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Abstract The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has
prompted both academia and industry to explore how these models can be tailored for specific industries and application scenarios.
This process, known as the customization of domain-specific foundation models (FMs), addresses the limitations of general-purpose
models, which may not fully capture the unique patterns and requirements of domain-specific data. Despite its importance, there is
a notable lack of comprehensive overview papers on building domain-specific FMs, while numerous resources exist for general-purpose
models. To bridge this gap, this article provides a timely and thorough overview of the methodology for customizing domain-specific
FMs. It introduces basic concepts, outlines the general architecture, and surveys key methods for constructing domain-specific models.
Furthermore, the article discusses various domains that can benefit from these specialized models and highlights the challenges ahead.
Through this overview, we aim to offer valuable guidance and reference for researchers and practitioners from diverse fields to develop
their own customized FMs.

Keywords artificial intelligence, domain-specific foundation model, multi-modality foundation model, pre-training foundation model,
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1 Introduction

ChatGPT has redefined people’s understanding of artificial intelligence with its outstanding performance. As its
core technology, the large language model (LLM) has become an essential tool for researchers and practitioners
across various fields to improve their workflows. General-purpose foundation models (FMs) are usually trained
on large public datasets, enabling them to learn and address a wide range of common problems. However, these
datasets cannot fully encompass all the specialized knowledge and technical details of specific domains. As a
result, although general-purpose FMs possess broad general knowledge, they lack the necessary depth to meet the
complex needs of some specific fields [1]. Therefore, constructing domain-specific FMs tailored to the needs of
particular industries has become particularly important. The term “domain” refers to a specific area of knowledge
with logical completeness and knowledge complexity, such as healthcare, finance, or legal services. Often, only
professionally trained one can master a certain domain’s terminology, concepts, and techniques. Domain-specific
FMs, or industry-specific FMs, are developed using data specific to a particular field. Compared to general-purpose
FMs, they are trained with a large amount of domain-specific data, enabling them to more accurately understand the
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Table 1 Examples of FMs with two different types.

Types of FMs Examples
VGG [2], ResNet [3], GPT-1 [4], GPT-2 [5], GPT-3 [6], GPT-3.5 turbo, BERT [7], GLM [8,9],
LLaMA [10], LLaMA-2 [11], iGPT [12], LVM [13], SAM [14], BART [15], T5 [16],
Time-LLM [17], UniTS [18], ST-LLM [19]
CoDi [20], CoDi-2 [21], Claude-3, GPT-4 [22], LLaVA [23], BriVL [24],
Multi-modality FMs ImageBind [25], NExT-GPT [26]

Single-modality FMs

unique language, terminology, concepts, and nuances inherent to the specific domain and generate domain-specific
professional content.

With the widespread use of ChatGPT-like products, the scope of the “foundation model” is gradually expanding.
It is necessary to clearly define the foundation model discussed to support the subsequent discussion on customizing
domain-specific FMs. The FMs mentioned in this article are neural network models that consist of at least one
of the five modules (which will be detailed later) in a general multi-modality FM. These models also exhibit the
following characteristics.

e Big data. The model utilizes a large volume of data covering various scenarios for training to provide ample
knowledge for the model.

e Large parameters. The model possesses a huge number of parameters sufficient to embed the knowledge
implied by the big data into the model’s parameters.

e Versatility. The model’s input data format and data processing workflow can adapt to different requirements
across various task scenarios.

e Fast adaptation capabilities. The model possesses a vast knowledge repository, enabling it to deliver robust
performance even in unknown data domains with minimal fine-tuning.

In the context of artificial intelligence, we use “modality” to categorize data with a consistent data structure and
semantic structure. Such a definition brings the conceptual consistency of each modality, which is the theoretical
foundation of multi-modality data analysis and processing. Based on the number of modalities an FM can process,
they can be classified into single-modality FMs and multi-modality FMs, as shown in Table 1 [2-26]. With the
certain modality an FM can process, we can use different names to categorize FMs, such as large language models,
large vision models, and large vision-language models.

In constructing domain-specific FMs, a series of challenges will arise, especially in the data acquisition and pre-
processing stages. For example, the domain-specific data required may not be open-source or readily accessible, as
it often has high confidentiality. Additionally, the modalities of domain-specific data might differ from those used
for training general-purpose FMs, making it difficult to adapt existing models to process this data. Furthermore,
the environments where the domain-specific data is collected may differ significantly from those for the pre-training
datasets, resulting in domain-specific knowledge that pre-trained models are unfamiliar with. In general, construct-
ing a domain-specific FM is challenging and costly, with significant implications for technical security, but it is
expected to yield high economic benefits. Therefore, it is essential to thoroughly review and explore the method-
ologies for constructing these models, providing guidelines for both researchers and practitioners. The organization
structure of this article is summarized in Figure 1.

Notably, previous review articles have predominantly focused on developing general-purpose FMs. Recently,
while several review articles have begun to explore the domain-specific adaptation of FMs, there is a significant
gap in the literature for a comprehensive exploration of adaptation strategies that apply to FMs of all modali-
ties, extending beyond language, vision, or any single modality, to various application domains. We summarize
representative surveys or review articles on FMs in Table 2 [27-47]. This paper aims to provide researchers and
practitioners interested in building domain-specific FM applications with methodological references by introducing
the key methodologies. Also, practical examples and future directions will be discussed.

2 Preliminaries of multi-modality foundation models

This section will elaborate on the preliminary technological basis for customizing domain-specific FMs. We begin
with the architecture of FMs, detailing all functional modules. Then, from two perspectives—model training and
scaling gain—we will explain the foundational technologies that enable each module to contribute to the high
performance of FMs. Finally, we compare the performance of various general-purpose large multi-modality models
for an intuitive sense of the performance that FMs can achieve and guide model employers in choosing the most
suitable FM.
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Figure 1 (Color online) Organization structure of this article.

Table 2 Summary of representative surveys or review articles on FMs.

Constructing output projector and
L modality decoder (sec. 334)

Article Modality Domain adaptation Domain Year
Zhao et al. [27] Language No General 2023
Liu et al. [28] Graph No General 2023
Mao et al. [29] Graph No General 2024
Du et al. [30] Vision-language No General 2022
Yin et al. [31] Multi-modality-language No General 2023
Yeh et al. [32] Time-series data No General 2023
Jin et al. [33] Time-series & spatio-temporal data No General 2023
Cao et al. [34] Multi-modality No General 2023
Zhou et al. [35] Multi-modality No General 2023

Zhang et al. [36] Multi-modality-language No General 2024
Lai et al. [37] Language Yes Law 2024
Ahn et al. [38] Language Yes Mathematics 2024
Li et al. [39] Language Yes Finance 2023

Thirunavukarasu et al. [40] Language Yes Medicine 2023
Kazerouni et al. [41] Vision Yes Medicine 2023
Shahriar [42] Multi-modality Yes Arts 2022

Hou et al. [43] Language Yes Software engineering 2023

Bariah et al. [44] Language Yes Telecommunications 2024
Zhou et al. [45] Language Yes Telecommunications 2024
Cui et al. [46] Multi-modality Yes Autonomous driving 2024
Yang et al. [47] Language Yes General 2024

Ours Multi-modality Yes General -

2.1 Architecture of foundation models

According to state-of-the-art research on FMs, it is widely considered that multi-modality FMs can encompass all
functionalities and structures of single-modality FMs. Essentially, a single-modality FM implements only a subset

of the functionalities of a multi-modality FM.

The five-module framework proposed for multi-modality FMs in [36] effectively encompasses the architecture of
multi-modality FMs with language as the central modality. However, the recent emergence of non-language FMs,
including vision FMs [13,14], graph FMs [28,29], time series FMs and spatio-temporal (ST) FMs [32,33], indicates
that the backbone of FMs is expanding beyond language modalities. Therefore, we propose that the structure of
multi-modality FMs can be divided into the following five modules: modality encoder, input projector, backbone
calculator, output projector, and modality decoder. Figure 2 illustrates the framework of a multi-modality FM with

language as the central modality.
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Figure 2 (Color online) Framework of multi-modality FMs with language as the central modality.

For multi-modality FMs, we define the set of all input modalities as M. Generally, a multi-modality FM has a
central modality C. Using modality alignment techniques, the multi-modality FM projects all the modalities it can
handle onto this central modality. Below, we define the five modules of the multi-modality FM and the input and
output data for each module, laying down the foundation for describing the architecture of FMs in this paper.

Modality encoder (ME) encodes the data Dy of an input modality X into a feature vector Fx:

FX:MEx(Dx), X e M. (1)

Input projector (IP) projects the feature vector Fx of a modality X into the feature vector F of the central
modality C":
Fczlpxc(Fx), X, Ce M. (2)

Backbone calculator (BC) performs operations on the feature vector F of the central modality C, yielding
results such as inference and generation F¢:

Fc :BCc(Fc), C e M. (3)

Output projector (OP) projects the feature vector Fe of the central modality C into the feature vector Fx
of a modality X: R .
Fx =OP¢cx(Fe), X,Ce M. (4)

Modality decoder (MD) decodes the feature vector Fx of the output modality X back into the original data
format, resulting in the decoded data Dy:

Dx =MDx(Fx), X e M. (5)

According to the above definition, building a domain-specific FM entails choosing the necessary modules—some of
which may be optional—and assembling a model tailored to the specific domain requirements, followed by training
it with data pertinent to that domain.

Here, we provide a concrete example for better illustration. CoDi-2 [21] is a language-centric multi-modality FM
capable of handling various modalities such as images, videos, text, and audio. It utilizes a large language model
(LLM) to generate new content. CoDi-2 employs vision Transformers (ViTs) pre-trained by ImageBind [25] as the
MEs for the image, video, and audio modalities. For the text modality, the ME is a text tokenizer. Since the
output features of the ImageBind pre-trained ViT are specific to the image modality, CoDi-2 trains a multilayer
perceptron (MLP) as the IP to map the features from the image, video, and audio MEs to the central modality,
text. Subsequently, these text features are fed into its BC, LLaMA2—an LLM-—that generates content matching
the user’s input prompt in the text modality. Then, the generated image and audio content are mapped back to
their respective feature spaces through an OP, another MLP. Finally, pre-trained diffusion models are used as image,
video, and audio MDs to generate the content.

2.2 Model training

After constructing an FM module by module, we need to train it. Model training involves setting up various training
tasks to enable FM to specifically extract the features required for solving each task. Feature extraction concerns
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Figure 3 (Color online) Structure of autoencoder.

extracting representative features from raw data. As raw data often contains a significant amount of redundant and
noisy information, feature extraction, which maps the data into a more information-dense feature space, enables
the models to understand data structure and patterns more effectively. Feature space is the set of coordinates
representing data samples across multiple feature dimensions, which mathematically refer to a high-dimensional
space. Note that “raw data” and “feature” are used in this paper to differentiate whether a dataset has undergone
feature extraction, which is essentially a set of mathematical calculations that increase the information density of
the data. In deep learning, neural networks can perform end-to-end feature extraction from raw data. However, this
often requires large amounts of data and computational resources to ensure good performance and generalization.
In each layer of neural networks, it transfers the output of the previous layer to a new vector space. This structure
allows for a flexible definition of the output dimensions of each layer without explicitly specifying the transformation.

