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Quantum entanglement, as an essential physical resource,
exhibits prominent advantages over classical theory in quan-
tum information tasks. A fundamental and necessary task
in entanglement resource theory is undoubtedly the devel-
opment of a legitimate method for quantifying the entan-
glement of states. To gain a deeper insight into the essence
of quantum entanglement, another imperative assignment
is to explore the intrinsic properties of a measure, such as
whether it satisfies monogamy of entanglement (MoE).

MoE means that there are some restrictions on share-
ability and distribution of entanglement [1]. The mathe-
matical characterization of the monogamy relation was first
introduced by Coffman et al. [2] based on the square of con-
currence [3] in three-qubit systems. Subsequently, Osborne
and Verstraete [4] extended it to multiqubit systems. How-
ever, the tangle generated from the MoE of the squared
concurrence fails to detect the entanglement of some states,
such as the W state [2]. To compensate for this deficiency,
other novel monogamy relations beyond squared concur-
rence should be established. Therefore, we construct a class
of bipartite entanglement measures Gg-concurrence (g > 1)
and verify their squares conform to the monogamy inequal-
ity with 1 < ¢ < 2. Most importantly, the series of indica-
tors produced by MoE of the squared G4-concurrence can
identify all genuinely multiqubit entangled states.

Ggq-concurrence. For any bipartite pure state |¢) 4p, the
Gg-concurrence is defined as

Ca(16) am) = [1 - Te(pd)]7, (1)

where ¢ > 1 and pa = Trp([¢) ap(9]).
A bipartite pure state |¢)ap can be expressed in the
Schmidt decomposition form

d
$ap =Y VAlia)lin), 2
=1

where \; is non-negative real number with >, A\; = 1. Then,

¢q(l¢)aB) can be written as

(16) an) = <1 - ZAQ) Lg> 1. 3)

For any bipartite mixed state pap, its Gg-concurrence is
defined as

sz"’ﬁq(‘d)z ) (4)

Cq(pap) = mln
{pisldi)}

where the minimum is taken over all possible ensemble de-
compositions {pi, |¢i)} of pap.

In particular, G4-concurrence %4(pap) and concurrence
C(pap) [3] are equivalent when ¢ = 2 for any bipartite quan-
tum state pap, so the Gg-concurrence can be treated as a
generalization of concurrence. Moreover, the relation be-
tween Gg¢-concurrence and g-concurrence [5] is 64 (|p) ap) =
[Cy(]0) AB)]2/ 7 for any bipartite pure state |¢)ap. In ad-
dition, Gg-concurrence and g-concurrence are compared in
Appendix A.1, and the merits of Gg-concurrence are illus-
trated in terms of normalization and sensitivity.

The Gg4-concurrence of assistance (G4-CoA), a dual quan-
tity of Gg-concurrence, is given by

Gy (paB) = )}sz&”q [#i)) (5)

{pmdn
where the maximum runs over all feasible ensemble decom-
positions of pap. If pap is a pure state, then there is
4 (paB) = Cq(paB).

Some studies suggest that a rational entanglement mea-
sure should satisfy several conditions [1], including (i) faith-
fulness, (ii) invariance under any local unitary transforma-
tion, and (iii) monotonicity under local operation and clas-
sical communication (LOCC).

In Appendixes A.2-A.6, we rigorously prove that Gg4-
concurrence not only satisfies the conditions (i)—(iii) listed
above, but also fulfills the properties as follows: (iv) entan-
glement monotone (or strong monotonicity under LOCC);
(v) convexity; (vi) subadditivity.
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Analytic formula. An essential result of this work is to
provide an analytical relation between G4-concurrence and

concurrence for any two-qubit quantum state pap, which is

%q(pap) = hq[ClpaB)]; (6)

1
where hy(e) = [1 - (B2t - (V=2a)a and
1 < g < 2. This relation bridges the gaps towards the in-

depth discussion of any number of qubit systems. Further-
more, we analyze and demonstrate in Appendix B.1 that
the function hg(x) possesses the following two properties:
(B1) the function hg(z) is monotonically increasing with re-
spect to z for ¢ > 1; (B2) the function hg(z) is convex with
respect to x for 1 < ¢ < 2. On the basis of the properties
(B1) and (B2), we obtain that Eq. (6) is valid, and further
details can be found in Appendix B.2. Meanwhile, we can
straightforwardly arrive at the following conclusion. For any
mixed state pap in 2 ® d systems, there is

Cq(paB) = hqlC(pas)), (7)

where 1 < g < 2.

