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Appendix A Gq-concurrence

Appendix A.1 The comparison between Gq-concurrence and q-concurrence

Compared with q-concurrence [1], we elaborate on the merits of Gq-concurrence from the following two aspects:

(1) The Gq-concurrence exhibits better normalization. For instance, given the maximally entangled state |φ〉 = (|00〉+

|11〉)/
√

2 and calculating its Gq-concurrence and q-concurrence, we find that Cq(|φ〉) is closer to 1, as shown in Table A1.

Table A1 For the maximally entangled state |φ〉 =
|00〉+|11〉√

2
, its q-concurrence Cq(|φ〉) and Gq-concurrence Cq(|φ〉) with some

specific parameters q are given. Here four decimal places are retained.

q Cq(|φ〉) Cq(|φ〉)

5.5 0.9558 0.9918

6.0 0.9688 0.9947

6.5 0.9779 0.9966

7.0 0.9844 0.9978

7.5 0.9890 0.9985

8.0 0.9922 0.9990

8.5 0.9945 0.9993

9.0 0.9961 0.9996

(2) The Gq-concurrence has a relatively high sensitivity, which can amplify minute differences in weakly entangled

states and enable efficient discrimination of weakly entangled states. For example, consider the quantum state |φ〉 =√
1− ε|00〉+

√
ε|11〉, 0 6 ε 6 0.05, its Gq-concurrence and q-concurrence are plotted in Figure A1 when q = 3

2
. We observe

that for the minor differences of weakly entangled states, the variation range of Gq-concurrence is larger and its sensitivity

is stronger, which makes it more conducive to characterizing the entanglement characteristics of quantum states.

Appendix A.2 Faithfulness

Faithfulness is an essential property for entanglement quantifiers, which can clearly distinguish bipartite quantum states

into two categories, entangled states and separable states. Next we demonstrate that Gq-concurrence is faithful.

Proposition A1. For any bipartite quantum state ρAB , we have Cq(ρAB) > 0 for q > 1, the equality holds if and only

if (iff) ρAB is a separable state.

Proof. It is obvious that Cq(ρAB) > 0 since Tr(ρqA) 6 1 for q > 1.

Next, we first prove the equality is true iff |φ〉AB is a separable state. If a pure state |φ〉AB is separable, then we can

get Tr(ρqA) = 1, which leads Cq(|φ〉AB) = 0. Conversely, let |φ〉AB =
∑
i

√
λi|iA〉|iB〉, one has the reduced density operator

ρA =
∑
i λi|iA〉〈iA|. If Cq(|φ〉AB) = 0, then the Schmidt number of |φ〉AB must be one due to 0 6 λi 6 1 and q > 1, i.e.,

|φ〉AB = |iA〉|iB〉, hence the pure state |φ〉AB is separable.

For any separable mixed state ρAB with the pure decomposition {pi, |φi〉AB}, Cq(ρAB) 6
∑
i piCq(|φi〉AB) = 0, owing

to the nonnegativity of Cq(ρAB), we have Cq(ρAB) = 0. On the contrary, if Cq(ρAB) = 0, according to the definition of

Gq-concurrence, one has Cq(|φi〉AB) = 0 for any i, which is equivalent to |φi〉AB being separable for every i, so ρAB is

separable.

To sum up, Cq(ρAB) > 0 for all entangled states and Cq(ρAB) = 0 for all separable states.
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Figure A1 For the quantum state |φ〉 =
√

1− ε|00〉+
√
ε|11〉, 0 6 ε 6 0.05. Set q = 3

2 , the red (upper) line is the Gq-concurrence

of |φ〉, the blue (lower) line represents the q-concurrence of |φ〉.

Appendix A.3 Monotonicity under LOCC and invariance under local unitary transforma-
tion

Vidal [2] put forward the only necessary condition on the entanglement measure should be that entanglement does not

increase under local operation and classical communication (LOCC). We verify that Gq-concurrence obeys this requirement.

Proposition A2. Let ρAB be any bipartite state, the Gq-concurrence is non-increasing under LOCC operation ΛLOCC,

i.e., Cq [ΛLOCC(ρAB)] 6 Cq(ρAB).

Proof. The state |φ〉 can be prepared from the state |ϕ〉 using only LOCC iff the vector ~λφ majorizes ~λϕ (~λϕ ≺ ~λφ), where
~λϕ (~λφ) is the Schmidt vector given by the squared Schmidt coefficients of the state |ϕ〉 (|φ〉) and arranged in non-increasing

order [3]. A function E is monotone on pure state iff it is Schur concave as a function of spectrum of subsystem, which

is equivalent to the following two conditions [4]: (a) E is invariant under any permutation of two arguments; (b) any two

components of ~λ, λi and λj , satisfy (λi − λj)( ∂E∂λi −
∂E
∂λj

) 6 0.