Numerous training methods are available to achieve better feature extraction. They construct different loss
functions to teach the model how to focus on different aspects of the data, thereby extracting various feature
representations. If labeled information is available as the target for a specific task during training, supervised
learning can be used to train the model’s feature extraction capabilities. For example, suppose we have labeled
data for a classification task. In that case, we can construct a loss function such as cross-entropy loss to measure
the difference between the model’s predicted probability distribution and the true label’s probability distribution.
This provides the model with a specific direction for optimization to achieve the best feature extraction for the
classification task. Sometimes, we may not have labeled data for a specific task but still wish to mine features from
the data to perform better on downstream tasks in the future. In such cases, unsupervised learning methods can
be employed. Unsupervised training involves learning from data without the need for labeled examples. Common
methods include autoencoders, which learn to compress and reconstruct input data, as shown in Figure 3, capturing
important features. Another approach is using generative models like generative adversarial networks (GANs) or
variational autoencoders (VAEs) to learn the distribution of the data. Self-supervised training is also considered
a subset of unsupervised training [48], such as in training LLMs where autoregressive prediction tasks are used.
By generating subsequent content based on the previous content, the model inherently captures the distribution of
text sequences. Combining unsupervised and self-supervised training can form semi-supervised training, which is
well-suited for situations where there is a limited amount of labeled data and a large amount of unlabeled data.

Humans can also play a significant guiding role in training the model’s feature extraction capabilities. Rein-
forcement learning from human feedback (RLHF) is a method that combines reinforcement learning with human
feedback, adjusting the model based on human evaluations of its behavior to learn feature representations that align
more closely with human expectations. This technique is often mentioned in the context of training LLMs. First,
the model generates a series of outputs and requests a human evaluation of these outputs, such as scoring, ranking,
or providing other forms of feedback. These feedback data are then used to train a reward model that assesses the
quality of different outputs based on human preferences. Then, using the reward model, the initial model is fine-
tuned through reinforcement learning algorithms. During this fine-tuning process, the model continuously adjusts
its behavior strategy based on the feedback from the reward model to maximize cumulative rewards. Through this
process, the model can better understand user preferences and needs, generating outputs more aligned with human
expectations.

For a single-modality FM, cross-modality data is unavailable, so the architecture excludes IPs and OPs. In
contrast, multi-modality FMs must accommodate the processing of various data modalities, including the primary
and ancillary modalities. To achieve data conversion between modalities through IPs and OPs, the key is to apply
modality alignment. The goal of modality alignment is to process the feature vectors of different modalities into
a common feature space with the same dimension by using a loss function to characterize the correlation between
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Figure 4 (Color online) Structure of fusion encoder.

feature vectors. Ideally, modality alignment should ensure that raw data of different modalities carrying the same
semantic information are represented as the same point in the target feature space, facilitating cross-modality
information transfer.

There are two main implementation methods for modality alignment: the fusion encoder architecture and the
dual encoder architecture [30].

(1) Fusion encoder. Fusion encoder encodes the multi-modality data by the self-attention or cross-attention
mechanism from transformer [49]. The attention mechanism can be represented as follows:

T
Attenton(Q, K, V) = softmax (%{) V, (6)

where query @, key K, and value V are all intermediate features based on the input feature, and dj refers to the
dimension of @) and K.

Self-attention-based mechanisms require concatenating the feature vectors of the main and auxiliary modalities
as input to the transformer to generate @@, K, and V', allowing the model to automatically focus on the features of
different modalities and achieve cross-modality information fusion. For example, VL-BERT [50] concatenates the
feature vectors of text and images, and then uses the self-attention mechanism of the transformer to aggregate and
align language-visual features. On the other hand, methods based on the cross-attention mechanism calculate @,
K, and V separately for the feature vectors of the two modalities, thereby achieving cross-modality information
fusion. For example, DiT [51] captures the relationship between text and images by a self-attention mechanism and
then realizes the image generation controlled by text. We illustrate the two fusion encoder architectures in Figure 4.

(2) Dual encoder. As a multi-modality learning strategy, dual encoder trains a dedicated encoder for each
modality independently. The core idea of this architecture is to guide the learning process of the two encoders in
synchronization through semantic similarity metrics by leveraging contrastive learning methods. Then, the output
feature vectors of different encoders can be projected into the same vector space. Specifically, this model is based on
the hypothesis that if the feature vectors output by the two encoders belong to the same feature space, the feature
vectors with paired labels should be closer in the vector space and vice versa. Through this alignment method, we
can expect that the output results of encoders for different modalities describing similar objects or scenes will be
close enough. And even in an ideal state, they will converge to the same point in the feature space. The key to
achieving this goal is to construct a reasonable model architecture and thoroughly train it on a large-scale dataset.
Figure 5 shows the processing logic of the dual encoder.

However, the cost of one-to-one aligning each pair of modalities would be very high. Besides, obtaining a dataset
with each pair of modalities aligned is also challenging. To this end, some researchers have proposed the bridging
alignment (also known as binding alignment) strategy. This method matches all other modalities with a central
modality, thereby achieving the alignment of all modalities in the semantic space. For example, ImageBind [25]
takes the image as the central modality, while CoDi [20] takes text as the central modality. In this way, they
effectively simplify the training process of multi-modality alignment and improve the practicality and efficiency of
the model. In contrastive learning, the class imbalance in long-tailed datasets can lead to reduced effectiveness, as
most contrastive pairs consist of major classes instead of tail classes, making the model ineffective for the minor
classes. Therefore, Ref. [52] proposed a method to solve this problem.
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2.3 Gain of scaling up

As the training scale of artificial intelligence (AI) models continues to grow, their capabilities in various tasks demon-
strated significant leaps in performance. When the model size reaches the FM level, researchers have introduced
the concepts of scaling laws and emergent phenomena to illustrate the quantitative and qualitative relationships
between training scale and model performance.

Scaling law refers to the mathematical pattern of how the performance of a system changes as the scale of
the system increases. In Al, especially in the research and application of FMs, the scaling law describes rules and
phenomena about how model performance changes as the model scale expands, including the number of parameters,
dataset size, and computational resources. It uses quantitative analysis methods to reveal the intrinsic mechanism
of the performance improvement of FMs.

Ref. [53] discussed how the inductive biases of different models affect the relationship between model scale
expansion and performance. They found that model architecture is indeed one of the key factors affecting the
benefits of model expansion. They also pointed out that although the standard transformer architecture may
not always achieve the best performance, it does exhibit the best scalability. In computer vision [54] and natural
language process [55], models based on the transformer architecture have shown an exponential relationship between
model scale and model performance.

Besides, Ref. [56] examined the impact of the number of downstream tasks and model scale on the performance
of instruction fine-tuning. They fine-tuned the models on various tasks by a multi-task joint training method. As a
result, the language model could learn a broader language representation and knowledge, enhancing its generalization
ability on unseen tasks. During the joint training process, knowledge transfer between different tasks is promoted
through parameter sharing, significantly improving the model’s generalization ability and performance. In addition,
joint training also reduces the time and computational resources required to train each task individually, improving
training efficiency. This phenomenon of model performance improving as task diversity increases is a manifestation
of the scaling law. Ref. [57] verified the phenomenon of model performance increasing with the number of tasks
on the large-scale benchmark OPT-IML Bench. Additionally, some studies have separately provided the model
performance of natural language models [55] and autoregressive generative models of various modalities [58] at
different scales.

Although there is no unified form for the quantitative representation of the scaling law, it can be generally
represented as an exponential relationship between the model loss function and the model’s parameters, dataset
size, and computational resources. We use the loss function L(-) to characterize the model’s performance, where
a smaller loss function value represents better model performance. Eq. (7) describes the performance of a model
with a given number of parameters trained to convergence on a sufficiently large dataset, where L(N) is the loss
function, N is the number of trainable parameters of the model, N, is a constant, and a is the power law exponent.
Eq. (8) provides the performance of a suitably sized model trained on a sufficiently large dataset under a given
computational resource constraint, where L(C) is the loss function, C' is the given computational resource, C, is
a constant, and ac¢ is the power law exponent. Eq. (9) describes the performance of an FM trained with an early
stopping strategy on a given dataset size, where L(D) is the loss function, D is the dataset size (in tokens), D, is
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According to the above equations, when not constrained by other conditions, the model’s loss function decreases
exponentially as the number of parameters, computational resources, and training data volume increase. This means
that by increasing the model’s parameters, investing more in computational resources, and expanding the training
data volume, the model’s performance can also be exponentially improved.

The scaling law reveals that the scaling up of model size can lead to incremental improvements in model per-
formance. On the contrary, the emergent phenomenon refers to the new properties exhibited by the model after
reaching a critical point of scale expansion, one of which is a significant improvement in model performance [59].

The emergent phenomenon essentially reveals the source of the superior performance of FMs. In deep learning,
especially in the domain of LLM, the emergent phenomenon has been widely observed. For example, models
like LLaMA have demonstrated exceptional comprehension, generation capabilities, and even a certain degree of
logical reasoning ability, which small language models cannot achieve. As the model scale increases, it can have more
parameters and a more complex structure, allowing it to capture the complex features and patterns in the data. FMs
often exhibit strong generalization capabilities because their abundant parameters can store rich knowledge, enabling
them to make accurate inferences and predictions on unseen data. It can provide them adaptability and universality
to different tasks and even allows the model to truly learn the underlying principles and reasoning methods in the
data. Ref. [59] suggested that the task and the prompting method used can influence the emergence point of
the emergent phenomenon in LLMs. Specifically, using a chain-of-thought prompting approach can significantly
enhance the LLMs’ ability to handle complex reasoning tasks [60], thereby bringing forward the emergence point of
the emergent phenomenon.

When building domain-specific FMs, developers must select an appropriate model scale, considering both the
requirements of potential downstream tasks and user prompting patterns. An increase in the number of model
parameters raises the demand for computational resources and the risk of overfitting. Consequently, there is a limit
to the extent that parameters can be increased. The trade-offs highlighted by this phenomenon are crucial for model
deployment, offering significant insights for both model design and application.

2.4 Performance comparison

In this subsection, we present the evaluation results of current multi-modality FMs to assist readers in selecting the
appropriate model for their needs. We summarize some common vision-language tasks in Table 3 [10,11,23,26,31,
56,61-93] according to [26,83,87,94]. We select three mainstream vision-language tasks as follows.

e Image captioning. This task involves generating descriptive captions for images, demonstrating models’
ability to understand visual content.

e Image question answering. In this task, models are required to answer questions about the content of
images, demonstrating their ability to comprehend and reason about visual information.

e Benchmark toolkit. This refers to a collection of standardized metrics and datasets used to evaluate the per-
formance of multi-modal models across various tasks like conversation, complex reasoning, and detailed description,
ensuring a consistent assessment framework.

In summary, InternVL-Chat [87] has the best results in image captioning and image question answering tasks.
While considering language tasks such as benchmark toolkits, the best results are provided by NExT-GPT [26].

