequence
modeling pattern [24]. Moreover, recent works from NLP suggest that Transformers pre-trained on large-scale
datasets are capable of few-shot or zero-shot learning under the prompt-based framework [1,39]. Building upon
this, Gato [4] and TTP [40] both extend the prompt-based framework to the offline RL setting, constructing pre-
trained large-scale agents designed to address multiple tasks concurrently in a zero-shot or few-shot fashion. Both
methods are based on the DT [41] which treats learning a policy as a sequence modeling problem. DT introduces
the notion of modeling trajectories through state s;, action a;, and reward-to-go 74 tuples collected at distinct time
steps t. The reward-to-go token quantifies the cumulative reward from the current time step to the end of the
episode, defined as 7y = Z;‘-F:t rj, where T' denotes the maximum number of interactions with the environment.
During training with offline collected data, DT processes a trajectory sequence 7; in an auto-regressive manner
which encompasses the most recent K-step historical context,

Tt = (Pt K15 St— K4+15 Gt— K415+« +» Tt St, Q). (1)
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The prediction head associated with a state token s; is trained to predict the corresponding action a;. Regarding
continuous action spaces, the training objective is to minimize the mean-squared loss:

t
1
Lpr =Er~p | 2= _ E , (aj = m(r);)?| (2)
Jj=t—K+1

where D represents the offline dataset corresponding to the current task 7, m denotes the policy induced by the
DT, and 7(7;); represents the j-th output generated by the DT.

3.3 Ranking optimization

Black-box optimization, which utilizes a derivative-free framework to optimize the target function, has been exten-
sively studied in the optimization literature for several decades [42-44]. With the rapid development of reinforcement
learning with human feedback (RLHF), ranking data, which enables humans to express their personal preferences
in a straightforward and intuitive manner [45,46], has demonstrated great potential for use in various applica-
tions, especially those where the exact value of personal information is sensitive, such as healthcare or finance.
Z0O-RankSGD [47-49] is an effective approach for model optimization that finds the descent direction directly from
the ranking information, without the need for knowledge of the gradient of the model or the exact value of the
data. Our work focuses on a specific class of ranking oracles that return only the sorted indices of the top-ranked
elements. Such oracles are widely regarded as intuitive and natural in human decision-making processes [50], which
could be formulated as follows.

Definition 1 ((m, k)-ranking oracle [49]). Given a function f : R? — R and m points x1,..., 2, to query, an
(m, k) ranking oracle ngmk) returns k smallest points sorted in their order. For example, if O}m’k) (X1, xm) =
(i1,...,0%), then

floi) < flwiy) <o < flag) < o f(xg).

mi
jg{ilv“')ik}

With the ranking oracle ngmk) and a starting point z, we can query O}m’k) with the inputs 2! = x + u&;, & ~
N(0,14), fori =1,...,m, and p is a constant. With the directed acyclic graph (DAG) G = (N, &) constructed from
the ranking information of O;m’k), where the node set N’ = {1,...,m} and the directed edge set &€ = {(i,7) | f(z:) <

f(z;)}, the rank-based gradient estimator can be formulated as follows:

i) == S 2T LS g g, (3)

| |(i,j)€€ H | |(i,j)€€

Then the point can be updated with 2new = 2 — ng(z), where 7 is the learning rate and g(z) is the estimated
gradient. With the help of the preference ranking oracle and ZO-RankSGD algorithm, we are able to optimize the
prompt, guiding the agent towards human preferences in the target environment.

4 Prompt-tuning decision transformer

This section introduces prompt-tuning as a memory-efficient alternative to full-model fine-tuning for the pre-trained
agents in the context of few-shot policy generalization tasks. We begin by presenting the problem formulation in
Subsection 4.1 and subsequently provide a formal definition of our method in Subsection 4.2. The overall procedure
of our proposed Prompt-Tuning DT is illustrated in Figure 1.