Here we particularly emphasize that when ¢ # 2, the
pure state decomposition used to calculate the concurrence
is not necessarily the same as the one used to compute the
Gg-concurrence. In Appendix B.3, we render a concrete
example to illustrate this point. Then, based on (6), we
next consider two questions: (Q1) does G4-CoA obey the
polygamy relation? and (Q2) does Gg-concurrence satisfy
the monogamy relation?

Polygamy relation. We establish the polygamy relation
of n-qubit quantum state pa,...,, in terms of G¢-CoA, i.e.,

<Cl(paja,) +--+ 67 (paya,), (8)

where 1 < g < 2, €5 (pa,|As.--4,,) denotes the Gg-CoA
of pa,ay...A, in the partition Aj[Az---An, pa,a; is the
reduced density matrix with respect to subsystem AjAj,
j = 2,3,---,n. For the detailed proof of inequality (8),
please see Appendix C.

Monogamy relation. Another key result of this work is
to verify rigorously that the squared Gg4-concurrence satis-
fies the monogamy relation for any n-qubit quantum state

PALAgAns

Cq(Pa|As-Ay)

C2(payaga,) 2 Co(pasa,) + +C2(paya,),  (9)

where 1 < ¢ < 2, 64(pa,|a,-.-4,) duantifies the entangle-
ment in the partition A1|Ag--- Ap.

As a by-product conclusion, we further obtain that for
any n-qubit quantum state p4;...4,,, the a-th (o > 2) power
of Gg-concurrence fulfills the monogamy relation,

+ €3 (pasa,)- (10)

The detailed proofs of formulas (9) and (10) are provided
in Appendix D.

Entanglement indicators. On account of the relation pre-
sented in inequality (9), we give a set of multipartite entan-
glement indicators,

CEPay g an) = CO(payay) +

Tq¢(p) = min

T 11
{p,|P1)} Zpl q |¢l Aq|Az-- An) ( )

where the minimum is taken over all feasible ensemble de-
compositions, 7¢(|¢1) (454, ) C2(|P1) aq)Ag--A,) —
T, (Kg(pfqlAj), and 1 < g < 2.
For any three-qubit quantum state pspc, we find that
the tripartite entanglement indicator 74(papc) is zero for
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1 < g < 2if and only if papc is biseparable, i.e., papc =
> Pipyp ® pe + > qiPyc ® P + > Tipy @ ppc- This
conclusion is elaborately demonstrated in Appendix E.1.

In fact, the inequality €2(p 4. v )= 2 2 (pa;a;) is
true for any n-qubit quantum state. As a consequence, we
construct a family of indicators

Zpl Tq |¢l A A7 ) (12)

7H(p) = min
B {pe,1¢0)}

where the minimum runs over all feasible pure decompo-
sitions, Té(|¢l>Ai‘A_i) = ng(‘¢l>Ai\A_i) - Zj;si %2(9%1.,4].),
i,7 € {1,2,---,n}. The formula (11) is a special case of
i(p) corresponding to i = 1.

For any n-qubit quantum state p, we have that the mul-
tipartite entanglement indicator Té (p) is zero for 1 < g < 2
if and only if the quantum state can be written in the form
P = TkPrPla, ® P+ X jsi X GuPla, 4y ® Pl Where
1,7 €4{1,2,--- ,n}.

Such a series of entanglement indicators, 75 (p) to 72 (p),
allows us to better understand the entanglement distribution
of states and must be nonzero for any genuinely multiqubit
entangled state. Therefore, these indicators we construct
can compensate for the deficiency that the tangle fails to
detect the entanglement of an n-qubit W state, as the ex-
ample shows in Appendix E.2.

Conclusion. This work has proposed a type of one-
parameter entanglement quantifiers, called G¢-concurrence
(g > 1), as a generalization of concurrence, successfully
addressing and compensating several deficiencies of con-
currence. In addition, an analytic formula between Gg-
concurrence and concurrence has been established for 1 <

< 2 in two-qubit systems, which allows the easy calculation
of G4-concurrence for a pair of qubits. Using this analytic
formula, we have provided the polygamy inequality based on
G¢-CoA in multiqubit systems. Furthermore, a mathemati-
cal characterization of the monogamy relation in terms of the
square of Gg-concurrence has been presented in multiqubit
systems. From a practical standpoint, we have constructed
a generalized set of entanglement indicators leveraging the
MokE of G4-concurrence, which can work well even when the
tangle loses its efficacy. Moreover, a straightforward con-
clusion that the a-th (a > 2) power of G4-concurrence also
satisfies the monogamy inequality can be reached. The cal-
culation of the multipartite entanglement measures is an NP
problem. Fortunately, the monogamy inequality in formula
(9) has rendered a readily computable lower bound of Gg4-
concurrence.
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