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Abstract Recently, privacy concerns of person re-identification (ReID) have raised more and more attention, and protecting personal
information in the privacy-sensitive images used by ReID methods has become essential. In order to utilize data from video surveillance
without leaking pedestrians’ private information, person de-identification (DeID) is a simple and effective method of alleviating privacy
issues by removing identity-related information from the data. Most of the existing DeIlD methods focus on identity-irrelevant tasks
such as pose and action recognition and tend to remove all identity-related information. However, this compromises the usability of
de-identified data in the RelD task. In this paper, we aim to develop a technique to achieve a good trade-off between privacy protection
and data usability for person RelID. To achieve this, we propose a novel de-identification method designed explicitly for person RelD,
named person identity shift (PIS). PIS removes the absolute identity in a pedestrian image while preserving the identity relationship
between image pairs by exploiting the interpolation property of the variational auto-encoder. Experimental results show that our method
has a better trade-off between privacy-preserving and model performance compared to existing de-identification methods and can defend
against human and model attacks for data privacy. The codebase of PIS is available at https://github.com/Vill-Lab/2025-SCIS-PIS.
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1 Introduction

Due to the advances in cameras and web technology, it is easy to capture and share large amounts of video surveil-
lance data, which facilitates the research and application of person re-identification (ReID) [1,2] in recent years.
However, RelD has introduced severe concerns about personal privacy leakage. A person RelD development process
contains four stages [3]: (1) data collection, (2) data annotation, (3) model training, and (4) model deployment
and inference, each of which carries the risk of exposing the privacy to attackers. Specifically, in the data collection
and annotation phase, the attackers may obtain the personal images of a pedestrian directly, which could easily
reveal personal information such as daily individual whereabouts or personal activities. In the model training and
inference stage, there is still a risk of the attacker obtaining the ReID model or its outputs and recovering the
original training or inference data with techniques like model inversion [4,5], membership inference attacks [6-8] or
backdoor attack [9].

Data protection and machine learning seem to be in natural conflict, so one of the challenges for both users and
service providers is to achieve privacy protection within a machine learning framework that balances privacy and
benefits, which also applies to person RelD. Most of the existing privacy protection methods mainly focus on the
privacy protection of the training and inference stage, such as Homomorphic encryption (HE) [10] and differential
privacy (DP) [11]. Furthermore, HE and DP also face difficulties applying to large deep models. As a result, in this
paper, we focus on a type of simple yet effective approach that can be applied to the privacy protection of all four
stages, namely person de-identification (DeID) [12].

DelD aims at removing identity-related features about pedestrians from an image or video while retaining as much
information as possible for various downstream tasks, such as pose or action recognition. Since DelD removes the
identity features directly from raw data, the de-identified data can be applied to any stage of the RelD development
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Figure 1 (Color online) The challenge of privacy protection and our solution. (a) The trade-off between privacy protection and usability in
RelD tasks; (b) person de-identification (DeID); (¢) our motivation; (d) person identity shift (PIS).
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process, including data collection and annotation. However, existing DelD methods mainly focus on identity-
irrelevant classification tasks, and ignore the usability of de-identified data on person re-identification. As shown in
Figures 1(a) and (b), it is extremely challenging for the DeID method to achieve a good trade-off between privacy
protection and RelD data usability, because existing DelD methods aim at removing all personal identity-related
information in each pedestrian image, while the RelD model relies on this removed identity information to conduct
training and inference. As a result, we seek to explore: is it possible to protect privacy without compromising the
usability of the data for the RelD task?

An important observation to resolve this challenging task is the gap between what models rely on to perform
re-identification and what we want to protect. Person RelD models are learned to make predictions based on the
similarity or the relationship between pedestrian image pairs (i.e., whether two images belong to the same identity
or not). On the other hand, we would like to protect the absolute identity of an image from possible attackers
(i.e., who is the person in the image), which is not required by the ReID models. This leaves us room to solve the
problem by removing the absolute privacy information while preserving the relationship between image pairs.

Inspired by the interpolation ability of variational auto-encoder [13] (as shown in Figure 1(c)), we aim to mix
the original image with several reference images in the latent representation space, leading to a generated image
with a mixed identity. Variational auto-encoder (VAE) has been extensively utilized in various studies on person
RelD [14-16]. In contrast to the aforementioned studies that primarily concentrate on feature decoupling, our focus
is on utilizing the interpolation properties of VAE to generate a new identification.

As a result, we propose a novel DelD-based method called person identity shift (PIS) that only removes the
absolute or real identity of the images, while still preserving the relationship between image pairs. PIS ensures
images originally belonging to the same identity still have the same new identity after de-identification. Specifically,
as shown in Figure 1(d), PIS transforms a set of images with the same identity into a new set of images with a
different identity (i.e., identity shift). In this way, the adversary will not obtain the absolute or real identity of
the images. However, since the generated images originally belonging to the same identity still have the same new
identity (i.e., preserve the relative identity), it can still be used in person re-identification.

We introduce the similarity preservation branch to constrain all images of the same ID to have the same distri-
bution as much as possible, to indirectly make the distribution of all images of the same ID after shifting as much
as possible. On the other hand, we design a cycle training strategy to establish a consistency constraint similar to
that of the original image and the reconstructed image. In this way, the image is shifted from the current identity to
another human-readable pedestrian image with a new identity. Notably, the images shifted by PIS can be directly
understood by humans and used directly for model training without any additional processing.

