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Appendix A G -concurrence

Appendix A.1 The comparison between G,-concurrence and g-concurrence

Compared with g-concurrence [1], we elaborate on the merits of G4-concurrence from the following two aspects:
(1) The Gg4-concurrence exhibits better normalization. For instance, given the maximally entangled state |¢) = (]00) +
[11))/+/2 and calculating its G4-concurrence and g-concurrence, we find that €, (|¢)) is closer to 1, as shown in Table Al.

Table A1 For the maximally entangled state |¢) , its g-concurrence Cq(|¢)) and Gg-concurrence €4 (|¢)) with some
specific parameters ¢ are given. Here four decimal places are retained.

— [00)+[11)
- V2

q Cq(19)) Cq(l9))
5.5 0.9558 0.9918
6.0 0.9688 0.9947
6.5 0.9779 0.9966
7.0 0.9844 0.9978
7.5 0.9890 0.9985
8.0 0.9922 0.9990
8.5 0.9945 0.9993
9.0 0.9961 0.9996

(2) The Gg-concurrence has a relatively high sensitivity, which can amplify minute differences in weakly entangled
states and enable efficient discrimination of weakly entangled states. For example, consider the quantum state |¢p) =
V1 —€|00) + +/€|11), 0 < € < 0.05, its Gg-concurrence and g-concurrence are plotted in Figure Al when g = % We observe
that for the minor differences of weakly entangled states, the variation range of G4-concurrence is larger and its sensitivity
is stronger, which makes it more conducive to characterizing the entanglement characteristics of quantum states.

Appendix A.2 Faithfulness

Faithfulness is an essential property for entanglement quantifiers, which can clearly distinguish bipartite quantum states
into two categories, entangled states and separable states. Next we demonstrate that G4-concurrence is faithful.

Proposition Al. For any bipartite quantum state pap, we have ¢43(pap) = 0 for ¢ > 1, the equality holds if and only
if (iff) pap is a separable state.
Proof. 1Tt is obvious that 63(pap) > 0 since Tr(p%) <1 for ¢ > 1.

Next, we first prove the equality is true iff |¢) ap is a separable state. If a pure state |¢) ap is separable, then we can
get Tr(p%) = 1, which leads 6, (|¢) ap) = 0. Conversely, let |¢) ap = >_; V/Ailia)|iB), one has the reduced density operator
pa =D ; Ailia)(ial. If €4(|¢) ap) = 0, then the Schmidt number of |¢) 4p must be one due to 0 < X\; <1 and g > 1, i.e,
|¢)aB = |ia)|iB), hence the pure state |¢) 4p is separable.

For any separable mixed state p4p with the pure decomposition {p;, |¢:)aB}, €4(paB) < 3, Pi€q(|$i) aB) = 0, owing
to the nonnegativity of ¢4(pap), we have €4(pag) = 0. On the contrary, if €4(pap) = 0, according to the definition of
Ggq-concurrence, one has €4(|¢i)ap) = 0 for any ¢, which is equivalent to |¢;) ap being separable for every ¢, so pap is
separable.

To sum up, 64(pap) > 0 for all entangled states and €4(pap) = 0 for all separable states.
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Figure A1l For the quantum state |¢) = /T — €[00) ++/2|11), 0 < € < 0.05. Set ¢ = 2, the red (upper) line is the G4-concurrence
of |¢), the blue (lower) line represents the g-concurrence of |¢).

Appendix A.3 Monotonicity under LOCC and invariance under local unitary transforma-
tion

Vidal [2] put forward the only necessary condition on the entanglement measure should be that entanglement does not
increase under local operation and classical communication (LOCC). We verify that Gg-concurrence obeys this requirement.

Proposition A2. Let pap be any bipartite state, the G4-concurrence is non-increasing under LOCC operation Ar,occ,
ie., ¢4[ALocc(paB)] < €q(pan)-

Proof. The state |¢) can be prepared from the state |¢) using only LOCC iff the vector qu majorizes Xw (ti < X¢), where
Xsp (X¢) is the Schmidt vector given by the squared Schmidt coefficients of the state |¢) (]¢)) and arranged in non-increasing
order [3]. A function E is monotone on pure state iff it is Schur concave as a function of spectrum of subsystem, which
is equivalent to the following two conditions [4]: (a) E is invariant under any permutation of two arguments; (b) any two

components of X, \; and Aj, satisfy (A; — )\j)(% - %) <0.
i J

We first show that the function €, (|¢)) is non-increasing under LOCC with respect to any bipartite pure state |¢) using
1

the methods described above. Let €;(|¢)) = f(A1, A2, -+, q) = (1 — Zle A)a, where A1, Az, -+, Aq are the square of
Schmidt coefficients of |¢) and satisfy Ay > A2 > .-+ > 4. It is easy to get that €, (|¢)) is invariant when any two arguments
A; and A; of the vector Ay permute, and

06, 96
(=) (52 - 530)

d gy —-1yg-1 d gy T-1yq-1
(>\i_)‘j)[(1_l§>\l)q >‘j _(l_lg:lkl)q >‘¢' ]

4 gylo1,g-1 q—1
(/\i_)‘j)(l_l;Al)q (Aj -A70)

< 0.