3 Key technologies for building domain-specific foundation models

This section delves into the technical pathways toward customizing domain-specific FMs. We will explain how to
flexibly select and combine the appropriate modules from five key components—MEs, IPs, BCs, OPs, and MDs
based on the specific requirements of different domains. Additionally, we will analyze concrete cases to help readers
better understand and apply the methodologies discussed in this section.



Table 3 Performance of various large multi-modality models on vision-language tasks. * represents InternVL-Chat with IViT-6B as the visual encoder, QLLaMA as the glue layer and 13B
trained parameters. Bold fonts represent the best results. Underlined fonts represent the second-best results.

Image captioning Image question answering Benchmark toolkit

Model b NoCaps Flickr30K COCO VQA"? GQA VizWiz SQA! VQAT OKVQA POPE MME MMB LLAVAY SEED MM-Vet QBench
[61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [31] [71] [23] [72] [73] [74]
mPLUG-Owl [75] LLaMA-7B [10] 117.0 80.3 119.3 - B 39.0 - B - B B 46.6 B 34.0 B B
Emu [76] LLaMA-7B [10] - - 117.7  40.0 - 35.4 - - 34.7 - - - - - - -
I-80B [77] LLaMA-65B [10] 65.0 53.7 91.8 60.0  45.2  36.0 - 30.9 - B B 54.5 B B B B
LLAVA [23] LLaMA2-7B [11] 120.7 82.7 - - - - - - - - - 36.2 - - - -
MobileVLM [78] MobileLLaMa-2.7B [79] B B - - 59.0 B 61.0  47.5 - 84.9 1288.9 59.6 B B B B
DREAMLLM [80] Vicuna-7B [81] - - 115.4  56.6 - 45.8 - - 44.3 - - 49.9 - - - -
Video-LLAVA [82] Vicuna-7B [81] B B - 74.7 B 48.1 - B - B B 60.9 B B B B
NExT-GPT [26] Vicuna-7B [81] 123.7 84.5 124.9  66.7 - 48.4 - - 52.1 - - 58.0 - 57.5 - -
ShareGPT4V-7B [83] Vicuna-7B [81] B B - 80.6 B 57.2  68.4 B - B 1567.4 68.8 72.6 69.7  37.6 63.4
LLAVA-1.5 [84] Vicuna-7B [81] - - - 785  62.0  50.0 - 58.2 - 85.9 1510.7 - - - - -
LLAVA-1.5 [84] Vicuna-13B [81] B B - 80.0 63.3 53.6 71.6 61.3 - 85.9 1531.3 67.7 70.7 68.2 35.4 62.1
Instruct BLIP [85] Vicuna-7B [81] 123.1 82.4 102.2 - - 34.5 605  50.1 33.9 - - 36.0 60.9 53.4 26.2 56.7
Instruct BLIP [85] Vicuna-13B [81] 121.9 82.8 - - 49.5  33.4 - 50.7 - 789 1212.8  — B B
Shikra [86] Vicuna-13B [81] - 73.9 117.5  77.4 - - - - - - - 58.8 - - - 54.7
InternVL-Chat* [87] Vicuna-13B [81] 126.2 92.2 146.2 81.2 66.6 58.5 - 61.5 - 87.6 1586.4  — B B B B
Qwen-VL [88] Qwen-7B [88] 121.4 85.8 - 78.8  59.3 352  67.1 63.8 - B B 38.2 B 56.3 B 59.4
Qwen-VL-Chat [89] Qwen-7B [88] 120.2 81.0 - 78.2 57.5 389 682 615 - - 1487.5  60.6 - 58.2 - -
TinyGPT-V [90] Phi2-2.7B [91] B - - 33.6  33.4 - B - B B B B B B B
LLAVA-Phi [92] Phi2-2.7B [91] - - - 71.4 - 35.9  68.4  48.6 - 85.0 1335.1 59.8 - - 28.9 -
BLIP-2 [93] FLAN-T5 [56] 103.9 71.6 - 41.0  41.0 19.6  61.0 425 - 85.3 1293.8 - 38.1 46.4 22.4 B
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Table 4 Customization methods of domain-specific FMs.

Customization method Customization degree Difficulty Flexibility Computation
Based on general-purpose Low,. only the 1npu.1t mcthod. of Low Low Low
FMs domain knowledge is customized
Based on pre-trained modules Medium, some modules can be customized Medium Medium Medium
Without pre-trained modules High, each module can be customized High High High

Table 5 Specific-domain enhancement with the entire general-purpose FMs.

P " Addition Domain
Customization method moacfiaf'lncl:tic;n of new knowledge Specific techniques
modules provider
Hard
Utilizing prompting No No Deployer PET [95]
existing Soft Prefix tuning [96],
Plug- knowledge prompting No Yes Deployer P-tuning [97]
and- Prompts No No User LongRoPE [98],
play ) Transformer-XL [99]
Adding new External RAG [100],
knowledge knowledge No Yes Deployer GraphRAG [101],
base RankRAG [102]
Adapter [103],
’ . . . AdapterFusion [104],
Adapter-based Yes Yes Deployer IA3 [105], model
Fine- reprogramming [106]
tuning- LoRA [107],

based ngvc_é:lkoggzzx Yes Yes Deployer LoHa [108],
p LoKr [109]

Full parameter

fine-tuning Yes No Deployer PEFT [110]

We can categorize the customization of domain-specific FMs into three levels, ranging from low to high level of
customization (i.e., from high to low reliance on general-purpose FMs or pre-trained modules).

(1) Domain-specific enhancement based on general-purpose FMs.

(2) Customization of the FM based on pre-trained modules.

(3) Construction of the FM without pre-trained modules.

Table 4 summarizes the characteristics of these three domain-specific FM customization methods.

3.1 Domain-specific enhancement based on general-purpose foundation model

General-purpose FMs offer comprehensive capabilities, making them suitable for various task scenarios. When
such a general-purpose FM can fully handle the required data modalities, any modifications to its underlying
architecture for model developers are rendered unnecessary. Instead, they can focus on implementing domain-
specific enhancements.

Depending on whether the domain-specific enhancement requires altering the parameters of the FM, we can
further divide this into plug-and-play domain-specific enhancement and fine-tuning-based domain-specific enhance-
ment. Table 5 [95-110] categorizes and summarizes the methods of domain-specific enhancement based on a
full-architecture general-purpose FM.

3.1.1 Plug-and-play domain-specific enhancement

The generality, generalization capabilities, and reasoning abilities of general-purpose FMs enable them to serve as
the foundation for domain-specific models. To achieve plug-and-play domain enhancement without modifying the
parameters of the FM, two approaches can be utilized: leveraging existing knowledge or embedding new knowledge.
The first approach aims to leverage domain knowledge already stored within the general-purpose FM, as illustrated
in Figure 6(a). The second approach, embedding new knowledge, involves equipping the FM with the ability to
handle domain tasks by introducing domain-specific knowledge. This can be divided into two methods: embedding
knowledge through prompts and embedding knowledge via an external knowledge base. These methods are depicted
in Figures 6(b) and (c), respectively. The following sections will provide a detailed explanation of these techniques.

(1) Invoking existing knowledge for domain enhancement. A general-purpose FM may have already
enclosed domain knowledge during the training process. Prompt tuning improves prompts to better invoke the
model’s inherent domain knowledge, where “tuning” refers to the optimization of prompts. Specifically, it involves
inserting a carefully crafted prompt into the input data as context to improve the generated output. These carefully
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Figure 6 (Color online) Plug-and-play domain-specific enhancement. (a) Invoking existing knowledge; (b) knowledge embedding by prompts;
(c) knowledge embedding by external knowledge base.

crafted prompts can be natural language descriptions, examples, rules, or other text or embedding vectors that guide
the model to understand the task requirements. The model will consider these carefully crafted prompts to produce
task-relevant results when generating outputs. Prompt tuning can be categorized into hard prompts and soft
prompts.

(a) Hard prompts. Hard prompt methods are common techniques in natural language processing (NLP).
They use interpretable and reusable handcrafted words and tokens to guide the language model’s output. Hard
prompts are typically manually designed and tailored for specific tasks, making them difficult to modify. PET
(pattern exploiting training) [95] is a classic hard prompt learning method that models questions as cloze tasks and
optimizes the final output words. This method trains the model on a small amount of supervised data and performs
ensembling predictions on unsupervised data to guide the model.

(b) Soft prompts. Designing hard prompts requires experimental exploration and expertise, and manually
designed prompts may not align well with the model’s data processing methods. To simplify this process and
enhance the flexibility of prompt tuning, researchers proposed soft prompt-based tuning methods. Prefix tuning [96]
is a form of soft prompt tuning that adapts to specific downstream tasks by adding learnable prefix vectors (soft
prompts) to the beginning of the input sequence. As part of the input, these prefix vectors guide the model’s output
to meet task requirements. The advantage of prefix tuning is that it only updates these prefix vectors rather than
the model’s parameters, significantly reducing computational and storage resource demands while retaining the
rich knowledge learned by the pre-trained model. Building on prefix tuning, researchers introduced the P-tuning
method [97]. P-tuning replaces fixed or manually designed words and tokens with learnable soft prompts. Its core
idea is to treat prompts as part of the model that can be learned, allowing the model to learn not only how to
respond to given tasks but also how to generate the best prompts. These soft prompts are typically a series of
embedding vectors processed alongside the actual text input. Through end-to-end training, the model automatically
learns to adjust these embedding vectors for better task performance. P-tuning combines the parameter efficiency
of prefix tuning with the flexibility of traditional hard prompt tuning. Soft prompts give the model greater freedom
to generate answers, potentially producing more diverse outputs and increasing the risk of generating inaccurate or
irrelevant responses.

(2) Knowledge embedding for domain enhancement. When the existing knowledge of a general-purpose
FM is insufficient to solve domain tasks, introducing new knowledge by embedding additional background informa-
tion can achieve higher-quality output. This method is known as knowledge embedding for domain enhancement.

(a) Knowledge embedding by prompts. Prompts, serving as a direct interface between the user and the
large language model, can be used to incorporate domain knowledge. However, the method of knowledge embedding
through prompts has a significant limitation: the amount of embedded domain knowledge is restricted by the
maximum prompt length of the model. The limitation on the model’s ability to process longer text inputs stems
from three core issues of the Transformer architecture.

e Limitations of positional encoding. Transformer models typically generate fixed-length positional encodings
using sine and cosine functions, where each position in the sequence is uniquely encoded. However, when the
sequence length exceeds the maximum length used during training, the model cannot effectively handle the additional
text because it cannot generate valid encodings for the new positions.

e Resource consumption of the attention mechanism. The attention mechanism is the core of Transformer
models, allowing the model to compute attention weights for each element in the sequence. However, as the sequence
length increases, this mechanism’s computational complexity and memory requirements grow quadratically, leading
to significant resource consumption.

e Long-distance dependency issue. When handling long sequences, the Transformer needs to span a large
number of input tokens, which often results in problems such as gradient vanishing or exploding. This makes it
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difficult for the model to capture dependencies between elements far apart in the sequence.

To address the above issues, lossless long text technology has emerged. It aims to enhance the model’s ability to
process long texts that exceed its input length limitations, allowing users to input a large amount of domain knowl-
edge directly through prompts into the large language model as contextual information for domain enhancement.
Lossless long text technology expands the long-text input capability of large language models in two directions:
extrapolation and interpolation.