In conclusion, we try to address the challenge of privacy-preserving person re-identification via the following
contributions.

e We propose a novel DelD method that achieves a good trade-off between privacy protection and data usability
for privacy-preserving RelD, called PIS, which shifts pedestrians’ original identity to a new identity by sampling
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from the interpolation of Gaussian distribution, so that only trained with the generated new data to achieve similar
RelID performance.

e We conduct detailed experiments to quantify the trade-off between the RelD performance and privacy protec-
tion ability of existing data de-identification methods and the proposed PIS. The results show that our method can
outperform existing methods substantially on the two commonly used RelD datasets.

e We demonstrate that the proposed approach can defend against human and model attacks to some extent
through user study and model inversion experiments. Compared with DP-SGD [11], PIS is more efficient and does
not require changes to the model.

The rest of the paper is organized as follows. We introduce privacy protection methods for surveillance video,
related person RelD methods general privacy protection methods, and privacy attack methods in Section 2. Section 3
presents the problem definition of privacy-preserving person re-identification and the details of PIS. Experiments
in Section 4 demonstrate the effectiveness and safety of our approach. Finally, we conclude this paper in Section 5.

2 Related work

2.1 Privacy protection methods for surveillance video

De-identification. Many of the existing DelD studies remove privacy information from the face region by image
distortion methods or generation models [17-19]. Recently, many studies have focused on identity-preserving face
camouflage and anonymization [20,21]. However, the face is only one of the recognizable features of the human
body; other biological features, such as body structure, silhouette, gait, gender, and race, could also reveal sensitive
personal information. To protect an individual’s privacy in video, person de-identification [12,22] hides the person’s
private information in video surveillance systems. Although the person DeID methods [12,22] can remove personal
information of individuals other than face region features, these methods only focus on privacy protection and do
not consider the usability of the de-identified data on the RelD task, leading to unsatisfactory RelD performance.

Feature encryption. Different from person DelD, which focuses on raw data, some privacy-preserving ap-
proaches focus on protecting the RelID phase by introducing cryptography. Following the privacy-preserving image
retrieval solutions, similarity metrics between encrypted feature vectors are commonly computed using Euclidean
distance [23,24] or Hamming distance [25]. These similarity metrics are then used to rank the images using a kNN
algorithm. However, the above solutions cannot support kRNN ranking over encrypted feature vectors. Although
FREED [26] supports kRNN sorting, it focuses only on the RelD phase and cannot protect the raw data and train-
ing process. Zhao et al. [27] put forward FREED enables the cloud server to perform state-of-the-art operations of
person Re-ID on encrypted feature vectors directly and outputs person Re-ID results.

Federated person RelID. Federated person ReID methods (FedReID) [28-30] represent approaches employing
federated learning, a decentralized training method, for person re-identification tasks. FedRelD aims to protect data
privacy by aggregating model updates instead of sharing raw data between clients and a central server. However,
FedRelD also focuses on only one stage of the RelD development process.

Different from the above methods, there are two types of approaches similar to ours that try to start with raw
data at the beginning of the ReID development process. Event-driven RelD [31] focuses on integrating privacy into
person RelD and explores the potential of using event-camera networks for RelD tasks for the first time. However,
the performance of event-driven RelD drops largely compared to RGB-based ReID. Zhang et al. [32] proposed a
learnable privacy-preserving anonymization method to explore the privacy-utility trade-off for pedestrian images.
Privacy is protected by anonymizing the image, and then the restored image is obtained by the recovery decoder.
However, this method cannot defend against model inversion attacks and is difficult to use for real-time video
surveillance because anonymized images make it hard to observe whether their behavior is suspicious of a crime. In
addition, the recovery decoder contains private information that could also be a target for attackers. In contrast,
the anonymized images of our method can be used directly by humans and models (such as pedestrian detection)
without recovery, as shown in Table 1 [12,22-26,28-32], and have less potential for privacy leakage.

2.2 Person re-identification

Existing person RelD methods mostly focus on performance improvements on public ReID datasets while neglecting
privacy protection. DelD focuses only on privacy protection and ignores data availability for the RelD task, i.e.,
they fail to maintain the RelD performance on the de-identified data. Unlike the above tasks, the privacy-preserving
person re-identification task proposed in this paper lies in balancing data availability and privacy protection.
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Table 1 Comparing PIS with existing privacy-preserving person ReID methods. The “Readable” and “Trainable” denote that the data can be
read directly by humans and be used to train for specific tasks after processing by these privacy-preserving methods, respectively. The “Human”
and “Model” denote that the method can defend against human and model attacks, respectively.

