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Appendix A Related Work

Appendix A.1 Multi-agent system

In recent years, research in the field of multi-agent system (MAS) and intelligent decision-making has been thriving. In

particular, multi-agent reinforcement learning (MARL) has garnered considerable attention owing to its remarkable effec-

tiveness in various applications [1–4], and has been widely applied in numerous fields, such as unmanned aerial vehicle (UAV)

swarms [5–7], autonomous driving [8], traffic signal control [9]. Actually, MARL is not limited to real-world environments, it

can also be utilized in virtual environments, including StarCraft II [10], DOTA2 [11] as well as military simulations [12] and

so on. These virtual environments often exhibit certain characteristics: high uncertainty, partial observability and dynamic

variability, which pose considerable challenges to MARL. Among these virtual environments, StarCraft II is particularly

well-suited for MARL research, due to its full support of collaboration, competition, communication, and learning between

multiple heterogeneous agents. To better assess the effectiveness of MARL in StarCraft II, researchers have developed

the starCraft multi-agent challenge (SMAC) [13]. As a quintessential benchmark in StarCraft II environments, SMAC

mainly focuses on addressing micromanagement challenges, where each unit is controlled by an individual agent who makes

decisions based on limited and partial observational information.

In general, whether in real or virtual environments, MARL may all face the challenge of partial observability. For single-

agent reinforcement learning (SARL), agent can make decisions based on the full state of the environment [14]. However, for

MARL, agent can only observe part of the environment and is unable to acquire a global understanding of the environment,

which may lead to local optima [15] because agent cannot directly obtain the states and intentions of other agents. Recently,

Zhao et. al proposed a novel algorithm named OMPG to address such limitations [16]. Especially, in large-scale MAS, the

partial observability may become a notable challenge, when agents process a vast amount of local information, the global

information scarcity and tremendous computation complexity will arise inevitably [4, 17,18].

To address the issue of partial observability, some researchers have adopted partially observable Markov decision process

(POMDP) [19] as a mathematical framework to simulate and analyze agents’ decision-making process. POMDP not only

retains the Markovian property, but also provides a structured paradigm for modeling and solving the partial observability,

where the current decision of agents depends solely on their last decisions and observations, and thus there is no need to

painfully trace back the entire decision-making history.

However, in MARL scenarios, even there are only several agents, they still cannot fully perceive the overall environmental

state, and thus POMDP is extended naturally to a decentralized partially observable Markov decision process (Dec-POMDP)

[20]. Considering that cooperation and information sharing are prevalent among multiple agents [21,22], Dec-POMDP allows

agents to gain a deeper understanding of each other’s actions and intentions. But this will bring about the issue of insufficient

information that primarily manifests as a lack of environmental awareness, whereupon agents may struggle to acquire

sufficient environmental information, and this will constrain their understanding of the environmental states [17, 23]. In

response to this issue, the centralized training and decentralized execution (CTDE) [24] paradigm is put forward to enhance

communication and cooperation among agents, enabling them to share information against incomplete observations. During

the training process, CTDE allows agents to share the global information to better guide their training [25]. In the case

of actual execution process, however, agents make decisions only based on their local observations and strategies. In other

words, the decision quality in the execution process is closely related to the amount of information that agent can obtain

from the local observation.
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Appendix A.2 MARL

In early research on MARL, single-agent algorithm was directly extended into multi-agent environments [26]. Initially, each

agent was treated as an independent learner and trained separately, while the actions of other agents were considered as

part of the environment. In this context, Q-learning was applied, and was known as independent Q-learning (IQL) [27].

Subsequently, deep reinforcement learning algorithms, such as deep Q-network (DQN) [28] and deep recurrent Q-network

(DRQN) [29], were proposed to handle high-dimensional spaces and adapt to complex MAS. For IQL, one major challenge

is the nonstationarity, i.e., the dynamic of environmental changes with the evolution of the strategies of other agents evolve.

This will complicate the learning process because the typical assumption of the stationary environment in SARL no longer

holds. Consequently, agents struggle to converge to a stable strategy, leading to inefficient action selection and potential

conflicts. To address this issue, a variant of IQL [30] was proposed, where one agent is trained at a time step, while the

strategies of other agents kept constant; clearly, this approach maintains a stable environment for the currently trained

agent so it can better adapt to the nonstationarity of environment.

To deal with the issue of nonstationarity, most MARL algorithms adopt CTDE. One approach assumes that all critics

can observe the states and actions of all agents, namely fully observable [31], where critics can learn true states and guide

actors to find the optimal strategy. If all agents fully cooperate and share a common reward, then only a single centralized

critic is enough. As long as the critic is fully observable, it can alleviate or even eliminate the issue of nonstationarity.