Thus, we conclude that €;[ArLocc(|¢))] < €q(|0)).

Adopting the convexity of 6;(pap) and the monotonicity of €4 (|¢)), we can obtain the result that G¢-concurrence does
not increase under LOCC for any bipartite mixed state.

It is known that local unitary transformations belong to the set of LOCC operations and are invertible [5]. From
Proposition A2, we proceed directly to the following conclusion.

Proposition A3. For any bipartite quantum state pap, 64(pap) is invariant under any local unitary transformation,
Le., G(pap) = 6q(Ua @ UgpapUl @ UL).

Appendix A.4 Entanglement monotone

Before proving the strong monotonicity of Gg-concurrence, let us present a lemma.

Lemma A1l. The function

Galp) = (1 — Trpo)a, (A1)

is concavity for any density operator p and ¢ > 1.
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Proof. Let p,o be two arbitrary density operators, we derive

GqOp+po) = [1— Tr(Ap+ ylo)qﬁ o
{1~ [A(Txp?) ¥ + u(Tro) 4]} 6

>
1
> [1 — (ATrp? + puTro?)]a
1 I a2)
= A1~ Top?) + (1 — Teo?)] &
1 1
> (L= Tep?) s + (1 — Tro®)s

AGq(p) + pGq(o),

1 1 1
where the first inequality can be obtained based on Minkowski’s inequality [Tr(p + 0)?]e < (Trp?)4a + (Tro9) ¢ with ¢ > 1,
the second inequality holds because the function y = z? is convex for ¢ > 1, and the third inequality is due to the concavity
ofy=2aY for 0 <~y < 1.

Proposition A4. For any bipartite state pap, the G¢-concurrence is an entanglement monotone, namely,

Ca(paB) = D2 pitq(oi), (A3)

where the ensemble {p;,o;} is yielded after Apocc acting on pap.

Proof. Vidal [2] showed that an entanglement quantifier E obeys strong monotonicity if it satisfies the following two
conditions: (c) g(UpaUT) = g(pa) and g is a concave function, where E(|¢)ap) = g(pa) and pa = Tru(|¢){#]); (d)
E is given by convex roof extension for arbitrary mixed states. It is obvious that %5 (pap) meets these conditions from
Proposition A3, Lemma A1, and the definition of 4(pap). Therefore, the formula (A3) holds.

Appendix A.5 Convexity

According to the definition of €;(pap), the following result can be reached.
Proposition A5. The G4-concurrence is convex on quantum state pap, that is, €;(paB) < > ; pﬂo”q(p’AB), where
PAB = >_;PiPup, 2;Pi = 1, and p; > 0.

Appendix A.6 Subadditivity

Proposition A6. The Gg4-concurrence is subadditive, i.e., €4(pap @ caB) < C4(paB) + Cq(caB).
Proof. Before proving subadditivity, we first show the inequality (a + b)? < a® 4 b# holds for 0 < a,b<1and 0 < 8 < 1,
which is equivalent to

b
(257 + (s55)% > 1. (A4)
When 0 < 21,22 < 1 and 1 + x2 = 1, we have xf > x1 and :cg > x9, and this goes directly to inequality xf + xg > 1. Let
z1 = %3 and z2 = aLer’ the formula (A4) can be obtained.

For any two pure states |¢) ap and |¢)ap, then we can see

1
Cq(|¢)aB ® l@)aB) = (1 — Trp% Trs%)a
1
(1 —Trp% +1 —Tré%)a
1 1
(1—=Trp%)a + (1 —Tré%)a
Ca(l9)aB) + Ca(lp) aB)-

(A5)

NN

Here pa and d4 are respectively the reduced density matrices of |¢) ap and |p)ap, the first inequality holds because
Cq(|¢)aB) = 1—Tr(pY%) satisfies subadditivity [6], the second inequality can be obtained according to the relation (a-+b)# <
af +bP for0<a,b<land 0< B < 1.