Method Protected Practicality Defensibility
Raw data Training RelD Readable Detectable Trainable Model Human
Person DelD [12,22] O O O
Feature encryption [23-26] 0
FedRelD [28-30] 0 0
Event-driven RelD [31] 0 0 0 0 O O
Reversibly anonymization [32] 0 0 0 0 O O
PIS (ours) o o 0 o o O o O

Some of the existing disentangled representation-based person ReID methods [33-35] disentangle the appearance
and posture feature so that it can also generate a new image using interpolation. For example, DG-Net [33] can
switch the appearance encoder or structure code to generate high-quality composed images. Compared with the
disentangled representation-based person RelD methods, PIS is fundamentally different from them in two ways.
(1) These methods mostly focus on changing colors and clothes and neglect other identity-related high-level at-
tributes, such as gender. (2) Based on disentangled representation, our proposed PIS uses VAE and the two
proposed losses to further exploit its interpolation capability, and the interpolation capability of the PIS is proven
to be superior to these methods through quantitative and qualitative results.

2.3 Differential privacy

Training a model with (e, 6)-DP [36] can protect the privacy of all training examples, where (e, §)-DP means that
the probabilities of outputting a model M trained on two datasets D and D’ that differ in a single example are
close. However, it is challenging to apply differential privacy to deep learning. Abadi et al. [11] proposed DP-SGD
to train deep learning models with DP. DP-SGD proved that privacy preservation for deep neural networks can be
achieved with moderate cost in terms of training efficiency and model quality. However, DP-SGD only achieves
good results on MNIST, dropping performance by about 20% on Cifar10.

Federated learning and DP primarily focus on privacy protection during the training phase. Unlike these methods,
our proposed PIS directly operates on the raw pedestrian images, encrypting the data at the beginning of the RelD
process. This ensures that neither during the training phase nor the inference phase can attackers extract private
information from pedestrian images. Additionally, while DP requires modifications to the model, PIS operates
without any need for model alterations.

2.4 Privacy attack methods

Model inversion attack. Since deep learning models always overfit the training data to some extent, the trained
models can cause leakage of private training data [37]. One common approach to attack model privacy is model
inversion. Model inversion infers training data from trained model or training process [5,38]. Hitaj et al. [39] trained
a GAN to generate prototypical samples of the training sets during the learning process. In federated learning or
collaborative learning systems, people believe that sharing gradients will not expose private training data. However,
Zhu et al. [4] introduced the deep leakage from gradient (DLG) to access private data in the training set from the
publicly shared gradient. Zhao et al. [40] found that ground-truth labels can be leaked from shared gradients and
proposed the improved DLG (iDLG) to extract accurate data from shared gradients.

Adversarial attacks. Recently, considerable research has been conducted on adversarial attacks in the context
of reid [41-44], leading to the emergence of several defense approaches [45]. For example, Gao et al. [7] proposed
a joint adversarial defense model based on feature-invariant against adversarial metric attacks. Nevertheless, our
specific focus is solely on privacy-related attacks, and assessing the model’s robustness falls outside the scope of
this paper.

3 Method

3.1 Problem definition of privacy preserving person RelD

We define a RelD dataset as Dyeia = {Zi, ¥i }icn containing N pedestrian images, where z; denotes the i-th pedes-
trian image and y; denotes its corresponding identity. Privacy-preserving reid (PPReID) aims at conducting person
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ReID with minimum privacy information leakage.

Following previous privacy-preserving methods [46], to evaluate the trade-off between privacy protection and the
ReID performance, PPRelD involves two tasks, i.e., a target utility task T, that aims at achieving good RelD
performance and a privacy budget T}, task that quantifies the privacy leakage by applying some privacy attack
algorithms. A good de-identification method should balance these two tasks by finding a data anonymization
function Fynony to transform a raw data image x into de-identified data & = Fanony(x) and perform well on both
tasks.

Target utility task. For DelD methods, the target utility task 7T, reflects how well the de-identified data can
be used for the RelD task. Intuitively, the performance of T}, can be evaluated by the RelD model’s performance
trained on de-identified data, and a higher ReID performance indicates better usability of the de-identified data.
Specifically, in our experiments, we chose several state-of-the-art ReID models to train on the de-identified data
and evaluate their Rank-1 and mean average precision (mAP).

Privacy budget task. The privacy budget task 7}, evaluates the amount of privacy information remained after
de-identification. A lower score means a lower privacy budget cost, indicating a better ability of the anonymization
function Fypnony to prevent data from leaking identity information. Following the previous privacy budget setting [46],
we propose to adopt two types of privacy attack methods: the pedestrian identity attack task and the pedestrian
attribute attack task and evaluate how much privacy information the attack model can infer from the de-identified
data.

The pedestrian identity attack aims to reveal the identity information from de-identified data. Previous identity
attacks mainly focus on classification or detection tasks and cannot be directly applied in RelD. Therefore, we
reformulate the identity attack as a retrieval task. Assuming that an attacker holds a query image of a target ID,
the attack model will try to query the de-identified RelD dataset and retrieve images with the same ID as the
query image. Under this setting, the privacy budget cost can be evaluated as the retrieval performance with metrics
including Rank-1 and mean average precision (mAP).

The pedestrian attribute attack aims at recognizing personal attributes from the de-identified pedestrian images,
such as gender, age, and hairstyle. Specifically, we apply binary classifiers that consider each attribute as an
independent binary classification problem following [47] and treat the average F1 score as the privacy budget cost.