We first show that the function Cq(|φ〉) is non-increasing under LOCC with respect to any bipartite pure state |φ〉 using

the methods described above. Let Cq(|φ〉) = f(λ1, λ2, · · · , λd) = (1 −
∑d
i=1 λ

q
i )

1
q , where λ1, λ2, · · · , λd are the square of

Schmidt coefficients of |φ〉 and satisfy λ1 > λ2 > · · · > λd. It is easy to get that Cq(|φ〉) is invariant when any two arguments

λi and λj of the vector ~λφ permute, and

(λi − λj)(
∂Cq
∂λi
− ∂Cq

∂λj
) = (λi − λj)[(1−

d∑
l=1

λql )
1
q
−1
λq−1
j − (1−

d∑
l=1

λql )
1
q
−1
λq−1
i ]

= (λi − λj)(1−
d∑
l=1

λql )
1
q
−1

(λq−1
j − λq−1

i )

6 0.

Thus, we conclude that Cq [ΛLOCC(|φ〉)] 6 Cq(|φ〉).
Adopting the convexity of Cq(ρAB) and the monotonicity of Cq(|φ〉), we can obtain the result that Gq-concurrence does

not increase under LOCC for any bipartite mixed state.

It is known that local unitary transformations belong to the set of LOCC operations and are invertible [5]. From

Proposition A2, we proceed directly to the following conclusion.

Proposition A3. For any bipartite quantum state ρAB , Cq(ρAB) is invariant under any local unitary transformation,

i.e., Cq(ρAB) = Cq(UA ⊗ UBρABU†A ⊗ U
†
B).

Appendix A.4 Entanglement monotone

Before proving the strong monotonicity of Gq-concurrence, let us present a lemma.

Lemma A1. The function

Gq(ρ) = (1− Trρq)
1
q , (A1)

is concavity for any density operator ρ and q > 1.



Sci China Inf Sci 3

Proof. Let ρ, σ be two arbitrary density operators, we derive

Gq(λρ+ µσ) = [1− Tr(λρ+ µσ)q ]
1
q

> {1− [λ(Trρq)
1
q + µ(Trσq)

1
q ]q}

1
q

> [1− (λTrρq + µTrσq)]
1
q

= [λ(1− Trρq) + µ(1− Trσq)]
1
q

> λ(1− Trρq)
1
q + µ(1− Trσq)

1
q

= λGq(ρ) + µGq(σ),

(A2)

where the first inequality can be obtained based on Minkowski’s inequality [Tr(ρ+ σ)q ]
1
q 6 (Trρq)

1
q + (Trσq)

1
q with q > 1,

the second inequality holds because the function y = xq is convex for q > 1, and the third inequality is due to the concavity

of y = xγ for 0 < γ < 1.

Proposition A4. For any bipartite state ρAB , the Gq-concurrence is an entanglement monotone, namely,

Cq(ρAB) >
∑
i piCq(σi), (A3)

where the ensemble {pi, σi} is yielded after ΛLOCC acting on ρAB .

Proof. Vidal [2] showed that an entanglement quantifier E obeys strong monotonicity if it satisfies the following two

conditions: (c) g(UρAU
†) = g(ρA) and g is a concave function, where E(|φ〉AB) = g(ρA) and ρA = TrB(|φ〉〈φ|); (d)

E is given by convex roof extension for arbitrary mixed states. It is obvious that Cq(ρAB) meets these conditions from

Proposition A3, Lemma A1, and the definition of Cq(ρAB). Therefore, the formula (A3) holds.

Appendix A.5 Convexity

According to the definition of Cq(ρAB), the following result can be reached.

Proposition A5. The Gq-concurrence is convex on quantum state ρAB , that is, Cq(ρAB) 6
∑
i piCq(ρ

i
AB), where

ρAB =
∑
i piρ

i
AB ,

∑
i pi = 1, and pi > 0.

Appendix A.6 Subadditivity

Proposition A6. The Gq-concurrence is subadditive, i.e., Cq(ρAB ⊗ σAB) 6 Cq(ρAB) + Cq(σAB).

Proof. Before proving subadditivity, we first show the inequality (a+ b)β 6 aβ + bβ holds for 0 6 a, b 6 1 and 0 < β < 1,

which is equivalent to

( a
a+b

)β + ( b
a+b

)β > 1. (A4)

When 0 6 x1, x2 6 1 and x1 + x2 = 1, we have xβ1 > x1 and xβ2 > x2, and this goes directly to inequality xβ1 + xβ2 > 1. Let

x1 = a
a+b

and x2 = b
a+b

, the formula (A4) can be obtained.

For any two pure states |φ〉AB and |ϕ〉AB , then we can see

Cq(|φ〉AB ⊗ |ϕ〉AB) = (1− TrρqATrδqA)
1
q

6 (1− TrρqA + 1− TrδqA)
1
q

6 (1− TrρqA)
1
q + (1− TrδqA)

1
q

= Cq(|φ〉AB) + Cq(|ϕ〉AB).

(A5)

Here ρA and δA are respectively the reduced density matrices of |φ〉AB and |ϕ〉AB , the first inequality holds because

Cq(|φ〉AB) = 1−Tr(ρqA) satisfies subadditivity [6], the second inequality can be obtained according to the relation (a+b)β 6
aβ + bβ for 0 6 a, b 6 1 and 0 < β < 1.

