SCIENCE CHINA
Information Sciences

* Supplementary File ¢

Prompt tuning with preference ranking for few-shot
pre-trained decision transformer

Shengchao Hu'2, Li Shen®*, Ya Zhang'? & Dacheng Tao*

Shanghai Jiao Tong University, Shanghai 200240, China
2Shanghai AI Laboratory, Shanghai 200233, China
3Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
4Nanyang Technological University, Singapore 639798, Singapore.

Appendix A More analysis
Appendix A.1 Main results

In the context of the PTDT-online method, there is an intriguing observation: the experimental outcomes in the Ant-dir
environment, when initialized randomly, surpass those achieved through expert initialization. This counterintuitive finding
warrants attention and further analysis. We attribute this phenomenon to the presence of local optima when initialized with
expert prompts. Specifically, when the prompt is randomly initialized, our algorithm correctly estimates the convergence
direction, allowing for more effective convergence toward a global optimum at a larger learning rate. Conversely, when
the prompt is initialized with expert guidance, it is already situated within a local optima region. Therefore, if learning
continues with a larger learning rate, its performance gradually deteriorates, moving away from the local convergence
region. Conversely, if learning continues with a smaller learning rate, it remains constrained within the local convergence
domain. Hence, it is possible that the performance of PTDT-online under random initialization conditions might surpass
its performance under expert initialization conditions.

However, this pattern is not observed for PTDT-offline. This discrepancy can be attributed to the fact that PTDT-online
can directly interact with the simulator, and the cumulative rewards it acquires provide unbiased estimates of the current
policy, facilitating the accurate estimation of the global convergence direction. In contrast, PTDT-offline is constrained by
the limitations of the offline dataset, making it unable to achieve unbiased estimation of the global convergence direction.

Appendix A.2 Limitation and possible solutions

Our method relies on the initial distribution of the prompt, which serves as the starting point for optimization. While this
approach proves effective in many scenarios, it may encounter challenges in complex environments such as Meta-World-
10-Reward. In such cases, the desired optimal prompt may lie outside the original distribution, making it difficult for the
current framework to effectively optimize a randomly initialized prompt. This limitation underscores the need for exploring
methods that can go beyond the constraints of the initial prompt distribution.

To overcome this limitation, we propose exploring alternative frameworks that do not rely solely on optimizing a single
prompt within the given distribution. Instead, these approaches could focus on generating prompts that are better aligned
with the demands of complex environments. Below, we outline one promising direction:

e Incorporating Generative Models for Prompt Creation: Instead of starting with a single prompt and refining
it through optimization, we could leverage generative models to directly generate new prompts. Such generative models
could be pre-trained on a diverse set of tasks, allowing them to capture a broader range of potential prompt distributions.
These generative models would enable the creation of prompts that incorporate richer prior knowledge and are better suited
for complex environments, where the optimal prompt may not be easily reachable through local optimization of a random
initialization.

e Hybrid Approach Combining Generation and Optimization: A hybrid approach could be considered, where a
generative model first produces a pool of candidate prompts, which are then fine-tuned using our optimization framework.
This two-stage process combines the strengths of generation and refinement, ensuring that the prompts are both diverse
and well-suited for the specific task.

e Meta-Learning for Prompt Initialization: Another avenue is to incorporate meta-learning techniques to train a
meta-model capable of generating task-specific initial prompts. By leveraging knowledge from prior tasks, the meta-model
could provide a strong starting point for optimization in complex environments.

* Corresponding author (email: mathshenli@gmail.com)



Sci China Inf Sci 2

Appendix B Detailed environment

We evaluate our approach on a variety of tasks, including meta-RL control tasks. These tasks can be described as follows:

e Cheetah-dir: The task comprises two directions: forward and backward, in which the cheetah agent is incentivized to
attain high velocity along the designated direction. Both the training and testing sets encompass these two tasks, providing
comprehensive coverage of the agent’s performance.

e Cheetah-vel: In this task, a total of 40 distinct tasks are defined, each characterized by a different goal velocity. The
target velocities are uniformly sampled from the range of 0 to 3. The agent is subjected to a penalty based on the ls error
between its achieved velocity and the target velocity. We reserve 5 tasks for testing purposes and allocate the remaining 35
tasks for training.

