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In large-scale multiagent systems (MASs), partial observ-

ability poses a notable challenge. When agents process ex-

tensive local information, global information scarcity, and

high computation complexity arise [1]. To address the par-

tial observability, researchers have adopted the partially ob-

servable Markov decision process (POMDP) as a mathe-

matical framework to simulate and analyze agents’ decision-

making process.

To address partial observability in multiagent reinforce-

ment learning (MARL), we employ the recursive struc-

ture of recurrent neural networks (RNNs) to process se-

quential information in a decentralized partially observable

Markov decision process (Dec-POMDP) [2, 3]. We propose

an MARL model with a recurrent Dec-POMDP, in which

RNN-generated hidden states replace real states, and prove

that the hidden states effectively support rational decision-

making under partial observability. The contributions of

this study are as follows.

• We propose an MARL model with a recurrent decen-

tralized partially observable Markov decision process (RDec-

POMDP) and demonstrate that agents make better deci-

sions using hidden states than real states.

• Within the RDec-POMDP framework, we propose an

MARL method with quantified information-decision content

measurement (QICM), integrating prioritized experience re-

play (PER) and temporal-difference learning.

Problem formulation. It is known that RNNs are well-

suited for partially observable problems [4]. Inspired by this,

we model fully cooperative MARL tasks as RDec-POMDP,

leveraging the recursive nature of RNN to obtain hidden

states.

RDec-POMDP is represented by a tuple G =

〈S,U , P,R,X ,Z,O, n, γ,H〉. The detailed definitions and

explanations of each component are provided in Appendix B.

We outline four main properties of RDec-POMDP. (1) At

any time step t, the true state is a function of the true state

at time step t − 1, and new information is updated at time

step t. The hidden state is updated recursively, with the his-

tory information of the hidden state updated and accumu-

lated by RNNs. (2) The transition probability P to the next

real state depends only on the current real state and action,

independent of the hidden state. (3) When the information

distribution X is known, the observation o is conditionally

independent of action u, such as p(o | x, u) = p(o | x), with

the relationship expressed as s → x → o. (4) Given the

statistic f(h) and action u, the joint probability of reward r

and observation o is represented by the information variable

x, demonstrating how f(h) effectively captures information

from the hidden state h.

RDec-POMDP maximizes the expected return and iden-

tifies the optimal policy. The policy is defined as a mapping

from histories to probability measures over the action space,

defined as H → ∆(U). Given the cyclic recursive nature of

the hidden state and the predictability of the next state, the

following conclusion can be drawn:

f(h′) = θ(f(h), u, o′), ∀h′ = (h, u, o′),

p(r, o′ | h, u) = p(r, o′ | f(h), u), ∀(h, u, r, o′),
(1)

where f represents the statistic, θ is the hidden state update

function of RNN. As long as Eq. (1) is satisfied, the statis-

tic f is optimal, indicating that f(h) captures all important

information from the hidden state h. Thus, hidden states

in the RDec-POMDP framework contain richer information

than real states, enabling agents to make optimal decisions.

A detailed proof is provided in Appendix C.

Proposed solution. The core principle of QICM is to

use environmental information entropy and significantly en-

hance the decision-making capabilities of agents. The overall

QICM architecture is shown in Figure 1(a).

The design of agent networks is crucial for approximating

the Q-value of each agent. In our approach, agents utilize
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Figure 1 (Color online) (a) QICM framework comprises agent networks (on the right side, yellow), a transformer (on the right

side, pink), a mixing network (on the left side), and a PER buffer (at the bottom, in orange). (b)–(d) Win rates for QICM against

baseline algorithms on three super-hard maps.

both current partial observations and historical information,

integrated via deep recurrent Q-learning (DRQN). Gated re-

current units (GRUs) were used to generate hidden states

ht, which are vital for maintaining the coherence of sequen-

tial information. Subsequently, the hidden states ht were

input into the transformer.

The transformer outputs a sequence of hidden states us-

ing a multi-head attention mechanism. To obtain the local

Q value, each hidden state was transformed using a feed-

forward neural network. The local Q-values were fed into

the mixing network to generate the global Q value while ad-

hering to the monotonicity constraint. This process ensures

that the features extracted by the transformer are effectively

integrated through the mixing network while preserving the

individual global max (IGM) condition.

The mixing network optimizes the overall collaborative

behaviors using a linear combination. The local Q-value

outputs from agent networks were combined to produce the

total action value Qtot, which reflects the optimal action

selected by the agents. The mixing network embodies col-

lective intelligence and efficiency, thereby providing a clear

path toward shared goals.

However, the introduction of hidden states increases the

uncertainty level. To address this issue, PER was employed

to dynamically adjust the probability of experience sampling

based on sample uncertainty. In addition, a parameterized

TD(λ) was used to estimate the value function of the cur-

rent state by considering reward signals from multiple time

steps within a certain range.

These techniques reduce environmental instability and

capture the impact of long-term rewards, thereby ensuring

the performance and stability of the QICM. A detailed de-

scription of QICM is provided in Appendix D.

Simulation. StarCraft multiagent challenge (SMAC) is a

widely used benchmark for evaluating MARL methods. Fig-

ures 1(b)–(d) show the win rates of QICM compared to base-

line methods on three super-hard SMAC maps. QICM con-

sistently outperforms other methods, demonstrating effec-

tive exploration. Ablation experiments confirm that QICM

outperforms other baseline methods.

We introduced the friendly survival rate and enemy mor-

tality rate metrics to further verify the effect of QICM.

QICM consistently outperforms baseline methods in these

metrics. Additional comparison experiments and ablation

experiments are presented in Appendix E.

Conclusion. We addressed partial observability in multi-

agent settings by introducing RDec-POMDP and proposed

an MARL method, QICM, which uses information-rich hid-

den states to replace real states. QICM incorporates PER

and TD(λ) to tackle increased uncertainty. In future work,

QICM will be applied to unmanned aerial vehicle (UAV)

swarm confrontation game scenes, enhancing its practical

applicability and robustness across diverse real-world tasks.
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