COMA [32] uses a single centralized critic, where each agent is trained by its local observation-action history, and introduces

a counterfactual baseline to select actions with an advantage function. MAPPDG [33] allows each agent to train a deep

deterministic policy gradient (DDPG), where the critic of each agent takes all state-action pairs as input, concatenating them

together, and using local rewards to compute the corresponding value function. Wang et al. modeled the dynamics of regret

minimization in large agent populations and used forward prediction to get more precise action-making [4]. MAPPO [34] can

reduce sampling bias by overlapping calculations with respect to advantage estimation and importance sampling correction.

By introducing the idea of value factorisation from QMIX into the actor-critic method, FACMAC [35] combines strategy and

value, and uses a centralized policy gradient estimator in the critic to factorize Q-values and calculate the policy gradient

for all agents.

As the strategies of each agent change during training, the experience replay buffer stores observations of the different

strategies used. One agent cannot effectively use experience replay without addressing nonstationarity. Actually, if ex-

perience replay is not used, learning effects may suffer from low sampling efficiency and high sample correlation [36]. In

addition, the Bellman equation, which assumes full observability [25], is given by

Q∗
i (s, ai|a−i) =

∑
a−i

π−i (a−i, s) [r(s, ai,a−i) + γ
∑
s′

P (s′|s, ai,a−i)maxQ∗
i (s, a

′
i)], (A1)

where π−i =
∏

j ̸=i πj (aj |s) represents the joint strategy of other agents. Since the strategies of others change over time,

namely π−i changes too, and thus the traditional Bellman equation cannot be directly used to solve for the optimal value

in MARL.

Simplifying multi-agent problems to a single-agent setting often makes it difficult for traditional reinforcement learning

algorithms to find global optimal solutions. This is primarily because, in such scenarios, agents cannot access the true value

of action rewards, resulting in that some agents may become overly conservative over time [37]. Additionally, exploration by

agents with relatively poor strategies will exacerbate the overall team reward, impeding agents with already-good strategies

from progressing toward the optimal strategy. To address the issue, an idea was proposed to calculate each agent’s global

share of the rewards, which is formalized as value function factorisation, where the decomposition function learns from the

global reward. VDN [38] factorises the global reward into individual local values for each agent via a neural network. With

the introduction of certain constraints, the Q-value becomes additive and the action-value function is well shared during

training, thus better coordination and cooperation are achieved. QMIX [39] introduces a novel mixing network to weight

the local value functions of each agent. Offering better generalization and robustness, QTRAN [40] directly learns a joint

action-value function and introduces two conditions to constrain the relation between the joint action-value function and the

local action-value functions of each agent. QPLEX [41] employs a duplex dueling architecture as the value decomposition

structure and encodes the individual global max (IGM) principle into the neural network architecture. PAC [42] optimizes

the joint action-value function by factorisation maximization.

Generally, by learning value functions, agents can identify the optimal action strategy in a variety of circumstances. Value-

based MARL methods have shown considerable potential to address cooperative problems, where each agent possesses a

value function that estimates the expected rewards for taking different actions in the current state.

There are two mainstream approaches to solve value-based MARL problems: independent learning (IL) and CTDE.

For IL, agent is considered as an autonomous entity interacting with the environment and updating its value function

based on individual observations and rewards, and each agent endeavors to maximize its rewards without considering the

impact of other agents’ actions. A classical method of IL is independent Q-learning (IQL), where each agent maintains an

independent Q-function to estimate the expected cumulative rewards for different actions in a given state; agent update

its value function through interactions with the environment, it is then independent of other agents’ strategies. A main

research direction of IQL is to extend methods such as DQN and DRQN, enabling them to handle high-dimensional and

complex settings. Although such method is relatively simple and easy to implement, it may lead to suboptimal and the

lack of team cooperation. Furthermore, agents may easily fall into an endless exploration cycle [43] and fail to converge on

effective collaborative strategies.