The subadditivity of Gg¢-concurrence for any bipartite mixed state can be verified based on the convexity of €4(par)
and the relation derived in inequality (A5).

Appendix B Analytic formula
Before proving equation (6) in the letter, we first present two fundamental properties of hq(z).
Appendix B.1 Two fundamental properties of h,(z)

Proposition B1. The function hq(x) is monotonically increasing with respect to x for ¢ > 1.
Proof. 'This proposition is true if the first derivative of hq(z) is nonnegative. Then we derive

dhg(x) _ 2%[1 _ (1+\/21—:c2)q _ (1—\/1—;52),;]%—1 x[(1+\/1—x2)Q*l—(1—\/1—x2)ﬁﬁ1]_

dx 2 1—22

%ﬂi@ > 0for 0 < z < 1 and ¢ > 1. Therefore, we can say hq(x) is monotonically increasing for

_1
2q—1

Obviously, there is

1
0 < z < 1 owing to the fact that hg(z) is continuous. This makes that hq(0) = 0 and hq(1) = (1 — )4 correspond,

respectively, to the minimum and maximum of hq(x) for the given parameter q.
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M(z,q)

Figure B1 The function M(z, q) is illustrated for 0 < z < 1 and 2 < g < 5.

Proposition B2. The function hq(x) is convex with respect to « for 1 < ¢ < 2.
Proof. This proposition is valid if the second derivative of hq(z) is nonnegativity. By derivation, we obtain

2 /1—22 —/1—22 1_
d“hg(x) :2%[17(1+ 21 )qi(l \/21 )a]a 2M(

da? Z,q),

where M(z,q) = &1 + &2(€3 — &4) with
£ = g (20VIe) 1 (1) g
24 /1—22 ’
§2= 1 — (FG=)e — (A=,
— -2 —
£3 _ (1+\/1171x22)q [1+\/1I;¢2 _ x2(q _ 1)],

V1
1—/1—22)272 1—4/1—22
b= U 02— 1),
2
We observe that judging the sign of d 5;2@) is actually equivalent to judging the sign of M(z,q) because the term in front
— 2
of M(z,q) is positive for 0 < x < 1. If the term % V11: —22(g—1) in &3 is non-positive, then there must be M(x,q) < 0
—x
since &1 < 0, &2 > 0, £3 — &4 < 0 for 0 < x < 1. By means of the result in Ref. [7], we deduce directly there is z € (0,1)
2
such that %"2@) < 0 for ¢ > 5. In addition, when 2 < ¢ < 5, we can get that hg(z) is also not a convex function from

Figure B1. Especially, when ¢ takes 3 and 4, h3(z) and ha(x) are respectively
2 /822 14
h3(z) = %/%mfi and hq4(z) = %.

Obviously, they are concave functions of z. Consequently, hq(x) is not a convex function for ¢ > 2.

In particular, when ¢ = 2, ha(z) = % is a function that is both convex and concave.

Let us now show that hg(z) is a convex function on z € [0, 1] for 1 < ¢ < 2, that is, prove that the minimum of M (z, q)
is nonnegative. It is acknowledged that the minimal value can only be generated at critical points or boundary points since
M(z,q) is continuous.

We first discuss whether there are critical points of M(z, g) in the region R = {(z,¢)|0 < x < 1,1 < ¢ < 2}. The gradient
of M(z,q) is

15} z, OM (z,

ang’q) and 8M8(:’Q) are the first partial derivatives of M(z,q) with respect to = and g, respectively.

OM (=,q)
7]

where

The point (zo, go) is a critical point if VM (zo, go) = 0. However, = 0is unsolvable for 0 < x < land 1 < q < 2,
as shown in Figure B2. This suggests that there is no critical point of M(z, ¢) in the region R and the maximal and minimal
values of M(z,q) can be respectively obtained at the boundary points z = 1 and = 0 for given ¢. Through tedious
calculations, we get

lim M =
lim M(z,q) =0,
—12(q% —3¢%+3¢—1)+(29-2)(—2¢>+12¢%> —16¢+6)
3x24 :

lim M(z,q) =
z—1

The solutions of lim1 M(z,q) = 0 only rise at ¢ =1 or 2 for 1 < ¢ < 2, lim1 M (z,q) is strictly positive for 1 < ¢ < 2, as
xr—r xr—r

<
shown in Figure B3. Therefore, one sees M(z,q) >0for0 <z <land 1 <qg<2.
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Figure B2 This diagram shows the solution for W =0. Figure B3 The function ilgll M (z, q) is plotted for 1 < g < 2.
2
Based on the above analysis, we can directly obtain %‘Zéz) > 0 in the region R. We proceed to discuss the second
2
derivation %‘12@) at the points = 0 and = = 1, and get
oy Che(®) _
A Taz oo
d2hg(z) _ (29-2) =
. q x _ — .
Q%L)rrll dx?2 - 21—gq Q!L)rrll M(I7q)
d*hg (@)

This makes — %~ > 0 for z € [0, 1] and ¢ € (1,2).
To sum up, the function hg(x) is convex for 1 < ¢ <2 and 0 <z < 1.
Based on propositions B1 and B2, we provide the proof of equation (6) below.