The target utility task T, and the privacy budget task 7}, can be contradictory to each other. Hence, we propose a
new general metric that considers the performances of both tasks with adjustable weights to balance the importance
of privacy and RelD, called PU-score (privacy utility score):

2
PU-Score = S P (1)
57, T 0=51,)

where St, is the average RelD performance, St, is the privacy budget cost, I,, and I, denote the importance of the
corresponding task in the PU-score and I, + I, = 2.

3.2 Overall framework of person identity shift

Overall pipeline. Inspired by the interpolation ability of variational auto-encode (VAE) [48], Fanony is designed as
a novel VAE that shifts the identity of the input images. Specifically, given a pedestrian image x, PIS de-identifies
it by mixing its latent representation with the images from other k pedestrians and decoding the mixing embedding
to a person with a new identity.

The overall pipeline of the PIS is shown in Figure 2. The PIS network takes the pedestrian image = and its
estimated pose s as the input. For pose s, a trained multi-person key point estimation [49] is exploited to obtain the
pedestrian posture. Following VUNet [50], We model p(z|s) and ¢(z|z, s) as Gaussian distributions and p(z|s, z) as
a Laplace. Three neural networks, Fy, Fy, and Dy with trainable weights are designed to estimate the parameters
of p(z|s), q(z|x, s), and p(z|s, z) respectively. The body structure s extracted from an image x is fed into a prior-
encoder Ey, which models the structure prior distribution p(z|s), where z is the latent variable. Following [50],
conditioned on the image z and body structure s, Fyy models the posterior distribution ¢(z|z,s). The decoder
models the likelihood p(z|s, z), and reconstructs a new image z’ given the concatenation of latent variable z and
pedestrian pose s.

Notably, we force PIS not to change the pose of the person in the original image by treating it as the condi-
tion. This is because the DelD methods need to keep as much information as possible other than identity-related
information, and human behavior is important for video continuity and downstream tasks including RelD.

Backbone network. Similar to conditional U-Net [51], a skip connection is used between the structure decoder
with the encoder. The encoder and decoder both use the same residual structure in ResNet [52] with m residual



Dou S G, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 112103:6

e — e ——- —.
Structure Prior .

(a) Conditional ’
VAE Branch I |

|

|
‘ L | Distribution |
* Skip Connection ¢ g |

. |
i i Posterior ]
s s —» E, — ——» =D i Distribution |
|
plz|s) gy - I Mixture i
q(z x.3) - | Distribution i
@ : Sampling |

F¢ (b) Identity Shift Branch

ifi(ﬁl{rj» si})

|

Generating New ID by Interpolation

q(z| %, s)™
|

MLP —— > Loy,

> Lc ycle <
(c) Similarity Preservation Branch

Figure 2 (Color online) Framework of the proposed person identity shift (k = 2). The training pipeline of PIS mainly contains two branches.
The conditional VAE branch (a) conducts self-reconstruction. A latent representation z is obtained based on the original image = and pose s
by sampling from the posterior distribution estimated by encoders E, and Fy, which is then reconstructed back to an image with decoder Dg.
The identity shift branch (b) mixes the latent representation of k images encoded separately by Fy, and a mixed representation Z is fed into Dy
to reconstruct an image with a new identity. The conditional VAE branch (c) is first trained.

blocks. Each residual block contains an ELU [53] activation function and a 3 x 3 convolutional layer with a residual
connection way. The residual blocks are connected with a downsampling layer, where the downsampling layer is a
convolutional layer with a stride size of 2 x 2. After the downsampling layer, the feature map is reduced to 1/4 of
the original. The decoder also uses m residual blocks, while the sub-pixel convolution [54] between residual blocks
is used as an up-sampling layer to change the feature map to four times the original.

Generating new ID by interpolation. Given a target image x(= x1) to be de-identified, its identity is shifted
to a new one by mixing with & — 1 images {x;};c(2,....r) with different identities. Formally, the latent representation
z is sampled from a Gaussian distribution ¢, which is a mixture of k posteriors from the images as

k
2~ (2 sitieq,n) =N (Z Aifbis 1) ; (2)
i—1

where the mean of § is a Gaussian distribution is the weighted average of the means {s;}ie(1,... x) of the k distri-
butions. \; is the interpolation weight of the i-th image. Then, the mixed latent representation Z is fed into Dy to
generate an image & with a new identity, and hence Fj,,ony de-identifies = by encrypting « with £ — 1 other images
as follows:

& = Fanony (%) = Dg(Z, Ey (s)). (3)

In this way, the &£ — 1 images used for creating a new ID can be seen as a random “one-time private key”. That
weakly encrypts the target image 2. Two constraints are made for the coefficients ;. (1) The sum of the coefficients
Aiis 1,ie., >, A = 1. (2) To prevent excessive coefficients from revealing private information of individual IDs, all
coefficients are restricted to be less than d. We assign a new label to this new ID, distinct from the labels within
the entire training set, i.e., not the label of the original image = nor x;.

Similarity preservation branch. To indirectly constrain that the images with the shifting identity have the
same appearance, we use the image’s corresponding identity label for supervised learning. To make the distribution
q(z|z, s) of the images with the same ID as identical as possible, the mean of the distribution ¢(z|z, s) is fed into
an identity classifier containing a fully-connected layer.

