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In large-scale multiagent systems (MASs), partial observ-
ability poses a notable challenge. When agents process ex-
tensive local information, global information scarcity, and
high computation complexity arise [1]. To address the par-
tial observability, researchers have adopted the partially ob-
servable Markov decision process (POMDP) as a mathe-
matical framework to simulate and analyze agents’ decision-
making process.

To address partial observability in multiagent reinforce-
ment learning (MARL), we employ the recursive struc-
ture of recurrent neural networks (RNNs) to process se-
quential information in a decentralized partially observable
Markov decision process (Dec-POMDP) [2,3]. We propose
an MARL model with a recurrent Dec-POMDP, in which
RNN-generated hidden states replace real states, and prove
that the hidden states effectively support rational decision-
making under partial observability. The contributions of
this study are as follows.

e We propose an MARL model with a recurrent decen-
tralized partially observable Markov decision process (RDec-
POMDP) and demonstrate that agents make better deci-
sions using hidden states than real states.

e Within the RDec-POMDP framework, we propose an
MARL method with quantified information-decision content
measurement (QICM), integrating prioritized experience re-
play (PER) and temporal-difference learning.

Problem formulation. It is known that RNNs are well-
suited for partially observable problems [4]. Inspired by this,
we model fully cooperative MARL tasks as RDec-POMDP,
leveraging the recursive nature of RNN to obtain hidden
states.

RDec-POMDP is represented by a tuple G =
(S,U,P,R, X, Z,0,n,v,H). The detailed definitions and
explanations of each component are provided in Appendix B.

We outline four main properties of RDec-POMDP. (1) At
any time step t, the true state is a function of the true state

at time step ¢t — 1, and new information is updated at time
step t. The hidden state is updated recursively, with the his-
tory information of the hidden state updated and accumu-
lated by RNNs. (2) The transition probability P to the next
real state depends only on the current real state and action,
independent of the hidden state. (3) When the information
distribution X is known, the observation o is conditionally
independent of action w, such as p(o | z,u) = p(o | z), with
(4) Given the
statistic f(h) and action u, the joint probability of reward r

the relationship expressed as s — = — o.

and observation o is represented by the information variable
x, demonstrating how f(h) effectively captures information
from the hidden state h.

RDec-POMDP maximizes the expected return and iden-
tifies the optimal policy. The policy is defined as a mapping
from histories to probability measures over the action space,
defined as H — A(U). Given the cyclic recursive nature of
the hidden state and the predictability of the next state, the
following conclusion can be drawn:

F(A) =0(f(h),u,0),Yh' = (h,u,0), 1

p(r,0’ | hyu) = p(r,o" | f(h),u),¥(h,u,r,0), @
where f represents the statistic, 6 is the hidden state update
function of RNN. As long as Eq. (1) is satisfied, the statis-
tic f is optimal, indicating that f(h) captures all important
information from the hidden state h. Thus, hidden states
in the RDec-POMDP framework contain richer information
than real states, enabling agents to make optimal decisions.
A detailed proof is provided in Appendix C.

Proposed solution. The core principle of QICM is to
use environmental information entropy and significantly en-
hance the decision-making capabilities of agents. The overall
QICM architecture is shown in Figure 1(a).

The design of agent networks is crucial for approximating
the Q-value of each agent. In our approach, agents utilize
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(Color online) (a) QICM framework comprises agent networks (on the right side, yellow), a transformer (on the right

side, pink), a mixing network (on the left side), and a PER buffer (at the bottom, in orange). (b)—(d) Win rates for QICM against

baseline algorithms on three super-hard maps.

both current partial observations and historical information,
integrated via deep recurrent Q-learning (DRQN). Gated re-
current units (GRUs) were used to generate hidden states
h¢, which are vital for maintaining the coherence of sequen-
tial information. Subsequently, the hidden states h: were
input into the transformer.

The transformer outputs a sequence of hidden states us-
ing a multi-head attention mechanism. To obtain the local
Q@ value, each hidden state was transformed using a feed-
forward neural network. The local Q-values were fed into
the mixing network to generate the global @ value while ad-
hering to the monotonicity constraint. This process ensures
that the features extracted by the transformer are effectively
integrated through the mixing network while preserving the
individual global max (IGM) condition.

The mixing network optimizes the overall collaborative
behaviors using a linear combination. The local Q-value
outputs from agent networks were combined to produce the
total action value Qiot, which reflects the optimal action
selected by the agents. The mixing network embodies col-
lective intelligence and efficiency, thereby providing a clear
path toward shared goals.

However, the introduction of hidden states increases the
uncertainty level. To address this issue, PER was employed
to dynamically adjust the probability of experience sampling
based on sample uncertainty. In addition, a parameterized
TD(A) was used to estimate the value function of the cur-
rent state by considering reward signals from multiple time
steps within a certain range.

These techniques reduce environmental instability and
capture the impact of long-term rewards, thereby ensuring
the performance and stability of the QICM. A detailed de-
scription of QICM is provided in Appendix D.

Simulation. StarCraft multiagent challenge (SMAC) is a
widely used benchmark for evaluating MARL methods. Fig-
ures 1(b)—(d) show the win rates of QICM compared to base-
line methods on three super-hard SMAC maps. QICM con-
sistently outperforms other methods, demonstrating effec-
tive exploration. Ablation experiments confirm that QICM

outperforms other baseline methods.

We introduced the friendly survival rate and enemy mor-
tality rate metrics to further verify the effect of QICM.
QICM consistently outperforms baseline methods in these
metrics. Additional comparison experiments and ablation
experiments are presented in Appendix E.

Conclusion. We addressed partial observability in multi-
agent settings by introducing RDec-POMDP and proposed
an MARL method, QICM, which uses information-rich hid-
den states to replace real states. QICM incorporates PER
and TD(A) to tackle increased uncertainty. In future work,
QICM will be applied to unmanned aerial vehicle (UAV)
swarm confrontation game scenes, enhancing its practical
applicability and robustness across diverse real-world tasks.
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