(i) Extrapolation. Extrapolation involves extending the model’s context window to handle new texts that exceed
the length of the training data. This typically involves improving the positional encoding mechanism so the model
can understand and process longer sequences. Longformer [111] extends the ability to handle long texts effectively
by combining local and global attention mechanisms; BigBird [112] uses sparse attention mechanisms and reversible
layers to extrapolate the model’s long-sequence processing capabilities; LongRoPE [98] improves positional encoding
by introducing rotational transformations in self-attention, allowing the model to handle long-distance dependencies
and support inputs up to two million tokens without impacting computational efficiency.

(ii) Interpolation. Interpolation refers to enhancing the model’s ability to process long texts within its existing
sequence length capacity by adjusting and optimizing the attention mechanism. This typically involves improve-
ments to the attention mechanism so the model can more effectively handle long-distance information. The BERT
model [7] enhances text understanding through pre-training with a bidirectional Transformer. XLNet [113] improves
long text processing by using permutation language modeling and generalized autoregressive pre-training to enhance
the model’s internal representations. Transformer-XL [99] is an improved Transformer model that introduces a re-
currence mechanism to address the issue of gradient vanishing in long text processing. This allows the model to
retain information from previous sequences while processing the current sequence, thereby better understanding
and generating long text content.

(b) Knowledge embedding by external knowledge base. In practical applications, users may be unable to
provide sufficient domain knowledge to enhance a general-purpose FM. To address this issue, model deployers can
augment the general-purpose FM with a dedicated domain knowledge base. This method allows the general-purpose
FM to reference this external knowledge base when generating answers or performing tasks, thereby obtaining the
necessary domain information and context to provide more accurate and targeted responses or solutions. Retrieval-
augmented generation (RAG) [1,100,114] technology was developed to achieve this purpose. RAG technology
aims to enhance the language model’s generation capabilities by leveraging an external document base without
retraining the model. It is particularly suitable for tasks requiring a customizable dynamic knowledge base, such
as question-answering, text summarization, and fact-checking. The core of RAG technology is the integration of a
retrieval component that can quickly find information relevant to the current task in a large document database
during the generation process. Once the relevant documents are retrieved, this information is used as additional
contextual information to aid the generation process. The advantage of RAG technology is that it combines the
generation capabilities of large language models with the knowledge provided by external retrieval systems without
requiring domain knowledge themselves. Furthermore, because the external knowledge base can be replaced as
needed, RAG technology offers high flexibility and adaptability. To have an intuitive understanding of RAG, we
present an example in Figure 7 [115].

In RAG, the two core challenges are retrieving useful information from the database and organizing that in-
formation to augment the generation of FMs. For the retrieval task, the earliest and most naive approach uses
sparse retrieval that directly matches data based on raw data like BM25 [116]. Inspired by the field of informa-
tion retrieval, dense retrieval like DPR [117] has been proposed, which projects raw data into a high-dimensional
space, potentially helping to capture semantic similarity better. However, a significant challenge is that even if the
retrieved data is highly related to the original input in the semantic space, we cannot guarantee that it will help
the model generation due to issues like polysemy. To address this problem, some researchers have introduced other
technologies like knowledge graphs to aid the retrieval process [101]. Ref. [118] showed that adding noise can help
enhance the model performance compared to traditional dense retrieval methods. Additionally, the organization
of the retrieved information can directly influence the output quality. For example, providing a ranking of the
retrieved data [102] can improve model performance.

While the aforementioned technologies were initially proposed to enhance large language models in specific
domains, their applications are not limited to language models. With the development of FM domains, these
technologies are expected to be extended to FMs of other modalities.
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NWDAF to outgoing notifications sent to endpoints and to instruct the MFAF how to format and process the

outgoing notifications.

Prompt (without RAG)

Please answer the following question.

Question: What is the purpose of the
Nmfaf_3daDataManagement_Deconfigure service
operation?

Options: A: To configure the MFAF to map data or
analytics received by the MFAF to out-bound
notification endpoints; B: To configure the MFAF to stop
mapping data or analytics received by the MFAF to out-
bound notification endpoints; C: To supply data or
analytics from the MFAF to notification endpoints; D: To
fetch data or analytics from the MFAF based on fetch

Prompt (with RAG)

Please answer the following question according to the information given.
Question: What is the purpose of the Nmfaf_3daDataManagement_Deconfigure
service operation?

Information: The Nmfaf_3daDataManagement_Deconfigure service operation
is used to stop mapping data or analytics received by the MFAF to one or
more out-bound notification endpoints.

Options: A: To configure the MFAF to map data or analytics received by the MFAF
to out-bound notification endpoints; B: To configure the MFAF to stop mapping
data or analytics received by the MFAF to out-bound notification endpoints; C: To
supply data or analytics from the MFAF to notification endpoints; D: To fetch data
or analytics from the MFAF based on fetch instructions.
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Figure 7 (Color online) Example of using LLM to answer multiple-choice communication questions. RAG improves the accuracy of answers by
retrieving additional knowledge for the LLM from a knowledge base based on the relevance to the question text. The data used in the example
is from [115].
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Figure 8 (Color online) Fine-tuning-based domain-specific enhancement. (a) Adapter-based tuning; (b) low-rank-decomposition-based tuning;
(c) full fine-tuning.

3.1.2  Domain-specific enhancement based on fine-tuning

When plug-and-play domain enhancement techniques are difficult to implement or require embedding too much
domain knowledge into the general-purpose FM, or when deep modifications to the general-purpose FM are neces-
sary, we can turn to the strategy of domain enhancement based on fine-tuning. This strategy aims to customize
the required domain-specific FM while preserving the pre-trained knowledge of the general-purpose FM as much as
possible by specific domain enhancement [119].

Fine-tuning techniques can be divided into three main types: adapter-based fine-tuning, low-rank matrix
decomposition-based fine-tuning, and full-parameter fine-tuning. Figures 8(a)—(c) illustrate these three techni-
cal pathways, respectively. In the following sections, this paper will elaborate on these techniques, sorted from low
to high resource requirements and the complexity needed for fine-tuning.

(1) Adapter-based fine-tuning. Adapter-based fine-tuning [103] is a method that inserts small trainable
adapter modules into pre-trained models, aiming to efficiently adapt the model to specific downstream tasks.
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Figure 9 (Color online) Example of model reprogramming. The input time-series data is embedded by a patch reprogram module, which
patches the data and then projects each patch embedding into the text space. Besides the time-series part, text information of the dataset is
also inputted for LLM to better understand the prediction task. The data used in the example is from [17].

During fine-tuning, only the parameters of adapter modules are updated, while the original parameters of the pre-
trained model remain unchanged, reducing computational resources and storage requirements while retaining the
rich knowledge learned by the model during pre-training. AdapterFusion [104] is an extension of adapter-based
fine-tuning that allows the model to learn multiple tasks or adapt to various data distributions simultaneously by
fusing multiple adapter modules, with each adapter module focusing on capturing task-specific features. Infused
adapter by inhibiting and amplifying inner activations (IA3) [105] scales the activation layers by injecting learned
vectors into the attention and feed-forward modules of the Transformer architecture. Since these learned vectors
are only trainable parameters during fine-tuning, TA3 significantly reduces the number of trainable parameters
compared to traditional adapter-based fine-tuning, thereby reducing training costs and improving training efficiency.
Additionally, IA3 does not introduce inference latency because its adapter weights can be merged with the FM while
maintaining the flexibility and adaptability of the model, allowing customized fine-tuning for different tasks and
datasets. Ref. [106] proposed a method called model reprogramming that converts both the input and output
domains of an FM by adding two adapter layers, enabling more flexible adaptation. Unlike inserting adapters
into each layer in the FM, model reprogramming serves as a more direct way in which only the input and output
adapters are inserted upstream and downstream of the FM. During reprogramming, the pre-trained FM is frozen,
which means the core of the model still works in the original domain. Such a process reduces the cost of training
resources and enables the simultaneous adaptation of a single pre-trained FM to multiple domains. However,
because of less trainable adapters, such a method depends more on the similarity between the source domain of
the pre-trained FM and the target domain. For example, time-series data can be considered similar to text data
since they all persist in a series form [17]. To better illustrate the ability of model reprogramming, we present an
example in Figure 9.

(2) Low-rank matrix decomposition based fine-tuning. Fine-tuning based on low-rank matrix decom-
position reduces the number of parameters that need to be updated by decomposing the weight matrices in the
pre-trained model into the product of low-rank matrices. Low-rank matrix decomposition can capture the most
important information in the weight matrices while keeping the original pre-trained parameters unchanged dur-
ing fine-tuning, updating only low-rank decomposition matrices, thus reducing the computational and storage
requirements during fine-tuning. This method improves fine-tuning efficiency while maintaining or approaching
the performance of full-parameter fine-tuning. In low-rank matrix decomposition-based fine-tuning methods, two
low-rank matrices, A and B, share the same rank r, are introduced to construct an update parameter matrix. The
low-rank property of both A and B enables this process to be computationally efficient while still enabling the
model to adapt effectively to new tasks.

(a) Low-rank adaptation (LoRA). LoRA [107] achieves efficient fine-tuning performance by introducing low-
rank adaptation matrices to the pre-trained model, rather than updating the original weight matrix directly. LoRA
modifies the model by adding a low-rank update to the original weights, as described by the equation:

Wnew = old AW, (10)

where Woq is the original weight matrix, AW is the low-rank update matrix, and + is the point-wise addition of
two matrices with the same shape. The key idea is that AW is constructed as the product of two low-rank matrices
A and B, such that

AW = AB. (11)
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Here, A and B are low-rank matrices with ranks typically much smaller than that of W,)q. During fine-tuning, only
the matrices A and B are updated, while W4 remains fixed. These low-rank matrices are learned to adapt the
model efficiently while keeping the overall number of trainable parameters minimal.

One limitation of LoRA is that it typically applies the same low-rank structure to all layers, ignoring the varying
importance of different layers and parameters for downstream tasks. Adaptive low-rank adaptation (AdaLoRA) [120]
is an improved method based on LoRA, which adaptively determines which layer parameters need to be updated.
By employing adaptive learning rates and task-specific parameter adjustment strategies, AdaLoRA enables the
model to automatically adjust the intensity and scope of fine-tuning according to the specific requirements of the
task.

Researchers have also found that LoRA’s continuous pre-training performance is unsatisfactory on some large-
scale datasets. Thus, the layerwise importance sampled AdamW (LISA) [121] strategy is proposed, where the
weight norm distribution of different layers exhibits uncommon skewness. LISA adopts an importance sampling
strategy by randomly activating different layers in the FM for optimization. Specifically, LISA consistently updates
the bottom embedding layers and the top linear head while randomly updating a small number of intermediate
self-attention layers. With memory consumption comparable to LoRA, this method outperforms LoRA and even
full-parameter fine-tuning in various downstream fine-tuning tasks.