Appendix B.2 Proof of equation (6)

Let |¢)ap be a pure state on Hilbert space H? @ H? (d > 2) (or especially be a two-qubit pure state with Schmidt
decomposition |p)ap = Z?zl VAilit) aB), its Gg-concurrence is expressed as

1
a(I$)ap) = (1= A = Xj)q,
and its concurrence is
C(l9)aB) = 2V A1 2.

Moreover, it is easy to obtain that for any 2 ® d pure state there is an analytic function that relates G¢-concurrence (¢ > 1)
to concurrence, namely,

%q(1#)aB) = hq[C(I¢) aB)]; (B1)

where hq(z) is

ha(w) = [1 — (HV1=e2ye _ (1=viza? gy

for0 <z <1.
For any 2 ® d mixed state pap, let {p;,|¢p;)} be the optimal pure state decomposition of €;(pap), then one has

Gq(pan) =2 Pitq(|9i)
=22 pihq[C(144))]
> hq[22;piC(|9:))]

> hq[C(paB)],

where the first inequality is due to the convexity of hq(x) for 1 < ¢ < 2 and the second inequality follows from the
monotonicity of hg(x) for ¢ > 1.

Hill and Wootters [8] pointed out that there is an optimal pure state decomposition {p;, |¢;)} for any two-qubit mixed
state pap such that the concurrence of each pure state is equal. Based on this assertion, one derives

hqlClpaB)] = hq[32; PiC(1¢:))]
=32, pihq[C(|¢i))]
=32, pi%q(|9:))
> 64(paB),
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where the inequality holds according to the definition of €4 (paB).
Therefore, the equation (6) in the letter is true for any two-qubit mixed state.

Appendix B.3 G -concurrence and concurrence are not equivalent for ¢ # 2

We provide a concrete example to state that the pure state decomposition used to calculate the concurrence is not necessarily

the same as the one used to compute the G¢-concurrence when q # 2.

Example 1. Consider a quantum state pap = p|®+)(®+| + (1 — p)|01)(01], where |®F) = %, 0<p<1

By calculation, we obtain C(|®1)) = 1, C(|01)) = 0, and C(pag) = p, so {p,|®T);1 — p,|01)} is the optimal pure

( 14++4/1—p? )% _
2

state decomposition to calculate the concurrence. Let q = %, by Theorem 1, we have €3 (pap) = [1 —
2

(AV3722) 315, whereas €3 (pag) < p€3 (107)) + (1~ p)€3(101)) = pl1 — 2 x (3)2]5, which means {p, |27);1 — p, 01)}

is not the optimal pure State decomp051t10n to calculate the G4-concurrence.

Appendix C Polygamy relation
To facilitate the proof of polygamy relation, we consider a function of two variables
Hy(z,y) = hq(v22 +y2) — hq(z) — hq(y),
on the region R’ = {(z,y)|0 < z,y,2% +y%> <1} for 1 < g < 2.
Appendix C.1 Proof of the non-positivity of H,(z,y) on the domain

For the case ¢ = 2, by simple calculation, we have Ha(z,y) < 0.

Since Hy(z,y) is continuous on bounded closed set R, it can take maximal and minimal values for given ¢, which occur
only at critical or boundary points. First, we determine whether there are critical points in the interior of R’ by taking the
first partial derivative of Hq(z,y), its gradient is

qu(ma y) = (aH%(z$7y)’ 8Hq(:c,y))

where

OHy(z,y) _ o 1 1+/1-a2—y2 1-V/1-a2—y2\, %71(1+\/1—z2—y2)q71—(1—\/1—12—y2)(171
ox - 27{[ 7( 2 ) 7( 2 )} V1I—z2—y2