3.3 Optimization

Conditional VAE loss. The perceptual loss, calculating the differences of activations on each layer of the backbone
model, can enhance the perceptual quality of generated images [55]. The reconstruction term usually uses an L1-
norm that often leads to blurry and less satisfying results in practice. Therefore, we substitute the reconstruction
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term with the perceptual loss and formulate our conditional VAE loss as
Levae = —KL(q(2]2, 9)||p(25)) + arec Y [[Vila) = Vila')| |1, (4)

where V; is the i-th layer of the backbone network, a,e. denotes a hyper-parameter that controls the weight of
the perceptual loss. We set aye. to 5 in this paper. To enable back-propagation to optimize the parameters in
Ey, Fy and Dy, the re-parameterization trick [48] is used to sample z from the distributions. We use the softmax
cross-entropy loss to supervise the similarity preservation branch:

Lapp = SCE(fe(11), ), ()

where p denotes the mean of distribution ¢(z|z, s), SCE is the softmax cross-entropy loss, y is the ID of the image,
and f. denotes the identity classifier.

Cycle training for new ID generation. Since there is no corresponding ground truth image for the generated
image &, we propose to adopt a cyclical training loss to enforce better-mixed generation results. Specifically, & is
fed back into Fj, to get its embedding distribution ¢(z|#,s). Then, we minimize the Kullback-Leibler divergence
between the embedding distribution and the original mixed distribution ¢:

Leyele = Dxr(q(2{xi, sitieq,..1)lla(z]2, 5)). (6)
Finally, the overall loss of the PIS network is computed as the sum of the losses:
ﬁtotal - chac + Lcyclc + Lapp- (7)

By jointly optimizing all the losses, both reconstruction quality and the relative identity of the encrypted images
are ensured.

The details of training. The training process is divided into two stages. In the first stage, we exclusively
train Fjy3 and conditional VAE branches, with the network’s optimization objective focused solely on minimizing
Lecvae- Once the conditional VAE branch achieves satisfactory performance in image reconstruction, we proceed to
the second stage. In this phase, the remaining two branches are integrated, and the overall network is trained with
the optimization objective updated to minimize Liota).

3.4 Hardness of attacking PIS

Now we consider the difficulty of recovering information about x given a single encryption &. Assume that the
attackers all know the way to protect privacy, i.e., they can get the encoder and decoder used for our encryption.

We consider the naive attack where the attacker tries to figure out the set of all k£ images. To find the %k correct
images for shift, the attacker has to try all () combinations with different coefficients, where m is the size of the
dataset. Therefore, it is difficult to attack PIS even though the attacker knows as much information as possible,
while for learning reversible anonymization [32], once the attacker steals the authentication, it will directly leak the
privacy.

4 Experiments

First, we compare PIS with de-identification methods to verify that the proposed PIS is effective for PPRelD. Second,
we implement the user study to show the performance of our approach under human recognition attacks. Even
though human recognition is far more expensive than model attacks, we also consider this possible attack. Third, if
the attacker only has access to trained models or participates in distributed training such as federation learning, we
mimic model reversal attacks to demonstrate the security of PIS. Finally, we compare with the differential privacy
and provide visualization results.

4.1 Experimental setting

PPReID contains two tasks, namely the target utility task and the privacy budget task. For the target utility
task Ty, four different state-of-the-art deep models, DenseNet121 [56], PCB [57], ISP [58] and TransReID [59] are
trained on the de-identified data. The performance of T, is the average MAP and Rank-1 of these four models.
For the privacy budget task 7}, the pedestrian identity attack trains ISP on a dataset separated from the training
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Figure 3 (Color online) Visualization of different de-identification methods and PIS. (a) Origin image; (b), (¢) removing pixels from the head
and body, respectively; (d), (e) Gaussian blur with different size kernels; (f) pixelation; (g) randomly selected image; (h) PIS (k = 2).

Table 2 Performance comparison between PIS and other methods in terms of target utility (in %) Ty, privacy budget (in %) T, (identity
attack), and PU-Score on Market-1501. Gaussian blur (S) and (L) denote the use of 11 X 5 and 21 X 11 Gaussian kernels. Given the width
limitation, we do not show the results of DenseNet.

Method PCB [57] ISP [58] TransRelID [59] Tu T T, | PU-Score 1
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Origin 71.8 89.5 85.5 93.3 89.0 95.1 79.1 91.2 90.0 95.1 17.8 9.3
Removing head 68.6 87.1 79.4 90.7 85.6 93.6 75.8 89.5 87.8 94.0 21.0 11.2
Removing body 25.8 49.3 27.4 54.2 27.6 48.0 21.1 39.8 8.6 21.2 34.2 52.8
Blur (S) 34.0 63.3 27.9 55.1 83.2 92.5 50.5 72.7 83.5 92.3 24.9 13.9
Blur (L) 11.5 28.7 30.2 58.1 72.3 87.6 34.7 56.0 34.7 59.3 45.3 47.1
Pixelation 48.7 73.3 65.4 83.7 7.2 89.5 58.8 78.7 56.2 76.9 50.2 35.7
DG-Net [33] 37.9 62.1 48.2 68.9 59.4 77.0 45.6 66.8 1.7 73.1 34.9 38.3
VUNet [50] 45.6 70.9 59.2 79.6 72.8 87.6 55.8 76.6 36.3 58.5 59.5 53.8
PIS (ours) 47.9 73.1 61.3 81.9 74.8 88.2 57.6 78.3 35.1 48.5 61.0 62.1

