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Quantum entanglement, as an essential physical resource,

exhibits prominent advantages over classical theory in quan-

tum information tasks. A fundamental and necessary task

in entanglement resource theory is undoubtedly the devel-

opment of a legitimate method for quantifying the entan-

glement of states. To gain a deeper insight into the essence

of quantum entanglement, another imperative assignment

is to explore the intrinsic properties of a measure, such as

whether it satisfies monogamy of entanglement (MoE).

MoE means that there are some restrictions on share-

ability and distribution of entanglement [1]. The mathe-

matical characterization of the monogamy relation was first

introduced by Coffman et al. [2] based on the square of con-

currence [3] in three-qubit systems. Subsequently, Osborne

and Verstraete [4] extended it to multiqubit systems. How-

ever, the tangle generated from the MoE of the squared

concurrence fails to detect the entanglement of some states,

such as the W state [2]. To compensate for this deficiency,

other novel monogamy relations beyond squared concur-

rence should be established. Therefore, we construct a class

of bipartite entanglement measures Gq-concurrence (q > 1)

and verify their squares conform to the monogamy inequal-

ity with 1 < q < 2. Most importantly, the series of indica-

tors produced by MoE of the squared Gq-concurrence can

identify all genuinely multiqubit entangled states.

Gq-concurrence. For any bipartite pure state |φ〉AB, the

Gq-concurrence is defined as

Cq(|φ〉AB) = [1− Tr(ρqA)]
1

q , (1)

where q > 1 and ρA = TrB(|φ〉AB〈φ|).
A bipartite pure state |φ〉AB can be expressed in the

Schmidt decomposition form

|φ〉AB =
d
∑

i=1

√

λi|iA〉|iB〉, (2)

where λi is non-negative real number with
∑

i λi = 1. Then,

Cq(|φ〉AB) can be written as

Cq(|φ〉AB) =

(

1−
d
∑

i=1

λ
q
i

)

1

q

, q > 1. (3)

For any bipartite mixed state ρAB , its Gq-concurrence is

defined as

Cq(ρAB) = min
{pi,|φi〉}

∑

i

piCq(|φi〉), (4)

where the minimum is taken over all possible ensemble de-

compositions {pi, |φi〉} of ρAB .

In particular, Gq-concurrence Cq(ρAB) and concurrence

C(ρAB) [3] are equivalent when q = 2 for any bipartite quan-

tum state ρAB , so the Gq-concurrence can be treated as a

generalization of concurrence. Moreover, the relation be-

tween Gq-concurrence and q-concurrence [5] is Cq(|φ〉AB) =

[Cq(|φ〉AB)]1/q for any bipartite pure state |φ〉AB . In ad-

dition, Gq-concurrence and q-concurrence are compared in

Appendix A.1, and the merits of Gq-concurrence are illus-

trated in terms of normalization and sensitivity.

The Gq-concurrence of assistance (Gq-CoA), a dual quan-

tity of Gq-concurrence, is given by

C
a
q (ρAB) = max

{pi,|φi〉}

∑

i

piCq(|φi〉), (5)

where the maximum runs over all feasible ensemble decom-

positions of ρAB . If ρAB is a pure state, then there is

C a
q (ρAB) = Cq(ρAB).

Some studies suggest that a rational entanglement mea-

sure should satisfy several conditions [1], including (i) faith-

fulness, (ii) invariance under any local unitary transforma-

tion, and (iii) monotonicity under local operation and clas-

sical communication (LOCC).

In Appendixes A.2–A.6, we rigorously prove that Gq-

concurrence not only satisfies the conditions (i)–(iii) listed

above, but also fulfills the properties as follows: (iv) entan-

glement monotone (or strong monotonicity under LOCC);

(v) convexity; (vi) subadditivity.
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Analytic formula. An essential result of this work is to

provide an analytical relation between Gq-concurrence and

concurrence for any two-qubit quantum state ρAB , which is

Cq(ρAB) = hq[C(ρAB)], (6)

where hq(x) = [1 − (
1+

√
1−x2

2
)q − (

1−
√

1−x2

2
)q ]

1

q and

1 < q 6 2. This relation bridges the gaps towards the in-

depth discussion of any number of qubit systems. Further-

more, we analyze and demonstrate in Appendix B.1 that

the function hq(x) possesses the following two properties:

(B1) the function hq(x) is monotonically increasing with re-

spect to x for q > 1; (B2) the function hq(x) is convex with

respect to x for 1 < q 6 2. On the basis of the properties

(B1) and (B2), we obtain that Eq. (6) is valid, and further

details can be found in Appendix B.2. Meanwhile, we can

straightforwardly arrive at the following conclusion. For any

mixed state ρAB in 2⊗ d systems, there is

Cq(ρAB) > hq[C(ρAB)], (7)

where 1 < q 6 2.

Here we particularly emphasize that when q 6= 2, the

pure state decomposition used to calculate the concurrence

is not necessarily the same as the one used to compute the

Gq-concurrence. In Appendix B.3, we render a concrete

example to illustrate this point. Then, based on (6), we

next consider two questions: (Q1) does Gq-CoA obey the

polygamy relation? and (Q2) does Gq-concurrence satisfy

the monogamy relation?