The subadditivity of Gq-concurrence for any bipartite mixed state can be verified based on the convexity of Cq(ρAB)

and the relation derived in inequality (A5).

Appendix B Analytic formula

Before proving equation (6) in the letter, we first present two fundamental properties of hq(x).

Appendix B.1 Two fundamental properties of hq(x)

Proposition B1. The function hq(x) is monotonically increasing with respect to x for q > 1.

Proof. This proposition is true if the first derivative of hq(x) is nonnegative. Then we derive

dhq(x)

dx
= 1

2q
[1− (

1+
√

1−x2
2

)q − (
1−
√

1−x2
2

)q ]
1
q
−1 x[(1+

√
1−x2)q−1−(1−

√
1−x2)q−1]√

1−x2
.

Obviously, there is
dhq(x)

dx
> 0 for 0 < x < 1 and q > 1. Therefore, we can say hq(x) is monotonically increasing for

0 6 x 6 1 owing to the fact that hq(x) is continuous. This makes that hq(0) = 0 and hq(1) = (1 − 1
2q−1 )

1
q correspond,

respectively, to the minimum and maximum of hq(x) for the given parameter q.
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Figure B1 The function M(x, q) is illustrated for 0 6 x 6 1 and 2 < q < 5.

Proposition B2. The function hq(x) is convex with respect to x for 1 < q 6 2.

Proof. This proposition is valid if the second derivative of hq(x) is nonnegativity. By derivation, we obtain

d2hq(x)

dx2
= 1

2q
[1− (

1+
√

1−x2
2

)q − (
1−
√

1−x2
2

)q ]
1
q
−2
M(x, q),

where M(x, q) = ξ1 + ξ2(ξ3 − ξ4) with

ξ1 = 1−q
2q

(
x[(1+

√
1−x2)q−1−(1−

√
1−x2)q−1]√

1−x2
)2,

ξ2 = 1− (
1+
√

1−x2
2

)q − (
1−
√

1−x2
2

)q ,

ξ3 =
(1+
√

1−x2)q−2

1−x2 [
1+
√

1−x2√
1−x2

− x2(q − 1)],

ξ4 =
(1−
√

1−x2)q−2

1−x2 [
1−
√

1−x2√
1−x2

+ x2(q − 1)].

We observe that judging the sign of
d2hq(x)

dx2
is actually equivalent to judging the sign of M(x, q) because the term in front

of M(x, q) is positive for 0 < x < 1. If the term
1+
√

1−x2√
1−x2

− x2(q− 1) in ξ3 is non-positive, then there must be M(x, q) < 0

since ξ1 < 0, ξ2 > 0, ξ3 − ξ4 < 0 for 0 < x < 1. By means of the result in Ref. [7], we deduce directly there is x ∈ (0, 1)

such that
d2hq(x)

dx2
< 0 for q > 5. In addition, when 2 < q < 5, we can get that hq(x) is also not a convex function from

Figure B1. Especially, when q takes 3 and 4, h3(x) and h4(x) are respectively

h3(x) = 3
√

3
4
x

2
3 and h4(x) =

4
√

8x2−x4
4√8

.

Obviously, they are concave functions of x. Consequently, hq(x) is not a convex function for q > 2.

In particular, when q = 2, h2(x) = x√
2

is a function that is both convex and concave.

Let us now show that hq(x) is a convex function on x ∈ [0, 1] for 1 < q < 2, that is, prove that the minimum of M(x, q)

is nonnegative. It is acknowledged that the minimal value can only be generated at critical points or boundary points since

M(x, q) is continuous.

We first discuss whether there are critical points of M(x, q) in the region R = {(x, q)|0 < x < 1, 1 < q < 2}. The gradient

of M(x, q) is

∇M(x, q) =
( ∂M(x,q)

∂x
,
∂M(x,q)

∂q

)
,

where
∂M(x,q)
∂x

and
∂M(x,q)

∂q
are the first partial derivatives of M(x, q) with respect to x and q, respectively.

The point (x0, q0) is a critical point if ∇M(x0, q0) = 0. However,
∂M(x,q)
∂x

= 0 is unsolvable for 0 < x < 1 and 1 < q < 2,

as shown in Figure B2. This suggests that there is no critical point of M(x, q) in the region R and the maximal and minimal

values of M(x, q) can be respectively obtained at the boundary points x = 1 and x = 0 for given q. Through tedious

calculations, we get

lim
x→0

M(x, q) = 0,

lim
x→1

M(x, q) =
−12(q3−3q2+3q−1)+(2q−2)(−2q3+12q2−16q+6)

3×2q
.