set of T, and uses it to query a set of target images from the de-identified training data. The performance of T}, is
evaluated based on whether the target images are successfully retrieved, and hence mAP and Rank-1 are used as
evaluation metrics. Since PIS de-identifies images by mixing identities, an attack is considered successful if either
one of the mixed images is retrieved. For the pedestrian attribute attack, we train a Densenet [56] to infer the
privacy attributes and use the F1 score to evaluate the attack performance. The results of the trade-off between
target utility and privacy budget are shown in Tables 2-4 where I, = I,, = 1. Bold fonts indicate the best results.
Up and down arrows indicate that higher values are better and lower values are better, respectively.

Dataset. We conduct experiments on the two commonly used RelD datasets. The details of the two RelD
datasets are as follows. (1) Market-1501 [60] contains 12936 training images of 750 IDs, 3368 query images of 750
IDs, and 15913 gallery images of 751 IDs. Following [50], only 9939 training images of 730 IDs are used to train
PIS. (2) DukeMTMC-reID [61] contains 16522 training images, 2228 query images, and 17661 gallery images.

Implementation details. The PIS framework is implemented by Tensorflow [62]. All images of the training
set are resized to 128 x 64 and padded to 128 x 128. The optimizer of PIS is the Adam optimizer with a learning
rate of 1.0e—3. The learning rate decays with training iteration. The batch size is 16, and the balance weight for
the reconstruction term in the conditional VAE loss ayec is 5.

As for the interpolation of identities, we set k = 2 and A\; = 0.5, where the mixed identities are farthest from
the original ones. When choosing the image used to de-identify the target, images of the same identity are mixed
with the same image from another random identity. In this way, we expect the relationship among identities can
be preserved. Moreover, in the pedestrian attribute attack experiment, we select images of another ID with the
opposite attribute to achieve the attribute change. In order to ensure fairness, we use consistent identity selection
strategies for methods and variants that are directly compared.

4.2 Results and analyses

We compare our PIS method with existing person DelD approaches, as shown in Figure 3 and person generation
methods, DG-Net [33] and VUNet [50], to demonstrate the advantages of PIS in balancing target utility and privacy
budget. The DelD-based methods include images with heads or bodies removed, Gaussian blurs with different sizes,
and pixelation. For a fair comparison, DG-Net and VUNet use the same way to interpolate the appearance encoding
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Table 3 Performance comparison between PIS and other methods in terms of target utility (in %) Ty, privacy budget (in %) T, (identity
attack), and PU-Score on DukeMTMC-reID. Gaussian blur (S) and (L) denote the use of 11 x 5 and 21 x 11 Gaussian kernels. Given the width
limitation, we do not show the results of DenseNet.

Method PCB [57] ISP [58] TransReID [59] Tu T Ty | PU-Score 1
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1
Origin 67.1 81.1 76.9 83.8 78.4 88.8 71.4 83.2 80.5 85.4 30.6 24.8
Removing head 63.8 78.0 67.5 81.2 76.1 88.1 66.7 81.4 77.4 81.0 33.8 30.8
Removing body 22.6 41.9 22.4 45.5 23.1 41.4 17.7 33.8 7.9 18.2 29.7 47.8
Blur (S) 28.9 55.1 23.6 46.8 74.2 82.0 43.7 63.0 75.7 83.4 31.2 26.3
Blur (L) 8.3 24.3 26.0 47.7 57.8 70.8 27.6 45.1 31.3 53.0 39.4 46.0
Pixelation 38.7 57.8 50.2 65.4 60.3 75.8 46.4 63.3 51.6 65.6 47.4 44.6
DG-Net [33] 29.0 50.4 39.0 56.6 47.3 64.7 36.6 55.3 64.0 62.2 36.3 44.9
VUNet [50] 38.1 61.0 45.0 60.8 55.7 70.2 44.3 60.9 32.9 52.6 53.4 53.3
PIS (ours) 38.1 63.5 49.2 66.2 61.5 74.7 46.6 64.1 32.0 43.7 55.3 59.9

Table 4 Attribute attack performance comparison between PIS and other methods in terms of target utility (in %) T, privacy budget (in %)
Ty, and PU-Score on Market-1501.

Method Teenager Adult Hair Gender T, | Ty T PU-Score 1
Origin 88.4 41.7 77.2 87.7 73.8 89.9 40.6
Removing head 87.9 39.3 69.1 77.8 68.5 88.2 46.4
Blur (8) 87.2 42.6 73.9 82.1 71.5 66.1 39.9
Blur (L) 85.1 34.3 64.7 68.7 63.2 45.5 40.7
Pixelation 80.5 39.6 63.5 70.6 63.6 75.1 49.1
DG-Net [33] 86.4 29.6 64.7 73.9 63.7 63.3 46.2
PIS (ours) 86.0 20.9 55.3 58.4 55.2 74.9 56.1

that generates similar images.