e Ant-dir: There are 50 tasks in Ant-dir, where the goal directions are uniformly sampled in a 2D space. The 8-joint
ant agent is rewarded for achieving high velocity along the specified goal direction. We select 5 tasks for testing and use
the remaining tasks for training.

e Meta-World reach-v2: This task involves controlling a Sawyer robot’s end-effector to reach a target position in 3D
space. The agent directly controls the XYZ location of the end-effector, and each task has a different goal position. We
train on 15 tasks and test on 5 tasks.

e Meta-World-10-Reward: This benchmark comprises 10 distinct tasks, each with different reward and transition
functions, but sharing the same state and action spaces. It is designed to evaluate the agents’ adaptability to more complex
meta-environments.

By evaluating our approach on these diverse tasks, we can assess its performance and generalization capabilities across
different control scenarios. The experimental setup in Section 5 adheres to the training and testing division specified in
Table B1. This ensures consistency and allows for a comprehensive assessment of the approach’s performance across tasks.

Table B1 Training and testing task indexes when testing the generalization ability in meta-RL tasks

Cheetah-dir

Training set of size 2 [0,1]
Testing set of size 2 [0.1]
Cheetah-vel
Training set of size 35 [0-1,3-6,8-14,16-22,24-25,27-39]
Testing set of size 5 [2,7,15,23,26]
Ant-dir
Training set of size 45 [0-5,7-16,18-22,24-29,31-40,42-49)]
Testing set of size 5 [6,17,23,30,41]
Meta-World reach-v2
Training set of size 15 [1-5,7,8,10-14,17-19]
Testing set of size 5 [6,9,15,16,20]

Meta-World-10-Reward

Training set of size 7 [coffee-pull, door-close, door-lock, door-unlock,
handle-press-side, handle-press, handle-pull-side]
Testing set of size 3 [coffee-push, door-open, handle-pull]

Appendix C Hyperparameters
We show the hyperparameters of Prompt-Tuning DT in Table C1.

Appendix D Normalization

Table D1 presents the normalized scores used for normalization. The values are selected from the collected datasets, with
”Random” corresponding to the minimal value and ” Gamer” corresponding to the maximal value.

Appendix E Detailed resource

We have provided detailed comparisons of the time and resource requirements for our method and the baseline approaches
during a single step of the tuning process (Table E1). The results demonstrate that our method achieves the best performance
while utilizing the least GPU memory and requiring comparable computational time. This highlights both the efficiency
and effectiveness of our approach.



Sci China Inf Sci 3

Table C1 Common Hyperparameters of Prompt-Tuning DT.

Hyperparameters Value
K (length of context 7) 20
training batch size for each task 32
training number of steps per iteration 10
training max iterations 5000
fine-tuning batch size for each task 32
fine-tuning number of steps per iteration (offline) 50
fine-tuning number of steps per iteration (online) 10
fine-tuning max iterations 20
number of evaluation episodes for each task 50
learning rate [le-3, 1e-6, 1e-8]
learning rate decay weight le-4
ranking algorithm m [10, 20, 30, 50]
ranking algorithm k same as m

ranking algorithm p

Return-to-go conditioning

[0.5, 1.0, 5.0, 10.0]
1500 Cheetah-dir
0 Cheetah-vel
500 Ant-dir
650 Meta-World reach-v2
4500 Meta-World-10-Reward

Prompt length K* 5
number of layers 3
number of attention heads 1
embedding dimension 128
activation ReLU
Table D1 Baseline scores used for normalization.

Game Random Gamer
Cheetah-dir —10.1 994.73
Cheetah-vel —200.018 —18.864

Ant-dir —31.046 521.31

Meta-World Reach-v2 0 555.01
Coffee-push-v2 3.2 1000.48
Door-open-v2 170.47 1436.25
Handle-pull-v2 1.29 4695.51

Table E1 Ablation study examining the Time and GPU Memory with one update process. These experiments are performed in

the Ant-dir environment with random prompt initialization using a single NVIDIA 4090 GPU.

Method Soft Prompt Adaptor PTDT-fHline
Time 6min46s Tmin22s 6minb5s
GPU Memory 562MiB 628MiB 512MiB
Performance 66.5 0.4 75.3 £6.6 75.3+3.9




	More analysis
	Main results
	Limitation and possible solutions

	Detailed environment
	Hyperparameters
	Normalization
	Detailed resource