Polygamy relation. We establish the polygamy relation

of n-qubit quantum state ρA1···An
in terms of Gq-CoA, i.e.,

C
a
q (ρA1|A2···An

) 6 C
a
q (ρA1A2

) + · · ·+ C
a
q (ρA1An

), (8)

where 1 < q 6 2, C a
q (ρA1|A2···An

) denotes the Gq-CoA

of ρA1A2···An
in the partition A1|A2 · · ·An, ρA1Aj

is the

reduced density matrix with respect to subsystem A1Aj ,

j = 2, 3, · · · , n. For the detailed proof of inequality (8),

please see Appendix C.

Monogamy relation. Another key result of this work is

to verify rigorously that the squared Gq-concurrence satis-

fies the monogamy relation for any n-qubit quantum state

ρA1A2···An
,

C
2
q (ρA1|A2···An

) > C
2
q (ρA1A2

) + · · ·+ C
2
q (ρA1An

), (9)

where 1 < q 6 2, Cq(ρA1|A2···An
) quantifies the entangle-

ment in the partition A1|A2 · · ·An.

As a by-product conclusion, we further obtain that for

any n-qubit quantum state ρA1···An
, the α-th (α > 2) power

of Gq-concurrence fulfills the monogamy relation,

C
α
q (ρA1|A2···An

) > C
α
q (ρA1A2

) + · · ·+ C
α
q (ρA1An

). (10)

The detailed proofs of formulas (9) and (10) are provided

in Appendix D.

Entanglement indicators. On account of the relation pre-

sented in inequality (9), we give a set of multipartite entan-

glement indicators,

τq(ρ) = min
{pl,|φl〉}

∑

l

plτq(|φl〉A1|A2···An
), (11)

where the minimum is taken over all feasible ensemble de-

compositions, τq(|φl〉A1|A2···An
) = C 2

q (|φl〉A1|A2···An
) −

∑n
j=2

C 2
q (ρ

l
A1Aj

), and 1 < q < 2.

For any three-qubit quantum state ρABC , we find that

the tripartite entanglement indicator τq(ρABC ) is zero for

1 < q < 2 if and only if ρABC is biseparable, i.e., ρABC =
∑

i piρ
i
AB ⊗ ρiC +

∑

i qiρ
i
AC ⊗ ρiB +

∑

i riρ
i
A ⊗ ρiBC . This

conclusion is elaborately demonstrated in Appendix E.1.

In fact, the inequality C 2
q (ρAi|Ai

) >
∑

j 6=i C 2
q (ρAiAj

) is

true for any n-qubit quantum state. As a consequence, we

construct a family of indicators

τ iq(ρ) = min
{pl,|φl〉}

∑

l

plτ
i
q(|φl〉Ai|Ai

), (12)

where the minimum runs over all feasible pure decompo-

sitions, τ iq(|φl〉Ai|Ai
) = C 2

q (|φl〉Ai|Ai
) −

∑

j 6=i C 2
q (ρ

l
AiAj

),

i, j ∈ {1, 2, · · · , n}. The formula (11) is a special case of

τ iq(ρ) corresponding to i = 1.

For any n-qubit quantum state ρ, we have that the mul-

tipartite entanglement indicator τ iq(ρ) is zero for 1 < q < 2

if and only if the quantum state can be written in the form

ρ =
∑

k pkρ
k
Ai

⊗ ρk
Ai

+
∑

j 6=i

∑

k q
j
kρ

k
AiAj

⊗ ρk
AiAj

, where

i, j ∈ {1, 2, · · · , n}.
Such a series of entanglement indicators, τ1q (ρ) to τnq (ρ),

allows us to better understand the entanglement distribution

of states and must be nonzero for any genuinely multiqubit

entangled state. Therefore, these indicators we construct

can compensate for the deficiency that the tangle fails to

detect the entanglement of an n-qubit W state, as the ex-

ample shows in Appendix E.2.

Conclusion. This work has proposed a type of one-

parameter entanglement quantifiers, called Gq-concurrence

(q > 1), as a generalization of concurrence, successfully

addressing and compensating several deficiencies of con-

currence. In addition, an analytic formula between Gq-

concurrence and concurrence has been established for 1 <

q 6 2 in two-qubit systems, which allows the easy calculation

of Gq-concurrence for a pair of qubits. Using this analytic

formula, we have provided the polygamy inequality based on

Gq-CoA in multiqubit systems. Furthermore, a mathemati-

cal characterization of the monogamy relation in terms of the

square of Gq-concurrence has been presented in multiqubit

systems. From a practical standpoint, we have constructed

a generalized set of entanglement indicators leveraging the

MoE of Gq-concurrence, which can work well even when the

tangle loses its efficacy. Moreover, a straightforward con-

clusion that the α-th (α > 2) power of Gq-concurrence also

satisfies the monogamy inequality can be reached. The cal-

culation of the multipartite entanglement measures is an NP

problem. Fortunately, the monogamy inequality in formula

(9) has rendered a readily computable lower bound of Gq-

concurrence.
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