Person identity attack. As shown in Tables 2 and 3, removing all the pixels in the head region is not enough to
defend against ReID model attacks, and intuitively the same conclusions go to other face de-identification methods.
Removing pixels from the human body from the video is the most effective way to protect individual privacy, i.e.,
mAP of 8.6% under the ReID model attack. However, this method destroys the vast majority of information about
the pedestrian in the image, resulting in an unacceptably low T, performance. Minimal blurring does not protect
privacy, while severe blurring brings a loss of utility, and hence likewise fails to balance T, with 7},. Pixelation also
does not perform well in the balance metric PU-Score. On the other hand, generation-based methods are better
at balancing the two tasks. Among all the results, the mAP and Rank-1 of PIS in PU-Score are much better than
existing methods while keeping a reasonable utility score and privacy budget cost.

Moreover, since the importance of 7, and T}, varies based on different applications, we also compare PIS and
other methods under other importance weights, showing PIS’s superiority over other methods under all privacy-
performance importance weights in Figure 4. Note that we do not choose face recognition as an identity attack task
because faces are not always visible in pedestrian images and the visible faces are most likely to be too blurred to
recognize.

Person attribute attack. Table 4 compares PIS with other DelD methods with another privacy budget task
called person attribute attack, which evaluates how many privacy attributes the attack model can infer from the de-
identified data. Here, we select several seldom-changing attributes that highly relate to identity to infer, including
gender, age, and hair length. As shown in Table 4, PIS significantly reduces the inference performance on adult,
hair, and gender attributes in terms of F1-score by around 20 percentage points, outperforming other DelD methods.
This result also shows that PIS not only changes clothes but also changes other high-level semantic information
related to personal identity.

Ablation study. This paper proposes two novel losses to generate images with mixed identities while maintain-
ing appearance consistency within the same identity mixture, namely the cycle training loss (CT) and similarity
preservation branch (SP). We conduct an ablation study to analyze how different losses affect the ReID performance
and privacy protection. Our baseline is a conventional conditional VAE [50] with only VAE loss. We also compare
with ACALT [13] that adds the proposed adversarial regular term to the baseline. The results are shown in Table 5.
First, the adversarial regular term can enhance the interpolation ability of the AE model, but it is not applicable
for PPRelID because it greatly increases the privacy budget. Second, both cycle training and similarity preservation
branch perform well on T, but using both alone makes 7}, lower than the baseline method. Finally, cycle training
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Figure 4 (Color online) The trade-off between ReID performance and protecting data privacy under different I, : I,, on Market-1501.

Table 5 Ablation study. AR denotes the adversarial regular term of ACAI [13], CT denotes cycle training, and SP denotes the similarity
preservation branch. T, uses the performance of PCB, and T}, uses the results of a person identity attack.

X Tu T Ty, | PU-Score 1
Baseline AR cT SP
mAP Rank-1 mAP Rank-1 mAP Rank-1
v 45.6 70.9 36.3 50.8 53.2 58.1
v v 45.5 73.0 44.4 65.4 50.0 46.9
v v 51.0 75.1 42.6 58.7 54.0 53.3
v v 50.0 75.7 39.9 53.3 54.6 57.8
v v v 47.9 73.1 35.1 48.5 55.1 60.4

Table 6 Inside-dataset PIS vs. cross-dataset PIS on Market-1501. T, uses the performance from PCB and T} uses the results of a person
identity attack.

Ty T Ty 1 PU-Score 1
Datasets
mAP Rank-1 mAP Rank-1 mAP Rank-1
Inside 47.9 73.1 35.1 48.5 55.1 60.4
Cross 45.5 71.3 39.4 55.5 52.0 54.8

and similarity preservation branch are both effective in the PU-Score and are used together to reduce the privacy
budget while enhancing the target utility.

Cross-dataset vs. inside-dataset. The previous experiments used identities from the same dataset to shift
each other’s identities, i.e., inside-dataset PIS. To verify the generalization ability of PIS on data outside the training
set domain, we select images from another dataset, DukeMTMC-reID [61], to encrypt the original images in the
Market-1501, i.e., cross-dataset PIS. As shown in Table 6, there is a decrease in target utility and an increase in
privacy burden for cross-dataset PIS compared to inside-dataset PIS, but overall the impact of introducing a new
dataset is limited. Therefore, in practice, PIS can encrypt the identities either within the private RelD dataset or
with large-scale public RelD datasets to increase security.
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Figure 5 (Color online) User study. (a) The average accuracy of 15 human observers on 10 query questions for PIS and Blur (L); (b) the
successful case of person attack for PIS. The pedestrian in the green box is the original identity corresponding to the query.

0.0

4.3 User study

To further evaluate the privacy protection ability of PIS, we also conducted a user study to verify if humans can man-
ually identify the image generated by PIS. Directly using human recognition ability to attack the de-identification
method is one of the common methods, but human recognition ability makes it difficult to quantitatively state the
efficacy of the method. Here, we focus on the differences between human and model attacks.

Specifically, 15 human observers are asked to identify one image in the gallery with the same identity as a query
image. The average accuracy of the 15 participants for each query is shown in Figure 5(a), PIS achieves a way
better privacy protection ability compared to blur DelD in the user study. We also visualize the testing case in
which the participants achieve the highest accuracy in Figure 5(b). In this test case, there is only one person in the
gallery wearing a hat as the query image, while in this case, PIS may fail to shift personal items such as backpacks
and hats.