The solutions of lim
x→1

M(x, q) = 0 only rise at q = 1 or 2 for 1 6 q 6 2, lim
x→1

M(x, q) is strictly positive for 1 < q < 2, as

shown in Figure B3. Therefore, one sees M(x, q) > 0 for 0 < x 6 1 and 1 < q < 2.
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Figure B2 This diagram shows the solution for
∂M(x,q)
∂x = 0. Figure B3 The function lim

x→1
M(x, q) is plotted for 1 6 q 6 2.

Based on the above analysis, we can directly obtain
d2hq(x)

dx2
> 0 in the region R. We proceed to discuss the second

derivation
d2hq(x)

dx2
at the points x = 0 and x = 1, and get

lim
x→0

d2hq(x)

dx2
= +∞,

lim
x→1

d2hq(x)

dx2
=

(2q−2)
1−2q
q

21−q
lim
x→1

M(x, q).

This makes
d2hq(x)

dx2
> 0 for x ∈ [0, 1] and q ∈ (1, 2).

To sum up, the function hq(x) is convex for 1 < q 6 2 and 0 6 x 6 1.

Based on propositions B1 and B2, we provide the proof of equation (6) below.

Appendix B.2 Proof of equation (6)

Let |φ〉AB be a pure state on Hilbert space H2 ⊗ Hd (d > 2) (or especially be a two-qubit pure state with Schmidt

decomposition |φ〉AB =
∑2
i=1

√
λi|ii〉AB), its Gq-concurrence is expressed as

Cq(|φ〉AB) = (1− λq1 − λ
q
2)

1
q ,

and its concurrence is

C(|φ〉AB) = 2
√
λ1λ2.

Moreover, it is easy to obtain that for any 2⊗ d pure state there is an analytic function that relates Gq-concurrence (q > 1)

to concurrence, namely,

Cq(|φ〉AB) = hq [C(|φ〉AB)], (B1)

where hq(x) is

hq(x) = [1− (
1+
√

1−x2
2

)q − (
1−
√

1−x2
2

)q ]
1
q ,

for 0 6 x 6 1.

For any 2⊗ d mixed state ρAB , let {pi, |φi〉} be the optimal pure state decomposition of Cq(ρAB), then one has

Cq(ρAB) =
∑
i piCq(|φi〉)

=
∑
i pihq [C(|φi〉)]

> hq [
∑
i piC(|φi〉)]

> hq [C(ρAB)],

where the first inequality is due to the convexity of hq(x) for 1 < q 6 2 and the second inequality follows from the

monotonicity of hq(x) for q > 1.

Hill and Wootters [8] pointed out that there is an optimal pure state decomposition {pi, |φi〉} for any two-qubit mixed

state ρAB such that the concurrence of each pure state is equal. Based on this assertion, one derives

hq [C(ρAB)] = hq [
∑
i piC(|φi〉)]

=
∑
i pihq [C(|φi〉)]

=
∑
i piCq(|φi〉)

> Cq(ρAB),
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where the inequality holds according to the definition of Cq(ρAB).

Therefore, the equation (6) in the letter is true for any two-qubit mixed state.

Appendix B.3 Gq-concurrence and concurrence are not equivalent for q 6= 2

We provide a concrete example to state that the pure state decomposition used to calculate the concurrence is not necessarily

the same as the one used to compute the Gq-concurrence when q 6= 2.

Example 1. Consider a quantum state ρAB = p|Φ+〉〈Φ+| + (1 − p)|01〉〈01|, where |Φ+〉 =
|00〉+|11〉√

2
, 0 < p < 1.

By calculation, we obtain C(|Φ+〉) = 1, C(|01〉) = 0, and C(ρAB) = p, so {p, |Φ+〉; 1 − p, |01〉} is the optimal pure

state decomposition to calculate the concurrence. Let q = 3
2

, by Theorem 1, we have C 3
2

(ρAB) = [1 − (
1+
√

1−p2
2

)
3
2 −

(
1−
√

1−p2
2

)
3
2 ]

2
3 , whereas C 3

2
(ρAB) < pC 3

2
(|Φ+〉) + (1− p)C 3

2
(|01〉) = p[1− 2× ( 1

2
)
3
2 ]

2
3 , which means {p, |Φ+〉; 1− p, |01〉}

is not the optimal pure state decomposition to calculate the Gq-concurrence.

Appendix C Polygamy relation

To facilitate the proof of polygamy relation, we consider a function of two variables

Hq(x, y) = hq(
√
x2 + y2)− hq(x)− hq(y),

on the region R′ = {(x, y)|0 6 x, y, x2 + y2 6 1} for 1 < q 6 2.

Appendix C.1 Proof of the non-positivity of Hq(x, y) on the domain

For the case q = 2, by simple calculation, we have H2(x, y) 6 0.