1+v/1-22 4 1— 1 22 e -1 (1+y1-2)? 7 —(1-/1-22)9"!
- (F)1—( ) a e 8
OH (r.0) _ 2%{[1,(1+@)q,(1— = -1 0T T

oy \/1 z2—y2
i (HVIw2 g 1- \/ 11a4y/1-yHe! (1 Vi-y2)it
- (%)= ( ) £ }-

1—-y2

Assume that there is (zo,y0) € {(z,9)[0 < z,y,22 + y? < 1} such that VHg(xo,y0) = 0, and we observe that
VHy(zo,y0) = 0 is equivalent to

fa(zo) = fq(yo),

where the function fq(¢) is

alt) = [1 = (= — (e~ OB UVA T

1—t2

Then we evaluate the first derivative of fg(t),

Yo®) _y (LI ye (1o Im2 0152 ),

where Wt q) = qq 14/ 1—62) 71~ I:S_M)q . (1+\/2@)q _ (1— 2l—t2 )]

[(1+\/1§)q 2 (t(lg) —tq—1) - (1—\/1§)‘1*2 (t(lg) +t(g—1))].
Combining Figure C1, lim M(L q) = 0, and lim M(t, q) = 0, we can see M(t,q) <0forl<g<2and0<t< 1 This
implies dfq(t) <O0forl<g<2and0<t<1,namely, fq(t) is a strictly monotonically decreasing function with respect to

t for given q, 50 fq(z0) = fq(yo) means zg = yo. If qu(l’y) (20,50) = 0 and zg = yo > 0, then f(v220) = fq(w0), which

contradicts to the strict monotonicity of fg(t). Hence Hq (x y) has no vanishing gradient in the interior of R’.
Next we discuss the boundary values of Hy(z,y) in region R’. If x = 0 or y = 0, then Hy(x,y) = 0. If 22 4+ y2 = 1, then
Hy(z,y) can be reduced to

lo(2) = Hyle, VT— %) = L{(29 - 2)7 — [20 — (1 + V1= 22)7 — (1 - VT —22)9] 7 — [20 — (1 +2)7 — (1 - 2)7] 7 }.
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Figure C1 The M(t, q) is plotted as a function of t and q for Figure C2 The function l4(1/v/2) is non-positive for 1 < ¢ <
t € (0,1) and q € (1,2). 2.

For the sake of judging the sign of l4(z), we calculate its first derivative

x 114 —x “1_(1— —T -1
o) = L{—fp0— (14 VI= 2B — (1 — VT= B~ el OV imah

29— (14 2)7 = (L= )70 (1 — @) = (L),

where dl;im = 0 corresponds to z = % on 0 < z < 1. Since 14(0) = l4(1) = 0, the sign of function l4(x) is determined by

1 1 . . . .
lq(%) = 1{(27 —2)a —2[29 — (1 + %)q —(1- %)q] 7}. We plot lq(%) in Figure C2 and obtain that lq(%) is always
non-positive for 1 < g < 2.
Therefore, we have

hg(V@? +y?) < hy(x) + hy(y), (C1)

for 1 < ¢g<2and (z,y) € R.
Next, by virtue of the inequality (C1), we consider polygamy relation in multiqubit systems based on G4-CoA.

Appendix C.2 The relation between G-CoA and CoA

We establish the relation between Gg4-concurrence of assistance (G4-CoA) and concurrence of assistance (CoA).

Lemma C1. For two-qubit state p4p, there is

hq[C*(paB)] < 65 (paB), (C2)

where 1 < g < 2.
Proof. Let {p;,|p:)} be the pure state decomposition of p4p such that C*(pap) = >, piC(|w;i)), then one sees

hq[C*(paB)] = hql32; PiC(l@i))]
< 22 pihg[Clei))]
=22 pi%q(lei))
<65 (paB),

where the first inequality is due to the convexity of hq(z) for 1 < ¢ < 2 and the second inequality is assured according to
the definition of €' (paB).

Appendix C.3 Proof of inequality (8)

It is well-known that the square of CoA satisfies polygamy relation for n-qubit pure state |¢) 4, a,...4,,, which reads [9]

C2(16) a4 4n) < (€%, 4))2 4+ +(CG, 4 )2, (C3)

where C(|¢) 4,|45...4, ) is the concurrence of |#) 4, a,...4,, under bipartite splitting A1]|Az - An, and CZMAJ' is the CoA
of reduced density operator PA A T =2, . Based on Hy(x,y) < 0 (see Appendix C.1), formulas (C2) and (C3), we
will show the polygamy relation of n-qubit state in terms of G4-CoA.