4.4 Defend against model inversion attack

To simulate the possible existence of model inversion attacks, we use iDLG [40], an improved version of DLG [4],
to recover the private train set by the shared gradient. According to the experimental setup of [4], we made two
changes to the RelD model. Since iDLG requires the model to be twice differentiable, we replace all the ReLU
activation functions with Sigmoid and remove the strides as well. The L-BFGS [63] is used as an optimizer with a
learning rate of 1.0 and 200 iterations.

The attacking process on Market-1501 [60] is shown in Figure 6. The stolen pedestrian images start as Gaussian
noise, and the gap between the dummy data and the input to the model gets smaller and smaller as the training
iterates. For the vanilla training method, iDLG directly recovers the corresponding private data, while PIS uses
the identity-shifted images to train the model, and iDLG is only able to recover the transformed image instead of
the original private data set, making it impossible for the attacker to directly steal the private data.

4.5 PIS vs. differential privacy

PIS and deferential privacy are not directly comparable in terms of privacy protection, because one directly encrypts
training data while the other focuses on preventing model leaking training data information. Following the setting
of [10], we only report the target utility performance comparison between PIS and DP-SGD.

Comparison with DP-SGD. DP-SGD [11] implements differential privacy in deep learning by clipping the
gradient first before adding noise during model training. The batchnorm [64] layer computes the mean and variance
of the batch to create a dependency between samples in a batch that violates privacy. To implement DP-SGD in
person RelD, we use opacus [65] to modify the ReID model by replacing all the batchnorm (BN) layers in ReID
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Table 7 Performance comparison between PIS and DP-SGD in terms of target utility on Market-1501. The GN indicates whether to replace
the batchnorm layer with the groupnorm layer.

ResNet-50 [52] PCB [57]
Method GN
mAP Rank-1 mAP Rank-1
DP-SGD [11] v 3.7 10.6 4.5 17.6
PIS (ours) x 46.5 67.0 47.9 73.1

Table 8 Performance comparison between appearance noise and Laplace noise in terms of target utility (in %) 7%, privacy budget (in %) Tp,
and PU-Score on Market-1501. T, only uses the performance of PCB.

. Tu T Ty 1 PU-Scoret
Noise
mAP Rank-1 mAP Rank-1 mAP Rank-1
Appearance noise 47.9 73.1 35.1 48.5 55.1 60.4
Laplace noise 52.4 77.0 60.0 78.7 45.4 33.4

Input Epoch=50 Epoch=100 Epoch=200 Input Epoch=50 Epoch=100  Epoch=200 GT containing two images

(a) Vanilla training () PIS(k=2)

Figure 6 (Color online) Stealing training RelD images from the shared gradient. (a) Vanilla training; (b) training on images encrypted by
PIS. iDLG can steal images, but what it steals are generated images, so the original images are still safe.

Gender: Female Gender: Male Hair: Short

PIS(k=2) PIS(k=2)

Original PIS

Original Original ( C) PIS

@

Figure 7 (Color online) Examples of PIS. (a) Change the gender; (b) change the appearance of whether to wear a hat; (c) change the hair’s
length.

models with groupnorm (GN) [66]. As shown in Table 7, our method shows good performance on ResNet50 and
PCB without GN. In contrast, DP-SGD essentially fails to converge on the ReID dataset even with e set to 50 (a
very small noise) or changing the learning rate. Moreover, another advantage of our method over the DP-based
method is that no modifications to the regularization layer or the activation function [67] of the model are required.

Comparison with adding random noise to appearance codes. Another typical approach to achieve
differential privacy is to add Laplace noise directly to the image. In this section, we add the Laplace noise to the
appearance coding of pedestrian images and compare the structured appearance noise ny = Zf:z AiEq(x;) with
the random Laplace noise ny, where the mean of n4 is equal to ny. As shown in Table 8, adding random Laplace
noise does not make the encrypted identity well away from the original one.

4.6 Visualization results

We provide qualitative results showing what aspects of a pedestrian our approach has changed. As shown in
Figure 7, it is most obvious that our approach changes the color, texture, and type of clothing. In addition to
clothing, PIS also changes other accessories. For example, PIS removes the hat from a person in the shifted image
in Figure 7(b). More importantly, PIS is also able to change other seldom-changing privacy attributes. For example,
as shown in Figures 7(a) and (c), PIS changes the gender and hair length of a person. The qualitative results show
that PIS can shift a person’s identity by changing various attributes and appearance features, including constantly
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changing clothing or accessories, and more permanent attributes like age, hairstyle, and gender.

5 Conclusion

In this paper, we propose a novel privacy-preserving method called PIS towards privacy-preserving person re-
identification. PIS generates weakly encrypted and human-readable pedestrian images by shifting each image to
a new image with a different identity. Since generated images with the same identity still have high appearance
similarity, PIS can preserve the relative identity and hence is suitable for the ReID task. The experiments show
PIS achieves a better trade-off between privacy protection and RelD performance. With some problems left open,
we hope that this study will raise more attention to the privacy risk of person re-identification.
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