(b) Low-rank Hadamard product (LoHa). LoHa [108] updates the model’s weights by introducing the
Hadamard product of low-rank matrices. The principle of LoHa can be represented by the following equation:

Wnew = Wola + AWa (12)

where Wyq is the original weight matrix and AW is the update matrix approximated by a low-rank matrix. The
update matrix AW can be further decomposed into the Hadamard product of two low-rank matrices:

AW = AG B. (13)

Here, A and B are two low-rank matrices that adjust elements of the original weight matrix by learning key
information extracted from the input data, and ® is the Hadamard product. By updating only parameters in A
and B, LoHa achieves efficient model fine-tuning while maintaining adaptability to new tasks.

(c) Low-rank Kronecker product (LoKr). LoKr [109] is another parameter-efficient fine-tuning method
that emerged after LoHa. LoKr utilizes the properties of the Kronecker product to expand the dimensions of the
weight matrix while keeping the increase in the number of parameters within a manageable range. The Kronecker
product allows the model to learn complex interactions across different dimensions, particularly useful for capturing
high-order relationships in the input data. The updating process of LoKr can be represented as

Wncw - old + AW, (14)
where AW is the Kronecker product of two low-rank matrices A and B:
AW = A® B. (15)

In this formula, two low-rank matrices, A and B, are used by the algorithm to compute a large matrix through
the Kronecker product (denoted as ®), which is then updated during the fine-tuning process. LoKr is particularly
suitable for tasks that require increasing the model’s dimensions to capture more complex relationships while main-
taining similar parameter efficiency to LoHa. However, LoKr may require more complex mathematical operations
to handle the Kronecker product, and in some cases, its computational cost may be higher than that of LoHa.

(3) Full fine-tuning. Full fine-tuning is not constrained by pre-training tasks or data distributions, making
it flexible to adapt to various downstream tasks. It allows the model to be directly optimized end-to-end on the
data of the final task without the need for additional adapter modules. However, because it requires updating all
parameters in the model, full fine-tuning demands significant computational resources and longer training times.
Moreover, FMs have a vast number of parameters, and insufficient fine-tuning data may lead to overfitting. Ad-
ditionally, the intermediate variables generated during full fine-tuning consume a large amount of GPU memory.
Therefore, researchers have proposed many parameter-efficient fine-tuning methods mentioned earlier, which can
reduce resource consumption and training time while maintaining performance [110].

3.2 Customization of the foundation model based on pre-trained modules

FMs may contain millions or even billions of parameters. Through domain-specific customization, it is possible to
reduce parts of the model that need training, thereby significantly lowering training costs. This approach is known



Chen H L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 111301:16

as the customization of the FM based on pre-trained modules. Such customization means utilizing the knowledge
embedded in model parameters during the pre-training process when constructing a new model. As mentioned
earlier, in the architecture of FMs, there are typically five main modules: MEs, IPs, BCs, OPs and MDs. Among
them, the ME, BC, and MD carry a large amount of knowledge as they are directly involved in data encoding,
processing, and decoding. In contrast, the IP and OP themselves carry less model knowledge. In some cases, it is
unnecessary to explicitly train these modules. Therefore, when customizing FMs, the IP and OP are often excluded.

Next, this paper will detail how to customize FMs based on the pre-trained ME, BC, and MD. Through this
approach, we can effectively leverage pre-trained models’ knowledge while reducing the demand for computational
resources, making the model more suitable for specific tasks and environments.

3.2.1 Customization of modality encoder

General-purpose FMs often adapt to the distribution characteristics of a vast dataset during training, internalizing
ample domain knowledge in their model parameters. They are thus well-suited as feature extraction modules for
customized FMs. By utilizing the pre-trained model’s pre-existing feature extraction module as the ME for domain
data, downstream task modules can be seamlessly integrated after this module to fulfill task requirements. The ME
encapsulates knowledge about crucial features of the data. There are two main approaches to customizing MEs.

e Customization within the same modality across different data domains. This approach involves
transferring the knowledge of the ME trained on the source data domain to the target data domain. It typically
entails aligning the feature distribution of the source and target domain data. Fine-tuning the pre-trained ME from
the source domain on the target domain enables it to adapt to the characteristics of the new data. Specifically,
this can be achieved by adjusting or adding layers to the encoder. Additionally, domain adaptation techniques
such as domain adversarial training or domain-invariant feature extraction techniques can reduce the distribution
discrepancy between the source and target domains.

e Customization across modalities. When it comes to multi-modality FMs, there are often cases that
lack corresponding pre-trained encoders for certain modalities. In such situations, a cross-modality customization
strategy can be utilized, adapting encoders to process new data modalities similar to the original modality. Although
the modality is different, the source and target modality with the same data structure, such as natural images and
thermal images, can be simultaneously fed into one ME. Such customization involves fine-tuning a pre-trained
ME using task-specific datasets. For instance, ImageBind treats depth and thermal imaging data as single-channel
images, using image encoders to extract features for thermal data. Initializing the model with weights pre-trained on
image datasets can lead to faster convergence than random initialization and enhance generalization. This strategy
is particularly useful in applications like autonomous driving, where vehicles need to process diverse data modalities,
including visual, depth, thermal, and LiDAR (light detection and ranging) data. To more directly understand this
process, we present another example in Figure 10 [122]. In this example, natural images captured by multi-view
cameras are fed into the pre-trained vision encoder with LIDAR data.

By adapting image encoders to handle thermal imaging, the model can better understand and process thermal
data, improving the overall performance of the autonomous driving system. This cross-modal customization in-
creases the flexibility of multi-modal systems and enhances their adaptability and robustness, providing a powerful
tool for solving complex problems.

3.2.2  Customization of backbone calculator

For multi-modality FMs, the BC is the core computational component for processing encoded feature vectors and
performing tasks such as classification and generation. The BC of customized FMs can be customized from pre-
trained models to leverage the complex feature processing and task execution capabilities learned from large-scale
datasets. This approach avoids training the BC from scratch but requires constructing appropriate previous modules
to encode the data into feature vectors that the BC can process. For example, NExT-GPT [26] converts raw data
from various modalities into language modality feature vectors before feeding them into a pre-trained LLM, allowing
the model to process inputted tokens according to task requirements. There are two main approaches to customize
pre-trained BCs:

e Customization from a single pre-trained BC. Utilizing a general-purpose FM (e.g., LLaMA) as the
BC to process data from the central modality. Customizing a pre-trained BC to a specific domain application
typically requires fine-tuning to adapt to domain-specific data characteristics and task requirements. This step can
be performed on a limited domain dataset, fine-tuning the model parameters to optimize its processing capabilities
for the domain-specific data.
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Figure 10 (Color online) Example of using LLM as the pre-trained BC to adopt to the autonomous driving area. In this example, multi-view
camera data and LiDAR data are sent into a vision encoder aligned with LLM’s feature space. By incorporating the user’s instructions and
environmental information, the LLM can generate real-time control signals for the car. The data used in the example is from [122].

e Modular combination of multiple pre-trained BCs. Modular combination is a flexible design method in
deep learning architectures that allows integrating multiple specialized pre-trained models into a unified framework
based on task requirements. The mixture of experts (MoE) model [123] can serve as an effective mechanism to
further optimize this modular combination. The MoE model introduces multiple expert networks and uses a gating
mechanism and mixing strategy to dynamically select and combine the outputs of these experts, enabling specialized
processing for different tasks or data subsets. Recent advancements in large-scale foundation models have adopted
sparse MoE architectures to achieve a favorable balance between model capacity and computational efficiency. For
instance, DeepSeek-V3 employs a large-scale MoE setup with a total of 671 billion parameters, yet activates only
37 billion parameters per token using a top-2 expert routing strategy [124]. It introduces an efficient expert-balancing
mechanism without auxiliary loss, and leverages a multi-token prediction objective for improved generalization.
Similarly, Mixtral-8x7B [125] activates only two out of eight expert subnetworks (each a 7B model) per forward
pass, enabling performance comparable to much larger dense models while significantly reducing inference costs.
These examples demonstrate how sparse MoE designs have become core architectural elements in state-of-the-art
foundation models, offering scalable specialization with manageable computational overhead.

The primary function of the gating mechanism is to determine how input data should be distributed among
experts. It generates a weight or score for each expert based on the characteristics of the input data, reflecting
each expert’s capability or suitability for processing the current input. The output of the gating mechanism is
typically used to guide the mixing strategy, indicating the importance of each expert for the current input. The
mixing strategy then combines the outputs of multiple experts according to specific rules to generate the final
model output. This strategy can be simple, such as averaging or weighted averaging, or more complex, involving
probability distributions of model outputs or other advanced methods.

For example, for complex tasks requiring both image recognition and language understanding, one expert network
might excel at identifying edges in images. In contrast, another expert network might be adept at understanding
semantic relationships in natural language. The MoE model’s gating mechanism can automatically adjust each
expert network’s participation level based on the input data’s characteristics and the task requirement, allowing
the model to flexibly invoke the most appropriate expert network when dealing with mixed visual and language
inputs, achieving optimal performance. Moreover, MoE models are highly scalable. They can adapt to new task
requirements or data types by adding new expert networks and updating the gating mechanism, making them
suitable for constructing flexible customized FMs.

3.2.3  Customization of modality decoder

MDs play a crucial role in multi-modality foundation pre-trained models for converting processed feature vectors
back into the form of the original data. In generative tasks, such as converting text to images or audio to text, MDs
need to accurately decode the feature vectors to reconstruct understandable original data and exhibit a certain level
of creativity. Some pre-trained MDs can also understand and process multi-modality feature inputs. For instance,
CoDi-2 can utilize both text and audio as conditions to control image generation. By customizing such pre-trained
decoders, there is no need to train complex decoder structures from scratch, allowing them to be directly applied



Chen H L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 111301:18

to image generation tasks.

Here are methods to effectively utilize pre-trained MDs for customization.

(1) Fine-tuning pre-trained MDs. Similar to MEs, MDs can be fine-tuned on a specific task’s dataset to
adapt to new task requirements. This process usually involves adjusting the last few layers of the decoder or adding
new layers to better capture the data characteristics of the specific domain.

(2) Customizing cross-modality generative MDs. In cross-modality generation tasks, pre-trained MDs can
be directly used to generate data in the target modality. The conditional information is first encoded into feature
vectors through a conditional encoder and then combined with the feature vectors of the original data to achieve
conditional generation. The prerequisite for this functionality is ensuring that the decoder can correctly understand
input feature vectors, which may involve adjustments to the BC and OP.

3.3 Construction of the foundation model without pre-trained modules

When it is not possible to construct an FM through transferring from pre-trained models, it becomes necessary
to design and train the corresponding modules. We will first provide a general analysis of the architectures of
single-modality and multi-modality FMs as the foundation for constructing each component.

Single-modality FMs consist of three core modules: the ME, the BC, and the MD. For example, in LLaMA-
2 [11], the ME and decoder are specifically designed for the language modality, utilizing the byte pair encoding
(BPE) algorithm for encoding and decoding functions. And the BC is a massive autoregressive Transformer model.
In this way, LLaMA-2 achieves a complete processing workflow of “input raw text — input text feature vectors
— output text feature vectors — output raw text”. Additionally, Bai et al. [13] introduced the concept of visual
sentences and proposed a large visual model (LVM) that can autoregressively generate the required image based
on visual sentences. It realizes in-context learning within the pure image modality, which enables the model to
infer tasks directly from image modality prompts and generate corresponding results. This not only explores the
potential of pure visual input but also provides a new perspective for constructing domain-specific FMs—the central
modality does not have to be limited to language but any modality widely used in a specific domain.