The detailed proof of inequality (8) is as follows:



Sci China Inf Sci 8

On the one hand, if (CA1A2)2 + et (Cj}hA )2 < 1 for any multiqubit pure state [¢) 4, ...4,,, then one has
Cq(|9) ar1a5--4,) = hqlCI) 411 4,.-4,)]

haly /(O 4,)2 + -+ (C4,4,)°]

ha(CY 4,) + hq[\/(cg‘lAs)z +o (0%, 4 )]

N

N

(C4)

hg(C, a) + -+ ha(CY 1)
Cq(payay) +- -+ C5(paa,)-

Here the first inequality holds according to the formula (C3) and Proposition B1, the second inequality is true based on
formula (C1), the penultimate inequality is obtained by iterating formula (C1), and the last inequality can be gotten from
the formula (C2).

On the other hand, if (C’f}hA2)2 “+(Cq, 4, )2 > 1, then there is some j such that (Cq, A2)2 (leA )2 <1,

NN N

whereas (Cj1A2)2 +o 4 (CghAj-H) > 1, where 2 < j < n. Let

5= (C%1A2)2 Tt (ngl“‘j-%—l)2 -L
then one reads

Cq(19) A11A2---4,) = hqlC() A1 1A5--A,)]

< hq( )

R Y o
< h [\/ A1 As 2+"'+(C,‘31A )2] + hql (CIZIAHI)Z_S]

< h ( A1A2) '+hq(Cf}x1A )+hq(0i1Aj+1)

< Gg(paja,) +-+ 65 (paja,)

Here the ideas of proving these inequalities are consistent to that of proving the inequality (C4) above.
Let pa; A,...4, be a multiqubit mixed state and {p;, \qﬁi)Al |A2”'An} be the pure state decomposition of pa, a,...4, such
that €5 (pa,|As---4,) = 2_; Pi%q(|#i) A, |A5-.. 4, ). Then one has

C5(PAL|AsAp) = sz a(|Pi) aqjas--An)
< Zpi[‘fq (Pla,a,) T+, a,)]
= 206l a,) + o+ L piE (P, a,)

< Cgpaja,) +- -+ 67 (paja,)

(C6)

Here prllAv is the reduced density matrix of |¢;) 4, 4,...4,, With respect to A1 Aj;, the first inequality can be derived by
J
inequalities (C4) and (C5), and the second inequality follows the definition of G¢-CoA.
Combining inequalities (C4), (C5), and (C6), we get the polygamy inequality is valid for any n-qubit quantum state.

Appendix D Monogamy relation

In order to prove that the square of G¢-concurrence obeys monogamy relation, we first define a function
Hoy(w,y) = h2(v/2% + %) = h2(x) — hi(y),
on the region R’ = {(z,y)|0 < x,y, 22 +y2 <1} for 1 < ¢ < 2.

Appendix D.1 Proof of the non-negativity of PNIq(%y) on the domain

For the special case ¢ = 2, it is easy to get Ha(z,y) = 0, namely, h2(V/22 +y2?) = hi(z) + h3(y). For 1 < ¢ < 2, we

(qu(w ) 9Hq(z,y)
ox ’ oy

in Appendix C.1, we ﬁng that Vﬁq(m, y) does not disappear in the interior of R’ for 1 < g < 2. We proceed to consider
the boundary values of Hq(z,y). If z =0 or y = 0, then Hy(x,y) = 0. If 22 + y? = 1, then

compute the gradient of lEIIq(av7 y), denoted Vﬁq(x, y) = ). Then following similar procedures as derived

Ty(@) = Hylo, VT—a?)1{(27 - 2)7 —[20 = (1 + VI —22)7 — (1 - VI —22)1]7 — [20 — (1 + 2)7 — (1 — 2)1] 7 }.

dlq(l)

By taking the first derivative of lq(x) we find that = 0 corresponds to z = 7 for1 <g<2and0<a <1. Dueto
) =

lq(O) = lq( )=0, lq(%) determines the sign of functlon lq(:p) And we observe lq(T 0 from Figure D1. Therefore, we

have
ha(vVa? +y?) > hi(x) + hi(y), (D1)
for 1 < ¢ < 2. It is necessary to mention that inequality (D1) is strictly greater than if 1 < ¢ < 2, 0 < z,y < 1, and
2 2
¢ +y° < 1.
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Figure D1 The function qu(l/\/ﬁ) is nonnegative for 1 < g < 2.

Appendix D.2 Proof of inequality (9)

Before proving the monogamy relation, we present a property of the function h3 ().

Proposition D1. The function h§ (z) is monotonically increasing with respect to z for 0 < <1 and ¢ > 1.
This proposition can be obtained by utilizing the proof of similar approaches with Proposition B1.