4.1 Problem formulation

In our few-shot evaluation experiments, our objective is to align the output of the PLM with human preferences
using a restricted number of offline trajectories and limited oracle calls, all accomplished in a parameter-efficient
manner. To better quantitatively evaluate our method, we adopt high cumulative reward, a widely-used indicator
in the field of RL, as a representation of human preference and conduct experiments on few-shot generalization
tasks, which involve training the agent on a set of tasks using offline data and evaluating its ability to generalize to
new tasks.

There are two distinct sets of tasks, denoted as 77" and T'¢*!, ensuring that there is no overlap between them
(Ttrain n Ttest = ()). This arrangement requires the model to perform well on tasks with goals that lie outside
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Figure 1 (Color online) Application of Prompt-Tuning DT. At each iteration, the PLM generates different trajectories (e.g., Trajl, Traj2,
Traj3) for the current task based on different prompts (e.g., Promptl, Prompt2, Prompt3) and the most recent K-step history. These prompts
are generated by perturbing the initial prompt using a random Gaussian distribution. The generated trajectories are then ranked based on a
specific property using a preference ranking oracle, and the ranking information is leveraged to update the prompt.

[ Promptl ]>[ Prompt2 ]{ Prompt3 }
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the training range, thereby necessitating the ability to generalize to out-of-distribution tasks. Each task 7; in
the training set 77" is associated with a corresponding dataset D;, which consists of pre-collected trajectories
obtained using an unknown behavior policy ;. For a test task 7; € T, there are two possible approaches to
adapt to the new domain. One approach involves updating the model parameters using task-specific offline data
P;, which is usually much smaller than the training dataset |P;| << |D;|. Alternatively, one can incorporate task-
specific prompts derived from P; to mitigate the issue of distribution shift, although such approaches are generally
considered inferior to fine-tuning methods [1]. Our method combines the advantages of both approaches to fine-tune
prompts.

4.2 Deep black-box tuning

Trajectory prompts contain only the necessary information to aid in task identification while being insufficient for
the agent to imitate. Therefore, the prompt length K* should not be too long; in our experiment, we set K* = 5.
Each trajectory prompt contains multiple tuples of state s*, action a* and reward-to-go 7#*, denoted as (s*, a*, 7*),
following the representation in [13,41]. Each element with superscript -* is associated with the trajectory prompt,
which can be formulated as

T*:(721(751(7043{5"-7f;(*55§{*7a§{*)' (4)

In contrast to the prompt learning approach typically employed in NLP, where a cloze test-style textual prompt
is presented to the model for filling in the corresponding answer, the trajectory prompt utilized in the decision
transformer consists of tokens that have unique representations and physical interpretations. These tokens are
carefully crafted to represent essential components of RL tasks, including the state, action, and return-to-go. The
state token encapsulates the environmental information of the agent at a given position and is usually represented
by a high-dimensional vector. On the other hand, the action token exhibits significant variations across dimensions,
with specific values corresponding to distinct actions. Moreover, the return-to-go token serves to denote the expected
reward that we aim for the agent to attain. Given these distinct characteristics of RL prompts, directly applying
prompt-tuning approaches from NLP becomes challenging: RL prompts are specifically tailored to guide agent
behavior by leveraging environmental modeling and analysis, rather than primarily focusing on adjusting the prompt
format as in NLP prompt learning.

We utilize the ZO-RankSGD optimization approach to update the trajectory prompt. This method avoids explicit
gradient computation and eliminates the necessity for an intricate understanding of the particular structure of the
PLM. Given the initial trajectory prompt 7%, we concatenate one trajectory segment as a unit and add a standard
Gaussian distribution to it to avoid catastrophic deviations:

zo =71 || syl ar | -+ | e [ sk || ak, 5)
:Eg :$0+N§m é-n NN(Ouldm)a

where || means concatenation, #f € R4 s¥ € R% af € R% and d, = (d, +ds +d,) x K*.