Multi-modality FMs require the additional IPs and OPs to achieve modality alignment. For instance, CoDi-
2 [21] first utilizes multiple MEs proposed in ImageBind [25] to process input data, aligning all corresponding
modalities to the image modality. Then, the feature vectors of the image modality are transformed into the feature
space of the language modality through an MLP. In detail, it uses the pre-trained autoregressive Transformer of
the LLM LLaMA-2-7b-chat-hf as the BC’s foundation. The image and audio features processed by the BC are
converted back to the image domain via two MLPs. They are then used as control vector input of a diffusion-based
generative model to obtain the final image and text results. The training losses include text generation, modality
conversion, and data generation loss. So that the multi-modality feature processing capability of the BC and the
modality conversion capability of the two MLPs can be trained simultaneously in an end-to-end way. The model’s
modality alignment is reflected in two terms. On the one hand, the model aligns the feature vectors of multiple
modalities to the imaging modality through the pre-trained MEs of ImageBind. On the other hand, it also converts
between image feature vectors and text feature vectors via the MLP.

In summary, constructing an FM begins with determining the data modalities and selecting the central modality.
Next, the ME and IP are implemented to convert raw data from different modalities into central modality feature
vectors, which the BC will then process. Following this, OP and MD are designed to convert the feature vectors from
the BC back into the original data forms of each modality. Once the model structure is constructed, the training
process can begin. In the following, we will provide a detailed introduction to each module’s implementation
principles and construction methods.

3.3.1  Constructing modality encoder

Constructing an ME means designing a neural network capable of extracting feature vectors from data. The general
steps for building an ME are as follows.

(1) Preprocessing into suitable data structures. Choose an appropriate data structure based on the
characteristics of the data modality for subsequent model usage. For example, in audio processing, a common
approach is to convert time-domain signals into spectrograms and then use a neural network designed for images
to extract features. Another method is to view audio as sequential vectors and use neural networks for sequences,
like time series or neural language, to process it. When selecting the target data structure, researchers need to
balance task requirements and processing difficulty, ensuring that the data structure represents domain knowledge
sufficiently and is suitable for downstream model processing. Additionally, since domain-specific FMs need to be
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Table 6 Comparison between encoder-only structure, decoder-only structure, and encoder-decoder structure.

Generative Understanding

Model architecture capability capability Computation Examples
Encoder-only Low High Low BERT [7]
. GPT series [4-6,22],
Decoder-only High Low Low LLaMA series [10, 11]
Encoder-decoder High High High BART [15], T5 [16]

functionally versatile, the compatibility of various task inputs should be considered when choosing the target data
structure.

(2) Designing the network architecture. Design the network architecture according to the characteristics of
the input data structure. For example, Transformer architectures can be used for text data to capture long-range
dependencies, while CNN-based or ViT-based models can be employed for image data to extract features.

(3) Training the ME. Pre-train the ME using a dataset with sufficient quantity and variety of samples to learn
the general features and distributions of the modality data. Pre-training is the process of infusing the model with
knowledge. If the dataset size or diversity is inadequate, the model might not learn a complete representation of
the modality data. One method to train an ME is to combine the ME and MD into an autoencoder and perform
unsupervised training by minimizing reconstruction error. Another training method is designing and training a
model for a specific task by supervised training, then transferring the model’s upstream part as the ME. However,
this method cannot get a compatible MD, which might affect the design and functionality of subsequent modules.
Therefore, when designing the ME;, it is essential to consider the consistency of the entire FM architecture.

3.3.2  Constructing input projector

The role of IPs is to project data from different modalities into a common feature space. As discussed in Subsection
2.2, modality alignment can be achieved through either fusion encoders or dual encoders. When constructing IPs,
the key decision is whether to use a bridging strategy to integrate input vectors from different modalities or to
use a fine-tuning approach to bring the projectors of different modalities closer together. These two strategies
correspond to the concepts of fusion encoders and dual encoders, respectively. During training, using loss functions
from multi-modality understanding tasks, such as multi-modality classification or generation task losses, can train
the model’s cross-modality projection capability. Additionally, an end-to-end training approach can optimize the
overall performance of the FM and train cross-modality projections at the same time. As previously mentioned,
the CoDi-2 model [21] utilizes ImageBind [25] encoders aligned by CLIP as the image and audio MEs and part of
the IP. It then incorporates an MLP as another part of the IP. During the end-to-end training process of the FM,
the MLP is optimized to align the image and audio to text.

3.3.3  Constructing backbone calculator

The BC is capable of understanding and generating feature vectors of the central modality. Constructing a BC
for a specific domain begins with identifying the most common and information-rich data modality in that domain
as the processed modality by the BC. The model architecture is then designed based on this modality. Currently,
mainstream model architectures are based on Transformers. A complete Transformer model consists of an encoder
and a decoder, where the encoder analyzes the input data to extract compact feature representations, and the
decoder uses these feature representations to generate the output content. Since the structures of the encoder and
decoder are different, generally, the encoder has stronger comprehension capabilities, while the decoder has more
powerful generative capabilities. Transformer-based FM BCs have three main architectural forms: encoder-only
architectures, decoder-only architectures, and encoder-decoder architectures. The characteristics of these three
architectures are summarized in Table 6 [4-7,10,11,15,16, 22].

(1) BC based on encoder-only architecture. The encoder-only architecture consists solely of the encoder
part of the Transformer. It is typically used for tasks that require understanding input text rather than generating
new text sequences, such as text classification and sentiment analysis. Due to containing only the encoder part,
the encoder model structure is relatively simple but can only produce fixed-length outputs, resulting in limited
generation capability. Regarding generation tasks, BCs based on an encoder-only model can only handle tasks such
as sequence completion. BERT [7] is a well-known example of an encoder-only model.

(2) BC based on decoder-only architecture. In the decoder-only architecture, the decoder directly processes
the input sequence and generates the output sequence without a separate encoder to compactly represent the input
sequence. This reduces parameter count and computational overhead but also makes it more challenging for the
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Figure 11 (Color online) Workflow of OP and MD. (a) Generative MD; (b) discriminative MD.

model to understand input sequences, thus limiting its ability to handle long sequences. This architecture does not
require explicit context representation when generating output sequences but captures information automatically
within the sequence through self-attention mechanisms. BCs based on decoder-only architecture typically employ
autoregressive generation, meaning they generate words or characters one by one based on previously generated
content to complete sequence text generation tasks. Models like the GPT series [4-6,22] and the LLaMA series [10,
11] of foundation language models belong to the decoder-only architecture.

(3) BC based on encoder-decoder architecture. The encoder-decoder architecture can simultaneously
possess the understanding capability of an encoder and the generation capability of a decoder, but also results in
higher parameter count and computational costs. This architecture is adopted by models like Meta’s BART [15]
and Google’s T5 [16].

3.3.4  Constructing output projector and modality decoder

MDs come in two types: generative and discriminative. Generative MDs can produce high-quality data samples given
conditional information. Discriminative MDs, on the other hand, excel in the precise reconstruction of data samples
based on input vectors. The type of MDs also affects the design of OPs. Thus it requires a joint consideration
of these two modules. Figures 11(a) and (b) respectively illustrate the operational processes of generative and
discriminative MDs.

(1) Generative MD. A generative MD utilizes a generative model as its neural network, which can control the
generation process using conditional information. It takes other modality features as conditional information and
generates data as decoding output. Such a generative model can be termed as a generative MD without the need for
explicit construction of OPs. For instance, DiT [51], a diffusion-based image generation model, can progressively
generate images based on previous results and conditional vectors, where cross-attention mechanisms serve the
function of the OP. Similarly, the VAR model [126] also uses the self-attention mechanism as the OP function.
By incorporating modality labels in the starting position, VAR knows which content needs to be controlled for
generation and generates images in an autoregressive way.

Generative MDs typically employ end-to-end training strategies. During training, the generation part of the
model and the modality interaction part are optimized simultaneously. The training objective usually involves
minimizing the difference between generated data and real data while ensuring that generated data meets given
conditions. For example, if the model’s objective is to generate images based on textual descriptions, a large number
of text-image pairs are used during training. The model is optimized by comparing the similarity between generated
images and real images. This similarity can be measured using pixel-level loss functions (such as mean squared
error) or more advanced perceptual losses (such as VGG loss). Additionally, adversarial training can be employed
to enhance generation quality.

(2) Discriminative MD. A discriminative MD is only for directly reconstructing feature vectors into their
original data form. Thus, it requires an explicit OP to convert feature vectors from other modalities to the target
modality for use. For example, when using the decoder of VQGAN [127] as the discriminative MD in a multi-
modality FM, it is necessary to first explicitly construct an OP to transform feature vectors from other modality
domains to the image modality, and then use the decoder portion to decode the feature vectors into their original
data form. This explicit OP is typically trained using a supervised way, where the model takes feature vectors
from other modalities as input and learns to project these features into feature vectors of the target modality by
minimizing the error between the two feature vectors. Besides, MDs are trained together with MEs as autoencoders,
aiming to improve reconstruction performance by minimizing reconstruction errors.
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Table 7 Performance comparison of telecom multiple-choice question (MCQ) answering on TeleQnA [115] dataset of mainstream LLMs and
different telecom-specific LLMs obtained during different stages of TelecomGPT’s training pipeline. We bold the best result within the same
model family on each task.

LLMs Lexicon  Research overview  Research publications  Standards overview  Standards specifications Avg.
Llama3-8B 72 51.92 65.11 56.45 36.17 56.20
Llama3-8B-Instruct 80 67.31 69.77 59.68 50 64.80
Llama3-8B-TI 96 69.23 74.88 74.19 56.38 71.20
Llama3-8B-TI-TA 92 73.08 71.63 72.58 58.51 70.60
Mistral-7B 72 49.04 51.16 50 34.04 48.40
Mistral-7B-Instruct 84 64 65 56 51 62
Mistral-7B-TI 84 67.3 70.69 56.45 51.06 65.2
Mistral-7B-TI-TA 84 70.19 73.95 61.29 48.94 64
LlaMA-2-7B 62.5 52.24 49.18 48.28 40 48.94
LlaMA-2-7B-T1I 84 57.69 63.26 56.45 50 59.80
LlaMA-2-7B-TP-TI 81.82 63.92 67 70 47.48 63.79

4 Applications of domain-specific foundation models

FMs have emerged as powerful tools with extensive application prospects across various domains. These FMs possess
the capability not only to handle massive data and complex tasks but also to bring about new breakthroughs and
innovations.