Since Hq(x, y) is continuous on bounded closed set R′, it can take maximal and minimal values for given q, which occur

only at critical or boundary points. First, we determine whether there are critical points in the interior of R′ by taking the

first partial derivative of Hq(x, y), its gradient is

∇Hq(x, y) =
( ∂Hq(x,y)

∂x
,
∂Hq(x,y)

∂y

)
,

where
∂Hq(x,y)

∂x
= x

2q
{[1− (

1+
√

1−x2−y2
2

)q − (
1−
√

1−x2−y2
2

)q ]
1
q
−1 (1+

√
1−x2−y2)q−1−(1−

√
1−x2−y2)q−1

√
1−x2−y2

−[1− (
1+
√

1−x2
2

)q − (
1−
√

1−x2
2

)q ]
1
q
−1 (1+

√
1−x2)q−1−(1−

√
1−x2)q−1

√
1−x2

},
∂Hq(x,y)

∂y
= y

2q
{[1− (

1+
√

1−x2−y2
2

)q − (
1−
√

1−x2−y2
2

)q ]
1
q
−1 (1+

√
1−x2−y2)q−1−(1−

√
1−x2−y2)q−1

√
1−x2−y2

−[1− (
1+
√

1−y2
2

)q − (
1−
√

1−y2
2

)q ]
1
q
−1 (1+

√
1−y2)q−1−(1−

√
1−y2)q−1

√
1−y2

}.

Assume that there is (x0, y0) ∈ {(x, y)|0 < x, y, x2 + y2 < 1} such that ∇Hq(x0, y0) = 0, and we observe that

∇Hq(x0, y0) = 0 is equivalent to

fq(x0) = fq(y0),

where the function fq(t) is

fq(t) = [1− (
1+
√

1−t2
2

)q − (
1−
√

1−t2
2

)q ]
1
q
−1 (1+

√
1−t2)q−1−(1−

√
1−t2)q−1

√
1−t2

.

Then we evaluate the first derivative of fq(t),

dfq(t)

dt
= [1− (

1+
√

1−t2
2

)q − (
1−
√

1−t2
2

)q ]
1
q
−2
M̃(t, q),

where

M̃(t, q) = 1−q
2q

t[(1+
√

1−t2)q−1−(1−
√

1−t2)q−1]2

1−t2 + [1− (
1+
√

1−t2
2

)q − (
1−
√

1−t2
2

)q ]

×
[ (1+√1−t2)q−2

1−t2
( t(1+√1−t2)√

1−t2
− t(q − 1)

)
− (1−

√
1−t2)q−2

1−t2
( t(1−√1−t2)√

1−t2
+ t(q − 1)

)]
.

Combining Figure C1, lim
t→0

M̃(t, q) = 0, and lim
q→1

M̃(t, q) = 0, we can see M̃(t, q) < 0 for 1 < q < 2 and 0 < t < 1. This

implies
dfq(t)

dt
< 0 for 1 < q < 2 and 0 < t < 1, namely, fq(t) is a strictly monotonically decreasing function with respect to

t for given q, so fq(x0) = fq(y0) means x0 = y0. If
∂Hq(x,y)

∂x
|(x0,y0) = 0 and x0 = y0 > 0, then fq(

√
2x0) = fq(x0), which

contradicts to the strict monotonicity of fq(t). Hence Hq(x, y) has no vanishing gradient in the interior of R′.
Next we discuss the boundary values of Hq(x, y) in region R′. If x = 0 or y = 0, then Hq(x, y) = 0. If x2 + y2 = 1, then

Hq(x, y) can be reduced to

lq(x) = Hq(x,
√

1− x2) = 1
2
{(2q − 2)

1
q − [2q − (1 +

√
1− x2)q − (1−

√
1− x2)q ]

1
q − [2q − (1 + x)q − (1− x)q ]

1
q }.
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Figure C1 The M̃(t, q) is plotted as a function of t and q for

t ∈ (0, 1) and q ∈ (1, 2).

Figure C2 The function lq(1/
√

2) is non-positive for 1 6 q 6
2.

For the sake of judging the sign of lq(x), we calculate its first derivative

dlq(x)

dx
= 1

2
{−[2q − (1 +

√
1− x2)q − (1−

√
1− x2)q ]

1
q
−1 x[(1+

√
1−x2)q−1−(1−

√
1−x2)q−1]√

1−x2

−[2q − (1 + x)q − (1− x)q ]
1
q
−1

[(1− x)q−1 − (1 + x)q−1]},

where
dlq(x)

dx
= 0 corresponds to x = 1√

2
on 0 < x < 1. Since lq(0) = lq(1) = 0, the sign of function lq(x) is determined by

lq(
1√
2

) = 1
2
{(2q − 2)

1
q − 2[2q − (1 + 1√

2
)q − (1− 1√

2
)q ]

1
q }. We plot lq(

1√
2

) in Figure C2 and obtain that lq(
1√
2

) is always

non-positive for 1 < q < 2.

Therefore, we have

hq(
√
x2 + y2) 6 hq(x) + hq(y), (C1)

for 1 < q 6 2 and (x, y) ∈ R′.
Next, by virtue of the inequality (C1), we consider polygamy relation in multiqubit systems based on Gq-CoA.

Appendix C.2 The relation between Gq-CoA and CoA

We establish the relation between Gq-concurrence of assistance (Gq-CoA) and concurrence of assistance (CoA).