For the ranking function f, we propose two preference ranking functions tailored to different RL environments

(offline and online): the offline loss function and the online reward function. For the offline setting, where we have
access to a set of trajectories P collected in advance, we utilize the MSE loss between the true action and predicted
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Figure 2 (Color online) The workflow of our proposed method. Given an initial prompt, the agent is first guided to generate a corresponding
)

trajectory. Based on the trajectory, along with an appropriate ranking function f and oracle Of,m’k , we return the k smallest prompts, sorted in

ascending order. In this figure, the DAG of the trajectories is used to obtain the corresponding ranking of prompts: 0}5’3) (prompt1, prompt2,
prompt3, prompt4, and prompt5) = (1, 3, 2). These rankings are then used to estimate the gradient for updating the prompt in subsequent
steps.

action as the preference ranking function:

t

n 1 n __offline
flag) = B, orttine up K Z (a; — m(xg, 7 o )i)?| - (6)
Jj=t—K+1

While for the online setting, where we can interact with the simulator, we consider the episode accumulated reward
obtained by the model during online interactions as the preference ranking function, which is represented as follows:

T
F@f) = —Epomme | Risj, m(afy, 79"1);) | (7)

j=1
where 7°%in¢ represents the trajectory collected from online interactions, and 7" denotes the maximum number of

interactions with the environment.

Note that since the function is optimized to the minimum, we need to add a minus sign in front of (7). In both
cases, the selection of the preference ranking function aims to adapt to the human preference for high cumulative
reward, which also serves as a widely used metric for evaluating a pre-trained model’s performance. Then the
ranking oracle O}m’k) simply returns the order of these values, which is subsequently utilized for computing the
gradient estimator (as illustrated in Figure 2).

Human judgment can also be employed as an oracle to rank these trajectories based on individual preferences.
However, this study does not delve into comprehensive experiments within human-in-the-loop settings, leaving this
aspect for future investigations. In this context, we primarily showcase the algorithm’s potential in a human-in-
the-loop framework from a design perspective. (1) Ranking information possesses a unique appeal to humans as
it offers a straightforward and intuitive means to express personal preferences without the need for exact scores or
ratings, making our approach user-friendly. (2) The forward-forward fine-tuning strategy proves advantageous
in terms of conserving GPU memory, which is significance for deployment on devices with limited resources.
(3) Ranking-based approaches avoid intricate understanding of the PLM’s structure, and leverage the PLM’s API
enables effective prompt fine-tuning in alignment with human preferences. Collectively, these attributes render our
method well-suited for human-in-the-loop environments. The primary objective of this article is to establish the
method’s feasibility and efficiency.

We summarize the entire procedure of prompt-tuning in Algorithm 1. Prompt-Tuning DT employs an approx-
imate gradient calculation to adapt the pre-trained agent to specific preferences. Gaussian noise is introduced to
the initial prompt, driving Prompt-Tuning DT to discover a more expressive prompt tailored to the target tasks.
There are two options available for the ranking function. The offline loss function requires pre-collected datasets
from the target tasks in 7" while the online reward function assumes interaction with a simulator for the target
tasks in 7%*. After E iterations of the fine-tuning process, we utilize the optimized result to initialize the prompt
7" at the onset of the evaluation stage and update the recent history 7 with streaming collected data.



Hu S C, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112105:7

Algorithm 1 Prompt-tuning DT.

Require: Initial prompt 7, stepsize 7, fine-tune iterations F, maximal iteration in test T', smoothing parameter p;

1: // fine-tune the prompt

2: Given the test task 7 with corresponding few-shot trajectories P;

3: Construct the initial point from prompt: xo = 77 || s7 || a7 || -+ || Ppcx || Shex || afexs

4: for e =1 to E do

5 Sample m i.i.d. random vectors {{(c 1), &(e,m)} from N(O, I, );

6 Query the ranking function to obtain the exact value with offline loss function (6) or online reward function (7) with input {«]_; 3},

where x| = xe—1 + p(e,n);
7: Construct the corresponding DAG G = (N, £) as described in Subsection 3.3;
8: Compute the gradient estimator by using: g. = % Z(i,j)es(f(eﬁj) —&(e,));
9: Te = Te—1 — NGe;
10: end for
11: // inference with the learned prompt zg
12: Sample the initial state sg and return-to-go 7o and construct 7o = 7g||so;
13: Initialize R = 0;
14: for t =0,...,7T do
15: Sample action a; based on w(zg, 7¢)+;
16: Receive next state s¢41 and reward r41 and construct the newly trajectory m¢41 = 7¢||at||Pt — reg1|]se41;
17: R =R+ r¢y1;
18: end for
19: Output R.