e Telecommunications. FMs are expected to be widely applied in sensing, transmission, and network perfor-
mance optimization. For example, an LLM fine-tuned for the telecommunications domain can be used to process
network log data, model, and solve specific network problems [44,128]. Additionally, FMs in telecommunications,
through the utilization of spatio-temporal correlations and knowledge reasoning [45], are expected to identify and
prevent experience issues caused by degraded service quality and delayed fault response times. Recent studies also
successfully incorporate telecommunication standards into LLMs’ reasoning [115,129]. As a pioneering work on
how to introduce knowledge of the wireless communication field to LLMs, Ref. [130] presented a comprehensive
framework that elaborates on the principles and methods for constructing a “WirelessLLM” and provides examples
to demonstrate its functionality. Specifically, TelecomGPT [131] acquires domain knowledge in telecom-specific
datasets through continual pre-training, instruction tuning, and alignment tuning, after which it is able to answer
related questions and generate codes in the telecom domain. This lays the foundation for fine-grained network
optimization in real time. We illustrate the advantages of domain-specific enhancement by presenting the results
from [131], as summarized in Table 7. This table highlights the performance of LLMs that have undergone domain-
specific enhancements, denoted by TP (continual pretraining), TI (instruct tuning), and TA (alignment tuning) in
their names. It is evident that these enhancements lead to significant improvements in performance across various
metrics. The efficiency of foundation models is crucial in use [132]. In response to the significant challenges in
data and communication faced when training FMs, Ref. [133] proposed multiple new paradigms to explore how
federated learning can be utilized in a wireless context to address these challenges. In industrial scenarios, the
business understanding capability of FMs is also expected to help optimize signal transmission and scheduling
strategies, improving network efficiency. In research on network FMs, the NetGPT architecture proposed in [134] is
expected to become an effective approach to achieve endogenous intelligence in telecommunications networks, while
Ref. [135] discussed the challenges and issues that may be encountered in constructing FMs for telecommunications.
The NetLLM proposed in [136] adapts LLM to serve several specific downstream communication tasks. Ref. [137]
introduced a new memory mechanism to facilitate the embedding of FMs into the semantic communication process.
By leveraging the FMs’ capability to understand and generate multimodal data, it becomes feasible to propose
new and more complex transmission approaches that enhance transmission performance. In telecommunications,
training domain-specific FMs on large datasets from telecommunication systems involves significant costs for data
storage, processing power, and specialized hardware. Deployment costs are often high due to the need for real-time
processing capabilities, especially in edge environments [138]. Additionally, ongoing operational costs arise from
continuous monitoring, model updating, and adaptation to evolving network conditions.

e Autonomous driving. FMs play a core role in various key aspects such as vehicle perception, decision-
making, and motion control [46]. Specifically, perception tasks in autonomous driving involve real-time monitoring
of the vehicle’s surroundings, including other vehicles, pedestrians, traffic signs, and road conditions [139]. FMs, by
analyzing data collected from sensors such as cameras, radar, and LiDAR, can identify various objects and construct
detailed maps of the vehicle’s surroundings. This advanced perception capability is fundamental to achieving safe
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Table 8 Experimental results on mathematical evaluation datasets including math problems from elementary, high school, and college levels.
Math-SFT? means whether the model has been instruction-tuned on any math reasoning datasets. We bold the best result on each dataset.

Model Base Math-SFT? GSM8K MATH AQuA NumGLUE Avg.
Llama-1 - No 10.7 2.9 22.6 24.7 15.5
Llama-2 - No 14.6 2.5 30.3 29.9 19.3

Galactica-6.7B GAL GAL-Instruct 10.2 2.2 25.6 25.8 15.9
Code-Llama (PoT) - No 25.2 13.0 24.0 26.8 22.2
AQuA-SFT Llama-2 AQuA 11.2 3.6 35.6 12.2 15.6
Llama-1 RFT Llama-1 GSMSK 46.5 5.2 18.8 21.1 22.9
WizardMath Llama-2 GSM8K+MATH 54.9 10.7 26.3 36.1 32.0
MAmmoTH Llama-2 MathlInstruct 53.6 31.5 44.5 61.2 47.7
MAmmoTH-Coder Code-Llama MathInstruct 59.4 33.4 47.2 66.4 51.6

autonomous driving. At the decision-making level, FMs need to make rapid and accurate judgments based on
perceived information, such as avoiding obstacles, selecting appropriate driving paths, and devising optimal driving
strategies in complex traffic situations [140, 141]. Multi-modality FMs like DriveGPT [142] can not only process
visual data but also understand and respond to language-mode instructions, such as planning routes based on voice
input destinations. Additionally, pFedLVM [143] can utilize the powerful performance of pre-trained visual FMs for
image feature extraction, serving as the basis for downstream tasks. Considering the scarcity of high-quality public
datasets for training LLMs in autonomous driving scenarios, Ref. [144] employed federated instruction tuning and
expanded the dataset by generating new instruction tracking data to mitigate the data scarcity. DriveMLM [139] is
an LLM-based framework that can perform close-loop autonomous driving. It uses driving rules, user commands,
and sensor inputs as its multi-modality LLM core inputs to model behavior planning. It standardizes decision
states to connect language decisions with vehicle control commands. Training domain-specific FMs for autonomous
driving requires extensive labeled data collection from real-world scenarios, which is costly and time-consuming.
Additionally, the training demands substantial computational resources, particularly with large sensor data like
LiDAR, radar, and camera feeds. Deploying these models involves significant expenses for hardware integration,
safety certifications, and real-time vehicle processing.

e Mathematics. Since many general-purpose LLMs are typically pre-trained on datasets that include open-
source mathematical corpora, they inherently possess some capacity to address mathematical problems, and through
domain-specific enhancements, this capacity can be significantly improved [38,145-148]. The MAmmoTH proposed
in [146] combined chain-of-thought and program-of-thought, fully leveraging the understanding capability of large
language models and the computational power of programming languages, achieving good performance in math-
ematical reasoning. To provide a clear demonstration of the benefits of domain-specific enhancements, we collect
the results from [146] in Table 8. MAmmoTH-Coder shows a clear performance advantage with general-purpose
open-source LLMs and is comparable with closed-source LLMs. Ref. [147] indicated through experiments that
the seamless integration of LLMs’ programming and reasoning abilities enables them to model and solve complex
problems progressively. Due to the inherent complexity of mathematical problems and the need for vast, specialized
datasets, training domain-specific foundation models in mathematics for tasks such as theorem proving or algorithm
optimization can be challenging.

e Medicine. The applications of FMs in medicine encompass various aspects, including disease diagnosis, patient
treatment, analysis and prediction of genetic and protein structure data, and medical education [40,41,149-152]. The
HuatuoGPT proposed in [151] can simulate the diagnosis and treatment process of doctors, providing preliminary
medical consultation and advice for patients. This model not only reduces the workload of doctors but also enables
patients to receive timely medical services in remote or resource-limited environments. To illustrate the advantages
of domain-specific enhancements effectively, we present part of the experimental results from [151] in Table 9 [153].
When contrasted with LLMs without medical domain-specific enhancements, HuatuoGPT demonstrates distinct
comparative advantages. Ref. [152] proposed BiomedGPT, which is capable of performing multimodal medical
tasks and has achieved excellent performance in understanding and generating medical-related content. In the
medical area, the training datasets are often expensive to acquire due to the stringent requirements for privacy and
regulatory compliance. Moreover, it is expensive to pay medical experts to annotate data.

e Law. FMs can conduct in-depth analysis of legal documents and identify key information and legal concepts in
the text, thereby assisting lawyers and legal advisors in more precise case analysis and legal consultation [37,154,155].
For example, FMs can identify clauses in contracts, extract important legal elements such as obligations, rights,
and conditions, help lawyers quickly understand document contents, and identify potential legal risks. Moreover,
FMs can be used for case logical reasoning, predicting possible outcomes of cases by analyzing historical cases and
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Table 9 Experimental results on Chinese medical QA dataset [153]. We bold the best result on each dataset.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 GLEU ROUGE-1 ROUGE-2 ROUGE-L Distinct-1 Distinct-2

T5 (fine-tuned) 20.88 11.87 7.69 5.09 7.62 27.16 9.30 20.11 0.41 0.52
DoctorGLM 13.51 7.10 3.72 2.00 5.11 22.78 5.68 12.22 0.85 0.96
ChatGPT 19.21 7.43 3.14 1.24 5.06 20.13 3.10 12.57 0.69 0.99

cMedQA2
ChatGLM-6B 24.90 12.74 6.99 3.87 8.49 28.52 7.19 18.21 0.68 0.99
Ziya-LLaMA-13B  27.03 13.87 7.48 4.09 7.7 28.24 7.10 14.81 0.78 0.93
HuatuoGPT 27.39 14.38 8.06 4.55 8.52 29.26 8.02 15.46 0.74 0.93
T5 (fine-tuned) 21.42 13.79 10.06 7.38 8.94 31.00 13.85 25.78 0.37 0.46
DoctorGLM 9.91 5.20 2.78 1.54 4.67 23.01 5.68 11.96 0.84 0.95
ChatGPT 18.06 6.74 2.73 1.09 4.71 20.01 2.81 12.58 0.65 0.87

webMedQA
ChatGLM-6B 23.42 12.10 6.73 3.83 8.04 28.30 6.87 18.49 0.63 0.87
Ziya-LLaMA-13B  22.16 11.70 6.53 3.74 6.91 27.41 6.80 13.52 0.76 0.93
HuatuoGPT 24.85 13.42 7.72 4.51 7.50 28.30 7.72 14.50 0.73 0.93
T5 (fine-tuned) 26.63 16.74 11.77 8.46 11.38 33.21 13.26 24.85 0.51 0.68
DoctorGLM 11.50 6.00 3.14 1.69 4.65 22.39 5.47 12.14 0.85 0.96
ChatGPT 18.44 6.95 2.87 1.13 4.87 19.60 2.82 12.46 0.69 0.89

Huatuo-26M
ChatGLM-6B 24.46 12.75 7.20 4.13 8.50 28.44 7.31 18.58 0.67 0.89
Ziya-LLaMA-13B 25.58 13.39 7.46 4.24 7.30 28.14 7.18 14.78 0.77 0.93
HuatuoGPT 27.42 14.84 8.54 4.96 8.01 29.16 8.29 15.84 0.74 0.93

relevant legal provisions and providing data support for lawyers to formulate defense strategies. The ChatLaw [156]
can provide real-time legal consultation and answers, helping non-professionals understand complex legal issues and
even generate drafts of legal documents, reducing the workload of lawyers. Additionally, FMs can assist in legal
research, quickly retrieve relevant legal literature and precedents, and provide solid evidence for legal arguments.
However, LLMs can sometimes generate incorrect or fabricated information, known as “AlI hallucinations”, which
is a crucial challenge for domain-specific FMs in law. Another key challenge is the controversy about legal liability
when using Al models for legal consultation. These challenges should be carefully addressed by practitioners in the
process of developing legal models.

e Arts. The application of FMs is exploring and changing the ways of creative expression and the process
of artistic production. By learning from a large number of artworks and creative concepts, FMs can generate
novel artworks, music, literary works, etc., providing creative inspiration and support for artists [42]. For example,
generative models can be used to produce artworks [157,158], and fine-tuning techniques can be applied to adjust
the style and content of the generated works [159,160]. Currently, in the field of video generation, Sora, developed by
OpenAl, allows users to control generated content using text, producing lifelike video works. Furthermore, FMs also
show promising performance in art understanding [161,162], which provides great potential in the field of art teaching
and study. Acquiring training datasets in the art domain is highly contingent upon legal restrictions, particularly
concerning copyright and intellectual property. Moreover, there is significant debate within artistic ethics about the
appropriateness of employing Al models. These challenges are the key factors for FMs to contribute to art.

e Finance. FMs can cover various tasks such as risk modeling, investment strategy management, and market
forecasting, providing powerful tools for financial institutions and investors to optimize decision-making [39, 163].
For example, FMs can be used to build credit scoring systems to assess borrowers’ credit risks. These models
analyze factors such as borrowers’ historical credit records, financial conditions, and debt levels to predict their
ability to repay loans and, based on this, decide whether to approve loan applications and the loan interest rates.
Alternatively, FMs can be used to consider the historical performance, correlations, risks, and expected returns of
various asset classes, as well as historical market data, macroeconomic indicators, and political events, to make
optimal investor decisions. BloombergGPT, as detailed in [164], was pre-trained on a large-scale financial dataset,
resulting in superior performance across many benchmarks. Ref. [165] introduced FinGPT, an open-source financial
LLM, and positions it not only as a model but also as an open-source framework for Financial LLMs (FinLLMs),
which has the potential to fuel innovation among researchers. Using time series analysis models to predict future
stock trends and other financial information is common in the financial area. However, the accuracy of these models
can significantly impact investors’ decisions. Additionally, for LLMs to serve as effective investment advisors, they
must possess more robust numerical analysis capabilities, which presents a crucial challenge in leveraging their full
potential.