Lemma C1. For two-qubit state ρAB , there is

hq [Ca(ρAB)] 6 C aq (ρAB), (C2)

where 1 < q 6 2.

Proof. Let {pi, |ϕi〉} be the pure state decomposition of ρAB such that Ca(ρAB) =
∑
i piC(|ϕi〉), then one sees

hq [Ca(ρAB)] = hq [
∑
i piC(|ϕi〉)]

6
∑
i pihq [C(|ϕi〉)]

=
∑
i piCq(|ϕi〉)

6 C aq (ρAB),

where the first inequality is due to the convexity of hq(x) for 1 < q 6 2 and the second inequality is assured according to

the definition of C aq (ρAB).

Appendix C.3 Proof of inequality (8)

It is well-known that the square of CoA satisfies polygamy relation for n-qubit pure state |φ〉A1A2···An , which reads [9]

C2(|φ〉A1|A2···An ) 6 (CaA1A2
)2 + · · ·+ (CaA1An

)2, (C3)

where C(|φ〉A1|A2···An ) is the concurrence of |φ〉A1A2···An under bipartite splitting A1|A2 · · ·An, and CaA1Aj
is the CoA

of reduced density operator ρA1Aj , j = 2, · · · , n. Based on Hq(x, y) 6 0 (see Appendix C.1), formulas (C2) and (C3), we

will show the polygamy relation of n-qubit state in terms of Gq-CoA.

The detailed proof of inequality (8) is as follows:
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On the one hand, if (CaA1A2
)2 + · · ·+ (CaA1An

)2 6 1 for any multiqubit pure state |φ〉A1···An , then one has

Cq(|φ〉A1|A2···An ) = hq [C(|φ〉A1|A2···An )]

6 hq
[√

(CaA1A2
)2 + · · ·+ (CaA1An

)2
]

6 hq(CaA1A2
) + hq

[√
(CaA1A3

)2 + · · ·+ (CaA1An
)2
]

6 · · ·
6 hq(CaA1A2

) + · · ·+ hq(CaA1An
)

6 C aq (ρA1A2 ) + · · ·+ C aq (ρA1An ).

(C4)

Here the first inequality holds according to the formula (C3) and Proposition B1, the second inequality is true based on

formula (C1), the penultimate inequality is obtained by iterating formula (C1), and the last inequality can be gotten from

the formula (C2).

On the other hand, if (CaA1A2
)2 + · · ·+ (CaA1An

)2 > 1, then there is some j such that (CaA1A2
)2 + · · ·+ (CaA1Aj

)2 6 1,

whereas (CaA1A2
)2 + · · ·+ (CaA1Aj+1

)2 > 1, where 2 6 j 6 n. Let

S = (CaA1A2
)2 + · · ·+ (CaA1Aj+1

)2 − 1,

then one reads

Cq(|φ〉A1|A2···An ) = hq [C(|φ〉A1|A2···An )]

6 hq(1)

= hq
[√

(CaA1A2
)2 + · · ·+ (CaA1Aj+1

)2 − S
]

6 hq
[√

(CaA1A2
)2 + · · ·+ (CaA1Aj

)2
]

+ hq [
√

(CaA1Aj+1
)2 − S]

6 hq(CaA1A2
) + · · ·+ hq(CaA1Aj

) + hq(CaA1Aj+1
)

6 C aq (ρA1A2
) + · · ·+ C aq (ρA1An ).

(C5)

Here the ideas of proving these inequalities are consistent to that of proving the inequality (C4) above.

Let ρA1A2···An be a multiqubit mixed state and {pi, |φi〉A1|A2···An} be the pure state decomposition of ρA1A2···An such

that C aq (ρA1|A2···An ) =
∑
i piCq(|φi〉A1|A2···An ). Then one has

C aq (ρA1|A2···An ) =
∑
i
piCq(|φi〉A1|A2···An )

6
∑
i
pi[C aq (ρiA1A2

) + · · ·+ C aq (ρiA1An
)]

=
∑
i
piC aq (ρiA1A2

) + · · ·+
∑
i
piC aq (ρiA1An

)

6 C aq (ρA1A2 ) + · · ·+ C aq (ρA1An ).

(C6)

Here ρiA1Aj
is the reduced density matrix of |φi〉A1A2···An with respect to A1Aj , the first inequality can be derived by

inequalities (C4) and (C5), and the second inequality follows the definition of Gq-CoA.

Combining inequalities (C4), (C5), and (C6), we get the polygamy inequality is valid for any n-qubit quantum state.

Appendix D Monogamy relation

In order to prove that the square of Gq-concurrence obeys monogamy relation, we first define a function

H̃q(x, y) = h2q(
√
x2 + y2)− h2q(x)− h2q(y),

on the region R′ = {(x, y)|0 6 x, y, x2 + y2 6 1} for 1 < q 6 2.