4.3 Theoretical analysis

To establish the convergence properties of our algorithm, we first introduce the underlying assumptions and subse-
quently present the formal convergence results of the proposed method.
Assumption 1 (Assumptions on the function f). The ranking function f satisfies the following conditions.

(1) f is twice continuously differentiable.

(2) f is L-smooth, meaning that |V?f(x)| < L.

(3) f is lower bounded by a value f*,i.e., f(z) > f* for all .

Theorem 1 (Convergence guarantee [49]). After running Algorithm 1 for E iterations and taking n = |/ -5 and

W= %, where Cy, is some constant that only depends on d,, we have

. d
B| _min, 19f)l| - 0< E>. ®)

Theorem 1 guarantees that the expected minimum norm of the gradient over E iterations converges at a rate

of O(4/ %) The rate indicates that the algorithm achieves sublinear convergence with respect to the number of
iterations, which is consistent with other zeroth-order optimization methods [49,51].

5 Experiment

We perform experiments to assess the performance of Prompt-Tuning DT by using the episode accumulated reward
as the evaluation metric. Our experimental evaluation seeks to answer the following research questions. (1) How do
conventional prompt-tuning methods perform in the offline meta-RL setting? (2) Can our prompt-tuning approach
achieve comparable performance to full-model fine-tuning with limited ranking oracle calls? (3) What is the impact
of the fine-tuning dataset size on the effectiveness of the prompt-tuning approach? (4) How do the quality and
quantity of prompts affect the performance of the prompt-tuning approach? (5) How does the hyper-parameter
influence the effectiveness of the prompt-tuning approach?

5.1 Datasets and tasks

In this study, we assess the performance of our proposed approach on several datasets that are used in meta-
RL [10, 31,52, 53], namely Cheetah-dir, Cheetah-vel, Ant-dir, Meta-World (MV) reach-v2, and Meta-World-10-
Reward. The objectives of these tasks are distinct, with Cheetah-dir and Ant-dir incentivizing high velocity in
the goal direction, Cheetah-vel penalizing deviations from the target velocity using Iy errors, the MV reach-v2
task requiring the robot’s end-effector to reach a designated position in 3D space, and Meta-World-10-Reward
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encompassing 10 tasks with varying reward and transition functions, testing the agents’ adaptability to more
complex meta-environments.

We adopt the dataset construction and settings from [10] for the meta-RL control tasks considered in this study.
Specifically, the datasets comprise the full replay buffer of Soft Actor-Critic [54] for Cheetah-dir, Ant-dir, and
Meta-World-10-Reward, and TD3 [55] for Cheetah-vel. Expert trajectories are collected for MV reach-v2 [53] using
scripted expert policies provided in the environment. By evaluating our approach on these diverse tasks, we can
assess its performance and generalization capabilities across different scenarios.

5.2 Baselines

We assess the few-shot generalization capabilities of Prompt-Tuning DT by comparing it against five baseline
methods across meta-RL control tasks. Our approach begins with pre-training a PLM on the training tasks 7trei"
using the DT architecture and the DT loss (2). This pre-trained PLM is then directly applied for inference on the
test tasks 77¢* without any prompt and further adaptation, denoted as “PLM” in Table 1:

T
Eponime | Y R(sj, PLM(79™) )| | (9)
j=1
where 7°%in¢ represents the trajectory collected from online interactions, and 7" denotes the maximum number of

interactions with the environment. We explore four additional few-shot learning methods.

e PDT (prompt decision transformer) [13]. This method collects prompts from the target tasks 7' and
incorporates these prompts into the input to assist the PLM in better adapting to the target tasks, a process known
as straightforward prompt-based adaptation without any further update process:

T
Eponine | > R85, PLM(Tompe: 7)) | (10)
j=1
where 77, ...« denotes the prompt trajectory, sampled from the corresponding offline dataset P.

e Soft-Prompt. This method treats collected prompts as soft embeddings and uses a separate optimizer to
fine-tune these embeddings, similar to common practices in NLP [8]. It adds an additional update step for the
learnable prompt:

T
m]?XETonlinc ZR(SﬁPLM(h/,T;nlme)j) 7 (11)

Jj=1

where h is initialized with the prompt trajectory 7, u,p- The update follows the DT loss (2) based on few-shot
trajectories P, using a gradient-based method (AdamW [56]).

e Adaptor. This method employs a parameter-efficient technique, previously explored in HDT [57]. Adaptors
are integrated into each decoder module of the PLM, and during inference, only the adaptors are fine-tuned to
improve the PLM’s adaptation to the target tasks:

T
I%E}X ETonline Z R(87 , PLM(T;rompU 7_](.)1111116 |9, 9* )7) y (12)

Jj=1

where 0* represents the newly introduced adaptor parameters, following [57]. The update is based on the DT loss
from few-shot trajectories, using the AdamW optimizer.

e Full-Model-FT. This approach serves as an upper bound for fine-tuning techniques in scenarios with access
to full data [5]:

T
max B onine D R85, PLM(Trompe 7510)5) | (13)

Jj=1

where 6 represents the parameters of the PLM. The update is based on the DT loss from few-shot trajectories,
using the AdamW optimizer.
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Table 1 Results for meta-RL control tasks. The best mean scores are highlighted in bold. Each environment has prompts of length K* = 5 and
limited fine-tuned datasets. Scores are normalized so that 100 represents an expert policy. Our methods outperform other parameter-efficient
methods on all tasks and even achieve comparable performance with the Full-Model-FT method.

Algorithm PLM PDT Soft-Prompt Adaptor PTDT-offline PTDT-online Full-Model-FT
Random prompt initialization
Cheetah-dir —3.8+ 0.3 94.7 £ 0.0 95.5 £ 0.3 74.5 £ 2.0 95.5 £ 0.0 95.1 £ 0.6 93.3 £ 1.0
Cheetah-vel 7.1 £ 0.9 44.2 £ 0.1 44.6 £ 0.1 19.7 + 4.6 61.2 + 3.2 60.5 + 7.9 44.0 £ 9.8
Ant-dir 24.7 £ 1.4 61.7 £ 0.2 66.5 £+ 0.4 75.3 £ 6.6 75.3 £ 3.9 78.7 £ 0.2 775 £ 1.7
MW reach-v2 45.5 £ 1.0 42.1 £ 5.8 41.8 £ 5.8 0.3 £0.1 54.0 £ 2.2 49.9 + 4.4 43.9 £+ 13.0
Average 18.4 60.7 62.1 41.2 71.5 71.0 64.7
Expert prompt initialization
Cheetah-dir —3.8 + 0.3 94.6 £ 0.5 95.5 £ 0.1 75.5 + 0.9 95.5 + 0.1 95.4 £ 0.1 93.6 + 0.7
Cheetah-vel 7.1+ 0.9 86.0 £ 1.4 86.4 £ 1.2 27.1 £ 4.5 87.8 £ 0.4 87.5 £ 0.1 81.9 £ 0.5
Ant-dir 24.7 £ 1.4 71.3 £ 0.3 72.7 £ 0.3 76.8 + 6.6 75.5 +£ 0.4 74.5 £ 0.3 84.2 £ 1.6
MW reach-v2 45.5 £ 1.0 50.9 £ 6.6 50.9 £ 6.6 0.3 £0.1 56.5 £ 1.0 53.1 £ 3.0 54.2 £ 8.6
Average 18.4 75.7 76.4 43.1 78.8 77.6 78.5
Meta-World-10-Reward with expert prompt initialization
Coffee-push-v2 11.9 + 4.3 19.4 + 6.3 32.7 £ 12.6 0.7 £ 0.3 35.6 £ 11.0 35.0 £ 9.5 54.6 £ 12.8
Door-open-v2 18.2 £ 1.5 28.7 £ 2.0 26.4 + 5.1 29.0 £ 12.4 30.0 £ 3.4 29.5 + 4.4 48.3 + 13.0
Handle-pull-v2 5.4 + 3.3 202 £ 7.9 252 £ 7.4 16.0 + 12.1 33.1 + 10.9 33.0 £ 12.2 25.0 £ 18.7
Average 11.8 22.7 28.1 15.2 32.9 32.5 42.6