Based on the non-negativity of ﬁq(x,y) on the domain and Proposition D1, we elaborate that the square of Gg-
concurrence obeys monogamy relation for 1 < ¢ < 2.

The detailed proof of inequality (9) is as follows:

It is acknowledged that the square of concurrence satisfies monogamy relation and €g(p4, |As Ay = @C(pA1 ‘AzmAn)
when g = 2, so G2-concurrence obeys the monogamy relation naturally,

C3(PAy|AsAy) 2 Ca(payay) + - +CF(pasa,)-

For any n-qubit pure state [¢) 4, 4,...4,, and 1 < ¢ < 2, we derive

C2(10)Ay145-a,) = h2[C(1D) a1 45--4,,)]
hg(\/cfxlAQ +o+Cha,)
h2(Caya,)

+hg(\/C§,1A3 ++C%a,)
RZ(Caas) + -+ +h2(Caya,)
= C2(payay) + -+ C2(paLa,)

>
>

WV

Here the first inequality is because the function hg (z) is monotonically increasing with respect to z, the second and third
inequalities can be gained by iterating formula (D1), the last equality follows from equation (6) in the letter.

Given a multiqubit mixed state pa, ,...4,, , We suppose that {p;, |¢:) 4, \AzmAn} is the optimal pure state decomposition
of €q(pa,|ag-.a,)s that is, Cg(pa,|ag...a,) = 2i PiCa(|Pi) Ay Ay 4, ). Then we see

C2(PAL|AzAn) = [22i Pi%a(lDi) ay)ag- a0 )]

= {3 pihg[C(I6:) Ay Az a1}
{ha[>; piC(19i) Ay Ay 2,1}
RZ[C(pas|ay--a,)]
h2(,/C3 4, -+ CRa,)
G2 (paray) + -+ 67 (pasa,);

AR\

WV

where the first inequality is assured owing to the convexity of hq(z) and the monotonicity of the function y = x2 for > 0,
the second inequality is based on the fact that hg (z) is monotonically increasing and the definition of concurrence, the third
inequality is valid because the square of concurrence satisfies monogamy relation for multiqubit quantum states [10], and
the last inequality can be obtained by using the similar procedures with inequality (D2).
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Appendix D.3 Proof of inequality (10)

Suppose that 1 s 62(pa,4;) = G2 (pa, A,), then one derives

Ce(PALAsAy) = (€7 (Payay) +- (v” (paa,))2 N
= ( (pAl )) (1 + %) 2
> < Cq(paya; )) [1 + (M)
)+
)+

[N)
[—

Cq(Paya;)

(zz 2 oaa)?
+E5(pasa,)-

= G (pay A,

G (pay A,

Here the first inequality holds because ‘ta”q2(p Ap|Ag-- 4,,) obeys monogamy relation and y = % isa monotonically increasing

function with respect to = for 0 < z < 1 and a > 2, the second inequality is according to the inequality (1 + m)% > 1+ z%,
and the last inequality is valid since the relation (3, 13)7 > >, x% holds for 0 < z; <1 and a > 2.

Appendix E Entanglement indicators
Appendix E.1 Proof of 7,(papc) =0 if and only if pspc is biseparable

If a three-qubit pure state |¢) o pc is biseparable, then its forms might be

o) aBc = |#)aB ® |$)c,
|#)aBc = |#)ac ® 1) B,
|9)aBc = |#)a @ |$)BC,
|#)aBc = |#)a ® |$)B @ |¢)C

We have 74(|¢) 4)c) = 0 for these states.

Next, the sufficiency is proven. We will illustrate the fact that there is at most one nonzero two-qubit concurrence for
three-qubit pure state if 74(|¢) 4|pc) = 0.

If €4(pap) > 0 and G4(pac) > 0, then we derive

C2(|19)ajpc) — C2(paB) — C2(pac) = h2[C(18) a1c)] — h2[C(paB)] — hZ[C(pac))
> h2[\/C2(pap) + C?3(pac)] — h2[C(par)] — hZ[C(pac)]
> 0,

which is contradictory to the precondition 74(|¢) 4|5c) = 0, where the second inequality is attained due to h2(\/x2 +y2) >
hg(x)—&-hg(y) for1<qg<20<z,y<1,and 22 +y% < 1.

If ¢4(paB) = €q(pac) = 64(|9) aBc) = 0, then the state may be in the forms |p)apc = |[#)a ® |9)BC or |$)aBc =
[$)a ®[9)B ®|d)c

According to the strict concavity of Tsallis entropy and y = 7 (0 < v < 1), it is not difficult to show that G4(p) is also
a strictly concave function.