Appendix D.1 Proof of the non-negativity of H̃q(x, y) on the domain

For the special case q = 2, it is easy to get H̃2(x, y) = 0, namely, h22(
√
x2 + y2) = h22(x) + h22(y). For 1 < q < 2, we

compute the gradient of H̃q(x, y), denoted ∇H̃q(x, y) =
( ∂H̃q(x,y)

∂x
,
∂H̃q(x,y)

∂y

)
. Then following similar procedures as derived

in Appendix C.1, we find that ∇H̃q(x, y) does not disappear in the interior of R′ for 1 < q < 2. We proceed to consider

the boundary values of H̃q(x, y). If x = 0 or y = 0, then H̃q(x, y) = 0. If x2 + y2 = 1, then

l̃q(x) = H̃q(x,
√

1− x2) 1
4
{(2q − 2)

2
q − [2q − (1 +

√
1− x2)q − (1−

√
1− x2)q ]

2
q − [2q − (1 + x)q − (1− x)q ]

2
q }.

By taking the first derivative of l̃q(x), we find that
dl̃q(x)

dx
= 0 corresponds to x = 1√

2
for 1 < q < 2 and 0 < x < 1. Due to

l̃q(0) = l̃q(1) = 0, l̃q(
1√
2

) determines the sign of function l̃q(x). And we observe l̃q(
1√
2

) > 0 from Figure D1. Therefore, we

have

h2q(
√
x2 + y2) > h2q(x) + h2q(y), (D1)

for 1 < q 6 2. It is necessary to mention that inequality (D1) is strictly greater than if 1 < q < 2, 0 < x, y < 1, and

x2 + y2 6 1.
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Figure D1 The function l̃q(1/
√

2) is nonnegative for 1 < q 6 2.

Appendix D.2 Proof of inequality (9)

Before proving the monogamy relation, we present a property of the function h2q(x).

Proposition D1. The function h2q(x) is monotonically increasing with respect to x for 0 6 x 6 1 and q > 1.

This proposition can be obtained by utilizing the proof of similar approaches with Proposition B1.

Based on the non-negativity of H̃q(x, y) on the domain and Proposition D1, we elaborate that the square of Gq-

concurrence obeys monogamy relation for 1 < q 6 2.

The detailed proof of inequality (9) is as follows:

It is acknowledged that the square of concurrence satisfies monogamy relation and Cq(ρA1|A2···An ) =
√
2

2
C(ρA1|A2···An )

when q = 2, so G2-concurrence obeys the monogamy relation naturally,

C 2
2 (ρA1|A2···An ) > C 2

2 (ρA1A2
) + · · ·+ C 2

2 (ρA1An ).

For any n-qubit pure state |φ〉A1A2···An and 1 < q < 2, we derive

C 2
q (|φ〉A1|A2···An ) = h2q [C(|φ〉A1|A2···An )]

> h2q
(√

C2
A1A2

+ · · ·+ C2
A1An

)
> h2q(CA1A2 )

+h2q
(√

C2
A1A3

+ · · ·+ C2
A1An

)
> h2q(CA1A2

) + · · ·+ h2q(CA1An )

= C 2
q (ρA1A2

) + · · ·+ C 2
q (ρA1An ).

(D2)

Here the first inequality is because the function h2q(x) is monotonically increasing with respect to x, the second and third

inequalities can be gained by iterating formula (D1), the last equality follows from equation (6) in the letter.

Given a multiqubit mixed state ρA1A2···An , we suppose that {pi, |φi〉A1|A2···An} is the optimal pure state decomposition

of Cq(ρA1|A2···An ), that is, Cq(ρA1|A2···An ) =
∑
i piCq(|φi〉A1|A2···An ). Then we see

C 2
q (ρA1|A2···An ) = [

∑
i piCq(|φi〉A1|A2···An )]2

= {
∑
i pihq [C(|φi〉A1|A2···An )]}2

> {hq [
∑
i piC(|φi〉A1|A2···An )]}2

> h2q [C(ρA1|A2···An )]

> h2q(
√
C2
A1A2

+ · · ·+ C2
A1An

)

> C 2
q (ρA1A2

) + · · ·+ C 2
q (ρA1An ),

where the first inequality is assured owing to the convexity of hq(x) and the monotonicity of the function y = x2 for x > 0,

the second inequality is based on the fact that h2q(x) is monotonically increasing and the definition of concurrence, the third

inequality is valid because the square of concurrence satisfies monogamy relation for multiqubit quantum states [10], and

the last inequality can be obtained by using the similar procedures with inequality (D2).
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Appendix D.3 Proof of inequality (10)

Suppose that
∑n
i=3 C 2

q (ρA1Ai ) > C 2
q (ρA1A2

), then one derives

Cαq (ρA1|A2···An ) > [C 2
q (ρA1A2

) + · · ·+ C 2
q (ρA1An )]

α
2

=
(∑n

i=3 C 2
q (ρA1Ai )

)α
2
(

1 +
C2
q (ρA1A2

)∑n
i=3 C2

q (ρA1Ai
)

)α
2

>
(∑n

i=3 C 2
q (ρA1Ai )

)α
2
[
1 +

(
C2
q (ρA1A2

)∑n
i=3 C2

q (ρA1Ai
)

)α
2
]

= Cαq (ρA1A2 ) +
(∑n

i=3 C 2
q (ρA1Ai )

)α
2

> Cαq (ρA1A2 ) + · · ·+ Cαq (ρA1An ).