Our approach encompasses two distinct variations: Prompt-Tuning DT with an offline loss function (PTDT-
offline) and Prompt-Tuning DT with an online reward function (PTDT-online). To maintain fairness in the com-
parison, all offline methodologies are confined to utilizing an equivalent quantity of samples P; sourced from the
target task 7!, While PTDT-online involves interaction with a simulator, we meticulously regulate the number
of interactions to guarantee access to new trajectories of comparable magnitudes. Note that all methods utilize
the same PLM to ensure an equitable comparison. By aligning these experimental setups, we establish a robust
foundation for an unbiased assessment of the methods’ performance, thereby enhancing the validity of our findings.

5.3 Main results

We perform a comparative analysis between Prompt-Tuning DT and the parameter-efficient baseline methods to
assess their few-shot generalization abilities and evaluate the tuning efficiency of Prompt-Tuning DT in relation
to the full-model fine-tuning approach. We use the episode accumulated reward as the evaluation metric in the
test task set 7'¢*t. Note that we present two prompt initialization settings: the random prompt, gathered from
a random policy, and the expert prompt, acquired from the expert policy. Given the challenge of generalizing to
varying reward and transition functions in the Meta-World-10-Reward environment, we limit our evaluation to the
expert prompt in this setting. The main results are normalized and presented in Table 1, which showcases the
few-shot performance of various algorithms.

The outcomes from the PLM underscore the significance of prompts, as PLM struggles to adapt to target tasks
in zero-shot scenarios. During the random prompt initialization setting, PDT effectively leverages pre-collected
prompts by incorporating them into the PLM input, resulting in substantial improvements. The adaptor also
exhibits enhanced performance over the PLM by introducing supplementary fine-tuning adaptors within decoder
modules. However, its efficacy is hampered, particularly in the MW reach-v2 and cheetah-vel environments, likely
due to limited target datasets P. Both Soft-Prompt and our proposed approach undertake further fine-tuning of
the prompt itself. While Soft-Prompt treats the prompt as an embedding and optimizes it using the AdamW
optimizer, it achieves better results than PDT but lags behind our approach. This discrepancy can be attributed to
the intricate and environment-specific nature of RL prompts, which necessitate meticulous updates. Our approach
demonstrates effectiveness in both offline and online settings, yielding notable performance improvements that
surpass the benchmark of Full-Model-FT, which serves as a primary reference for evaluating the efficacy of our
approach.

Under the expert prompt initialization setting, characterized by strong prior knowledge, all baseline approaches
exhibit substantial enhancements in comparison to their counterparts in the random initialization setting. More-
over, the relative improvement of our method, compared with other approaches, diminishes under the expert prompt
regime. This reduction can be attributed to the strong prior condition introduced by expert trajectories, which
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Table 2 Ablation study on the impact of parameters m and p in our PTDT-offline method, initialized with random prompts. Experiments
are conducted in the Ant-dir environment, with results averaged over three independent runs and normalized for comparison. In each run, only
one parameter is varied while the other is held constant to ensure a robust evaluation.

p=1
m = 10 m = 20 m = 30 m = 50 m = 80 m = 100
PTDT-offline 71.0+ 5.8 73.0 £ 4.0 75.3£3.9 72.9 £ 3.8 73.8£2.3 74.0£2.2
m = 30
w=0.5 pn=1 nw=>5 pn =10 pn=15 w =20
PTDT-offline 72.6 + 2.2 75.3+£3.9 70.9 £ 3.8 64.0 £ 4.0 60.2 4 4.3 59.2+4.4

Table 8 Ablation study examining the effect of prompt length on prompt-tuning methodologies, initialized with random prompts. Experiments
are conducted in the Ant-dir environment, with results averaged over three independent runs and normalized for comparison. The proposed
methods demonstrate consistently strong performance across a wide range of prompt lengths.