Chen H L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 111301:24

5 Challenges ahead

The development of FM technology has achieved remarkable progress, but with the continuous advancement of
technology, new challenges and issues arise, pointing out future research directions.

5.1 Challenges in data

Acquiring domain-specific data and modeling data structures are the top priority and most important
challenges. FMs typically require vast amounts of high-quality data for training [166], which may be costly and
time-consuming to obtain in specific domains. Moreover, strengthening privacy regulations imposes more restrictions
on data collection and usage. To address this challenge, future research can focus on developing new data collection
and annotation techniques and utilizing synthetic data and weakly supervised learning methods to reduce reliance
on extensively labeled data [167,168]. This reduces costs and effectively utilizes data resources while ensuring
privacy protection. On the other hand, effective modeling of data structures in specific domains requires researchers
and practitioners to deeply understand domain-specific business processes, extract key business data, and establish
comprehensive data preprocessing pipelines.

Understanding multi-modality data poses another critical challenge. Although existing FMs excel in process-
ing textual data, their understanding of other modalities, such as images and sounds, still needs improvement [36],
not to mention various new data modalities that may emerge in specific domains. Constructing unified models capa-
ble of comprehensively processing various modalities of data is essential for enhancing the model’s performance and
generalization on multi-modality tasks. This requires researchers and practitioners to not only deeply understand
the characteristics of different modalities of data but also explore effective multi-modality fusion and interaction
understanding mechanisms.

The availability of aligned multi-modality data presents a potential risk for the long-term development of
multi-modal models. While techniques like bridging alignment can reduce the dependency on aligned data [20,25],
the performance and generalization capabilities of multi-modal FMs still heavily rely on annotated data. This data
is costly in terms of both time and financial resources. Therefore, new alignment methods are necessary to address
these challenges [52].

5.2 Challenges in model architecture

In the architectural design of FMs in specific domains, a core challenge is how to build models that can effectively
capture and express deep semantic information specific to different domain [20,25,26]. This requires models to have
a broad knowledge base and understand and adapt to domain-specific knowledge and input modalities. FMs tailored
for specific domains need to achieve high modularity and customizability in architecture, enabling adjustment and
optimization according to specific application scenarios to adapt to the data characteristics and task requirements
of different domains [4,7,16]. Furthermore, interpretability of models is particularly important in specific domains.
When designing architectures, researchers need to consider how to construct models so that their decision-making
processes and output results can be understood and trusted by domain experts and end-users. This may involve
developing new model mechanisms, introducing interpretable model intermediate representations, or designing
visualization tools to demonstrate the internal workings of the model.

5.3 Challenges in model training and deployment cost

The demands on computational, memory, and energy resources put significant limitations on the development of FM
technologies. Therefore, their cost-intensive nature should be primarily considered when designing domain-specific
FMs. Research on improving the efficiency of model training and inference [169] and reducing resource consumption
has become an urgent issue. Potential research directions include developing more efficient memory-saving and
acceleration techniques, such as quantization, efficient attention, and distributed learning. These technologies can
help model deployers reduce costs when maintaining model performance while building and deploying a domain-
specific FM.

5.3.1 Challenges in cost-efficient training

The impressive capabilities of FMs come at a significant cost of computing, memory, and energy during training. For
example, in some Internet of Things (IoT) scenarios, such costs could be the primary concern for model deployers.
On one hand, they may need to use edge devices to collect real-time data for training large models rather than
centrally pre-training a model and then deploying it. On the other hand, the resource demands of training models
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pose a hard constraint on edge devices. Since building domain-specific FMs is costly, it is beneficial to help model
deployers better manage their costs.

Memory efficiency. FMs’ huge parameter scale put a serious challenge for memory resources. Mixed precision
training [170] is a common technique to convert parts of high-precision variables into low-precision dynamically
implemented by automatic mixed precision [171] in each training step. This can accelerate model training and
reduce GPU memory usage while minimally impacting model accuracy. A huge memory is occupied while focusing
on masked training in long-sequence training. Therefore, positional encoding compression methods like ALiBi [172]
and reset attention mask [173] have been proposed.

Computation efficiency. Most existing FMs have transformer-based architecture in which the attention mecha-
nism has a powerful capability but is also computationally intensive. Researchers are now working to create efficient
transformers. FlashAttention [174] significantly improves the efficiency of attention computation by IO-awareness
block attention algorithm, and researchers also proposed other attention algorithms like LSH attention [175] and
local attention [111]. Parallel training is another computational accelerating approach, including traditional data
parallel and emerging methods like ZeRO method [176] distribute data and model parameters to achieve fast train-
ing under limited hardware constraints. Additionally, parameter-efficient fine-tuning methods [103,107] are also the
key approach to improve the computation efficiency.

Communication efficiency. Federated learning [177] is applied when the training data cannot be acquired and
centralized in advance due to privacy concerns. Reducing communication overhead is essential since FL involves
frequent model parameter exchanges. Parameter-efficient fine-tuning methods have been combined with federated
learning for efficient communication [178-181].

Energy efficiency. The energy consumption of FM training is an emerging area as it generates significant
carbon footprints [182], leading to environmental impacts at the same time as increasing economic costs.

5.3.2 Challenges in cost-efficient deployment

The deployment of domain-specific FMs requires enormous resources, not only the training process but also the de-
ployment of domain-specific FMs. In domain-specific business scenarios, the user’s requirements for model response
speed and performance may be an important consideration. To meet these demands under the resource constraints
on the hardware, cost-efficient deployment strategies are highly desired, as introduced below.

Inference efficiency. The inference time of domain-specific FMs drastically increases with a huge amount of
data. To solve such a problem, inference acceleration is crucial for deploying domain-specific FMs. KV cache [183]
is a popular method to speed up FM inference by only generating a single row of the @ matrix. Furthermore,
multi-query attention [184] could reduce the size of the KV cache, and paged attention [185] utilizes the block table
to make full use of the large KV cache. In addition to the improvement on transformer architecture, speculative
decoding [186] generates the next token with the help of a small “draft” model, which provides a set of token
candidates for the main FM, followed by various methods such as staged speculative decoding [187], guided gener-
ation [188], lookahead decoding [189] and prompt lookup decoding [190]. Additionally, edge AT draws researchers’
attention as it reduces the latency of providing Al services to devices [191-193].

Resource efficiency. The resource requirements of FMs often make it difficult to deploy them in mobile
devices and edge computational scenarios [194]. To enable FMs to run in resource-constrained scenarios, lightweight
model architectures and deployment strategies need to be developed. This may involve simplifying, distilling,
and optimizing models to reduce their resource requirements while maintaining or improving their performance.
Alternatively, employing cloud-edge collaboration strategies can distribute the training and inference processes
of FMs across various server tiers, enabling a cooperative deployment. In cloud-edge learning, it is essential to
consider the joint optimization of sensing, computation, and communication [195-197]. Such joint optimization for
the performance of neural networks and resource consumption holds vast potential for innovation in research and
can generate significant value in practical application scenarios. Furthermore, energy consumption in the inference
phase is becoming the new trend within the community [198]. There are trade-offs between performance and power
usage to achieve energy-efficient FM inference [199-202]. Recently, edge Al inference [203,204] also shows potential
to enable various devices without adequate computing resources to access the FMs.

5.4 Challenges in security

Security issues are also challenges that FM technology must face. FMs may be used to generate false information,
infringe on privacy, or be maliciously exploited, and the models themselves may also be subject to adversarial at-
tacks [205]. To ensure the security and reliability of models, relevant work includes but is not limited to the following
key points. Firstly, strengthening the robustness of models to resist potential adversarial attacks [206]. This may
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involve developing advanced adversarial training techniques and implementing more stringent data cleaning and pre-
processing steps. In addition to traditional adversarial training, a representative line of early work proposed certified
robustness methods-such as randomized smoothing [207], which provide guarantees against perturbations. More
recent studies have explored robust fine-tuning strategies, including adversarial contrastive learning and consistency
regularization, to enhance generalization under distribution shifts. In parallel, robust representation learning has
emerged as a promising direction, aiming to learn perturbation-invariant and semantically consistent embeddings,
as exemplified by adversarial contrastive objectives in robust pre-training [208]. These complementary techniques
contribute to a layered defense system that strengthens the reliability of foundation models in open environments.
Secondly, developing and deploying efficient malicious input detection mechanisms, using anomaly detection algo-
rithms and real-time monitoring systems to identify and prevent malicious behavior. Furthermore, ensuring privacy
protection is achieved by diminishing the model’s reliance on sensitive data, thereby safeguarding the security and
privacy of user information [209]. In addition to technical efforts, enhancing security in workflow and policy aspects
is also necessary. For example, implementing security audit and certification processes to comprehensively assess
the security of models and ensure that model development and deployment comply with ethical and legal standards,
continuously updating security policies to address emerging security threats and challenges.

6 Conclusion

This paper provides a comprehensive overview of recent advancements in domain-specific foundation models (FMs).
We begin by discussing the foundational concepts of FMs, including their architectures, training methodologies, the
benefits of scaling, and a comparison of their performance across different contexts. Next, we delve into the key
technologies for developing domain-specific FMs, which encompass three primary approaches: enhancing general-
purpose FMs with domain-specific knowledge, customizing FMs using pre-trained modules, and building FMs from
scratch without relying on pre-trained components. We then explore the diverse applications of domain-specific
FMs across various fields, including telecommunications, autonomous driving, mathematics, medicine, law, the
arts, and finance. Following this, we address the significant challenges faced by practitioners in constructing and
deploying domain-specific FMs. These challenges span multiple dimensions, such as data availability and quality,
model architecture design, training processes, deployment complexities, and security concerns. By synthesizing these
insights, we aim to provide researchers and practitioners with a valuable resource for navigating the development
and application of domain-specific FMs. We hope this paper serves as a foundation to guide future innovation and
encourage the creation of tailored FMs that address specific domain requirements effectively.
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