If there is only one nonzero two-qubit concurrence, %4(pap) > 0 or %4(pac) > 0, based on the strict concavity
of G4(p) and by means of similar procedures to that in Ref. [11], we get that the corresponding forms of states are
|#)aBc = |$)aB ® |$)c and [¢p)apc = |9)ac ® |¢) B, respectively.

Based on the above discussion, we can derive easﬂy Tq (pABC) = 0 for any three- qublt mixed state papc iff papc can
be expressed in the form papc = 3, piph g ® pb + 3, Girhho ® P + >, Tiph ® Pl

For any n-qubit quantum state p, the result that Tq( )=0forl<g<2iffp= zk:pkpAi ®p%+ %; zk: qipiiAj ®‘O%Aj

i i i i A

can be proved by using analogous procedures to lemmas b and ¢ in supplementary material of Ref. [11].

Appendix E.2 Detection of W state entanglement via 7,

There exists a right-neighborhood of one (1,1 + 1) and a left-neighborhood of two (2 — d2,2) such that 74(p) is strictly
greater than zero but very close to zero. For clarity, we discuss in the interval [1 + 61,2 — d2].
_ |10---0)4]01---0)4---4]00---1)

n

Az Ap is C(IWn) a4y 4,) = 27‘2_1, Clpa,a;) = %, j=2,---,n, then we have

Example 2. For n-qubit W state |Wn)a,...a, , its concurrence between subsystems A; and

n—2 n2—4 n2_4

r(Wa)) = 1= (F550)7 = (A550) )5 — (- 1 - (F5 )1 - ()75,

Taking n = 3,6,9 and plotting them in Figure E1, we observe 74(|Wy)) is greater than zero obviously for ¢ € [1.05,1.95].
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Figure E1 The red line, blue line, and green line correspond to 74(|W,)) with n = 3,6,9, where ¢ € [1.05,1.95].

References

1

DU W N

=
= O © 0

Yang X, Luo M X, Yang Y H, et al. Parametrized entanglement monotone. Phys Rev A, 2021, 103: 052423

Vidal G. Entanglement monotones. J Mod Opt, 2000, 47: 355-376

Mintert F, Carvalho A, Kus M, et al. Measures and dynamics of entangled states. Phys Rep, 2005, 415: 207-259

Ando T. Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl, 1989, 118: 163-248
Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865-942

Shi X. A genuine multipartite entanglement measure generated by the parametrized entanglement measure. Ann Phys, 2023,
535: 2300305

Kim J S. Tsallis entropy and entanglement constraints in multiqubit systems. Phys Rev A, 2010, 81: 062328

Hill S A, Wootters W K. Entanglement of a pair of quantum bits. Phys Rev Lett, 1997, 78: 5022-5025

Gour G, Bandyopadhyay S, Sanders B C. Dual monogamy inequality for entanglement. J Math Phys, 2007, 48: 012108
Osborne T J, Verstraete F. General monogamy inequality for bipartite qubit entanglement. Phys Rev Lett, 2006, 96: 220503
Bai Y K, Xu Y F, Wang Z D. General monogamy relation for the entanglement of formation in multiqubit systems. Phys Rev
Lett, 2014, 113: 100503


https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.052423
https://www.tandfonline.com/doi/abs/10.1080/09500340008244048
https://www.sciencedirect.com/science/article/pii/S0370157305002334?via
https://www.sciencedirect.com/science/article/pii/0024379589905806?via
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.865
https://onlinelibrary.wiley.com/doi/10.1002/andp.202300305
https://onlinelibrary.wiley.com/doi/10.1002/andp.202300305
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.062328
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.5022
https://pubs.aip.org/aip/jmp/article/48/1/012108/290568/Dual-monogamy-inequality-for-entanglement
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.220503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.100503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.100503

	Gq-concurrence
	The comparison between Gq-concurrence and q-concurrence
	Faithfulness
	Monotonicity under LOCC and invariance under local unitary transformation
	Entanglement monotone
	Convexity
	Subadditivity

	Analytic formula
	Two fundamental properties of hq(x)
	Proof of equation (6)
	Gq-concurrence and concurrence are not equivalent for q=2

	Polygamy relation
	Proof of the non-positivity of Hq(x,y) on the domain
	The relation between Gq-CoA and CoA
	Proof of inequality (8)

	Monogamy relation
	Proof of the non-negativity of H"0365Hq(x,y) on the domain
	Proof of inequality (9)
	Proof of inequality (10)

	Entanglement indicators
	Proof of q(ABC)=0 if and only if ABC is biseparable
	Detection of W state entanglement via q