Length
2 5 10 15 20
PDT 53.2+4.1 61.7+0.2 57.1+3.1 56.2 + 3.3 54.7 + 4.0
Soft-Prompt 57.5+ 3.0 66.5 + 0.4 61.14+2.1 60.2 4+ 2.3 59.2 +£2.7
PTDT-offline 45.7+ 2.1 75.3 £ 3.9 78.1 £2.7 76.2 £2.2 76.0 £ 2.4

constrains the extent of improvement across methods. Nevertheless, despite this limitation, our approach consis-
tently outperforms all other parameter-efficient methods. Furthermore, our method achieves outcomes on par with
Full-Model-FT. Collectively, these outcomes accentuate the effectiveness of our prompt-tuning techniques across
both random and expert prompt initialization scenarios.

When contrasting random and expert initialization conditions, it is crucial to highlight that the ultimate per-
formance of our PTDT-offline method, when initialized randomly, has not only matched but, in certain instances,
exceeded the outcomes attained through expert initialization (in comparison with PTDT-expert). This phenomenon
can be attributed to the high efficiency of our method, which is capable of rapidly steering randomly initialized
prompts into the proximity of expert-level prompts.

In the Meta-World-10-Reward setting, the reward and transition functions differ between the training and test
tasks, making fine-tuning increasingly important for assessing the methods’ generalization capabilities. In this
context, fine-tuning only the prompt or the adaptor may not be sufficient to generalize to complex new tasks,
where full-model fine-tuning achieves the best performance. Nevertheless, our approach consistently demonstrates
effectiveness across all test tasks among parameter-efficient methods, highlighting the robustness of our method.

5.4 Ablation

Random search. Considering the random search can lead to a lot of variability in the performance of the algorithm,
we further investigate the impact of the number m and variance p of Gaussian random variables. The results are
shown in Table 2. When we increase the number of samples m during each update, the algorithm explores a larger
set of possible directions to evaluate the performance, leading to a more accurate gradient estimation (variance
decrease). However, as m increases, the burden on the oracle, which needs to provide ranking information for the
m samples, also grows. On the other hand, increasing the variance of the Gaussian distribution p also allows the
algorithm to explore a broader range of potential directions for performance evaluation. However, a higher variance
of the Gaussian p also introduces larger variability in the gradient estimation, which may not consistently guarantee
performance improvement and can potentially have a detrimental effect on the optimization process.

Prompt length. We investigate the impact of prompt length on prompt-tuning methods, considering its influ-
ence on both the number of tuning parameters in the approach and the speed of inference. It is crucial to strike
a balance between the richness of information provided by the prompt and the effectiveness of the prompt-tuning
process. The results are shown in Table 3. Our primary focus is on investigating Soft-Prompt and PTDT-ofHline.
We employ PDT as the baseline, which does not involve additional fine-tuning processes. The augmentation of
the prompt does not uniformly lead to enhanced generalization performance for both PDT and Soft-Prompt. Our
method also achieves peak performance at a prompt length of 10, after which a slight decline is observed. This
indicates that excessively long prompts may introduce redundancy or noise, adversely impacting performance. Nev-
ertheless, our method demonstrates strong performance across a wide range of prompt lengths, underscoring its
effectiveness in refining prompts, even when managing a larger number of tuning parameters.