Here the first inequality holds because C 2
q (ρA1|A2···An ) obeys monogamy relation and y = x

α
2 is a monotonically increasing

function with respect to x for 0 6 x 6 1 and α > 2, the second inequality is according to the inequality (1 + x)
α
2 > 1 + x

α
2 ,

and the last inequality is valid since the relation (
∑
i x

2
i )
α
2 >

∑
i x
α
i holds for 0 6 xi 6 1 and α > 2.

Appendix E Entanglement indicators

Appendix E.1 Proof of τq(ρABC) = 0 if and only if ρABC is biseparable

If a three-qubit pure state |φ〉ABC is biseparable, then its forms might be

|φ〉ABC = |φ〉AB ⊗ |φ〉C ,
|φ〉ABC = |φ〉AC ⊗ |φ〉B ,
|φ〉ABC = |φ〉A ⊗ |φ〉BC ,
|φ〉ABC = |φ〉A ⊗ |φ〉B ⊗ |φ〉C .

We have τq(|φ〉A|BC) = 0 for these states.

Next, the sufficiency is proven. We will illustrate the fact that there is at most one nonzero two-qubit concurrence for

three-qubit pure state if τq(|φ〉A|BC) = 0.

If Cq(ρAB) > 0 and Cq(ρAC) > 0, then we derive

C 2
q (|φ〉A|BC)− C 2

q (ρAB)− C 2
q (ρAC) = h2q [C(|φ〉A|BC)]− h2q [C(ρAB)]− h2q [C(ρAC)]

> h2q [
√
C2(ρAB) + C2(ρAC)]− h2q [C(ρAB)]− h2q [C(ρAC)]

> 0,

which is contradictory to the precondition τq(|φ〉A|BC) = 0, where the second inequality is attained due to h2q(
√
x2 + y2) >

h2q(x) + h2q(y) for 1 < q < 2, 0 < x, y < 1, and x2 + y2 6 1.

If Cq(ρAB) = Cq(ρAC) = Cq(|φ〉A|BC) = 0, then the state may be in the forms |φ〉ABC = |φ〉A ⊗ |φ〉BC or |φ〉ABC =

|φ〉A ⊗ |φ〉B ⊗ |φ〉C .

According to the strict concavity of Tsallis entropy and y = xγ (0 < γ < 1), it is not difficult to show that Gq(ρ) is also

a strictly concave function.

If there is only one nonzero two-qubit concurrence, Cq(ρAB) > 0 or Cq(ρAC) > 0, based on the strict concavity

of Gq(ρ) and by means of similar procedures to that in Ref. [11], we get that the corresponding forms of states are

|φ〉ABC = |φ〉AB ⊗ |φ〉C and |φ〉ABC = |φ〉AC ⊗ |φ〉B , respectively.

Based on the above discussion, we can derive easily τq(ρABC) = 0 for any three-qubit mixed state ρABC iff ρABC can

be expressed in the form ρABC =
∑
i piρ

i
AB ⊗ ρ

i
C +

∑
i qiρ

i
AC ⊗ ρ

i
B +

∑
i riρ

i
A ⊗ ρ

i
BC .

For any n-qubit quantum state ρ, the result that τ iq(ρ) = 0 for 1 < q < 2 iff ρ =
∑
k
pkρ

k
Ai
⊗ρk

Ai
+
∑
j 6=i

∑
k
qjkρ

k
AiAj

⊗ρk
AiAj

can be proved by using analogous procedures to lemmas b and c in supplementary material of Ref. [11].

Appendix E.2 Detection of W state entanglement via τq

There exists a right-neighborhood of one (1, 1 + δ1) and a left-neighborhood of two (2 − δ2, 2) such that τq(ρ) is strictly

greater than zero but very close to zero. For clarity, we discuss in the interval [1 + δ1, 2− δ2].

Example 2. For n-qubit W state |Wn〉A1···An =
|10···0〉+|01···0〉+···+|00···1〉√

n
, its concurrence between subsystems A1 and

A2 · · ·An is C(|Wn〉A1|A2···An ) = 2
√
n−1
n

, C(ρA1Aj ) = 2
n

, j = 2, · · · , n, then we have

τq(|Wn〉) =
[
1−

( 1+n−2
n

2

)q − ( 1−n−2
n

2

)q] 2q − (n− 1)
[
1−

( 1+√n2−4
n

2

)q − ( 1−√n2−4
n

2

)q] 2q .
Taking n = 3, 6, 9 and plotting them in Figure E1, we observe τq(|Wn〉) is greater than zero obviously for q ∈ [1.05, 1.95].
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Figure E1 The red line, blue line, and green line correspond to τq(|Wn〉) with n = 3, 6, 9, where q ∈ [1.05, 1.95].
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