Sample efficiency. We explore the impact of progressively increasing the number of fine-tuning samples on
the performance of fine-tuning approaches, aiming to understand the prompt-tuning methods’ dependence on the
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Figure 3 (Color online) Comparison between different fine-tuning approaches when different numbers of training samples are available. Each
plot represents the results averaged over 3 independent seeds. The z-axis indicates the training sample size, while the y-axis represents the
evaluation metric (with higher values indicating better performance). Our method consistently demonstrates superior performance across
different training sample sizes, highlighting its effectiveness.
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Figure 4 (Color online) Ablation study on prompt visualization conducted in the Ant-dir environment with expert prompt initialization. For
this visualization, we generate state vectors and action vectors from five different samples (y-axis). (a) corresponds to the original prompts.
(b) represents the prompts after fine-tuning using the PTDT-offline method. (c) presents a t-SNE visualization, where the dimensionality of the
states and actions of these prompts is reduced and the final results are displayed in a two-dimensional graph.

quantity of fine-tuning samples. Figure 3 illustrates the performance trends of these methods on the Cheetah-dir,
Cheetah-vel, Ant-dir, and MW reach-v2 environments. Prompt-tuning methods (PTDT, Soft-Prompt) exhibit con-
sistent performance across varying sample sizes, whereas model-tuning methods (Adaptor, Full-Model-FT) exhibit
incremental improvements as the number of samples increases.

Furthermore, it is worth noting that unlike the observed phenomenon in NLP [5,58], the performance of these
fine-tuning approaches does not exhibit a monotonically increasing trend as the amount of fine-tuning data increases.
In all environments, a downward inflection point is observed in the performance curve as the number of samples
increases. This phenomenon can be attributed to the presence of “bad samples” in the training dataset, which
negatively impact the fine-tuning process and may lead to performance degradation. As the dataset size increases,
the occurrence of such “bad samples” becomes more frequent, preventing performance from consistently improving
with additional data.

5.5 Visualization

In this subsection, we provide additional visualizations to enhance the intuitiveness of our experimental results in
the ablation study. We present heatmaps in Figure 4 to compare the original prompts (a) with the prompts after
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fine-tuning (b). These heatmaps visualize the state and action vectors for five samples (0—4 on the y-axis). The
heatmaps highlight notable changes in specific dimensions resulting from the prompt-tuning process. Specifically,
when examining the state vector, we observe a consistent trend of low values in dimensions such as the 7th and 15th.
A similar pattern is also evident in the action vector. While these figures may not provide directly interpretable
content, they offer valuable insights into the dimensions that significantly influence the final performance.

Beyond the heatmaps, we include t-SNE visualizations of the state and action vectors, as depicted in Figure 4(c).
These visualizations include the original prompt alongside the updated prompts generated by the Soft-Prompt
method and our proposed method. By facilitating an exploration of the high-level distribution of prompts, these
visualizations offer additional insights into the adaptation process. The t-SNE results indicate that the prompts
obtained through our method exhibit minimal deviations from the original prompts, maintaining a high degree
of overlap with the original distribution. In contrast, prompts fine-tuned using the Soft-Prompt method deviate
significantly from the original distribution. Despite these differences, both methods yield improvements over the
original prompts. These findings suggest that aligning with the structure of the original distribution may be a more
effective strategy for prompt tuning, particularly when there is no predefined “optimal prompt”. By maintaining
proximity to a known “good” prompt distribution, our approach leverages the favorable properties of the original
prompts while avoiding drastic deviations that may not consistently lead to improved performance.

6 Conclusion and future work

In this paper, we introduce the Prompt-Tuning DT, a novel algorithm that aligns with human preferences in
the target environment. By optimizing prompts without back-propagation, Prompt-Tuning DT offers a memory-
efficient alternative to fine-tuning PLMs. Furthermore, our prompt-tuning offline RL framework using trajectory
prompts allows for effective adaptation to new tasks with minimal parameter optimization and a small number of
trajectories. Through extensive experiments, our approach achieves performance on par with full-model fine-tuning
and surpasses alternative parameter-efficient methods.

Our work contributes to the advancement of prompt-tuning approaches in RL, providing a promising direction
for optimizing pre-trained large-scale RL agents for specific preferences and downstream tasks. Our approach
demonstrates the potential of prompt-tuning methods in RL settings and opens up avenues for future research
in developing tailored prompt-tuning techniques for RL agents. We envision that prompt-tuning approaches will
continue to play a crucial role in enhancing the generalization and adaptability of RL agents in real-world scenarios.
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