On the other hand, CTDE attempts to mitigate these challenges by centralizing the training process while still allowing

for decentralized execution during the operational phase. Such paradigm enables the sharing of extensive information
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across agents during the training process, including the policies of other agents, gradients, or even explicit communication

protocols. This centralized perspective facilitates the joint optimization of strategy by considering the actions and expected

outcomes of all agents, meanwhile, makes selected strategy more coordinated and consistent. Under CTDE, value-based

MARL primarily seeks optimal strategy through value function decomposition and adheres to the following relation:

argmax
u

Qtot(τ ,u) =


argmaxu1

Q1(τ1, u1)

. . .

argmaxuN
QN (τN , uN )

 . (A2)

where Qtot : TN × UN 7→ R, defined by the IGM condition, denotes the overall joint action-value function. To satisfy the

IGM condition, VDN directly decomposes the value function into an additive form (additivity):

Qtot(τ,u) =

N∑
i=1

Qi(τi, ui). (A3)

Taking the partial derivative of the value function from Eq. (A3), we can obtain
∂Qtot(τ,u)
∂Qi(τi,ui)

≡ 1,∀i ∈ N . VDN satisfies

the IGM condition, but it does not fully utilize the advantage of centralized training, and it overlooks the fact that under

CTDE the global information can be exploited during the training process.

Afterwards, QMIX employs a centralized mixing network to estimate the joint Q-value of agent actions while maintains

individual value functions which can used by agents during execution process. In approximating Qtot, QMIX considers the

global information, and introduces the condition of (monotonicity):

∂Qtot(τ, u)

∂Qi(τi, ui)
⩾ 0, ∀i ∈ N . (A4)

For QMIX, as long as the joint action u, obtained by the argmax function over Qtot, coincides with the actions derived

from each Qi and adheres to the fundamental baseline of the monotonicity condition, the locally optimal actions chosen by

each agent will be the precise components of the globally optimal action.

Appendix B RDec-POMDP

Recurrent decentralized partially observable Markov decision process (RDec-POMDP) can be formally represented by a tuple

G = ⟨S,U , P,R,X ,Z,O, n, γ,H⟩, where S is the real state space, U is the joint action space, and P (s′|s,u):S×Un×S 7→ [0, 1]

is the state transfer probability. Each agent receives a reward r = R(s,u) and uses it to judge the decision quality.

The information distribution X uses the probability X(x | s) to obtain information x ∈ X conditioned on s ∈ S. The

observation distribution Z uses the probability Z(o | x) to get observation o ∈ O when information x is given, where

O(o | s) =
∫
χ Z(o | x)X(x | s)dx and all agents can sense and respond to relevant information about environment. Here,

n is the number of agents, γ ∈ [0, 1) is the discount factor, and H is the hidden state space. At each time step t, each

agent relies on RNNs to learn the action-observation history τu with respect to the hidden state ht, and the joint hidden

state for all agents ht ∈ H ≡ z(τ), where H → ∆(U) is the set of histories to probability measures over the action space,

z is a compression function that maps the action-observation history τ . The hidden state indirectly reflects the dynamic

characteristics of the real state by integrating the history of observation and action.

Here, we highlight four main properties in RDec-POMDP: (1) At any time step t, the true state can be written as a

function of the true state at time step t− 1 and the new information updated at time step t. The hidden state can also be

updated recursively, specifically, the history information of the hidden state can be updated and accumulated by RNNs; (2)

the transition probability P to the real state at the next time step only depends on the current real state and action, and

has nothing to do with the hidden state; (3) when the information distribution X is known, observation o is conditionally

independent of action u: p(o | x, u) = p(o | x), and the relationship between them is: s → x → o; (4) given the statistic

f(h) and action u, the joint probability of reward r and o can be represented by the information variable x, which shows

how f(h) effectively captures the information from the hidden state h.

Appendix C The proof

The goal of RDec-POMDP is to maximize the expected return and find an optimal policy. The policy is defined as a

mapping from histories to probability measures over the action space, and H → ∆(U) is the set of these mappings. Because

the hidden state is cyclic recursive and the next state is predictable, we can draw the following conclusions: [47,48]:

f(h′) = θ(f(h), u, o′),∀h′ = (h, u, o′) (C1)

p(r, o′ | h, u) = p(r, o′ | f(h), u),∀(h, u, r, o′) (C2)

where θ is the hidden state update function of RNN and f is a statistical function, which is optimal as long as it satisfies

Eq. (C1) and Eq. (C2). This means that f(h) captures all important information about h, namely, hidden states contain

richer information than real states in the RDec-POMDP framework, and thus the optimal decision can be made by the

agent. The specific proof process is as follow:

First, using the total probability formula, we can obtain:
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p(r, o′|f(h), u) =
∫
χ
p(r, o′, x′|f(h), u)dx′ (C3)

This means that given f(h), the probability of the joint event (r, o′) is summed by the integral over the joint distribution

probabilities under all possible information variables x. And then we decompose p(r, o′, x′|f(h), u) according to the chain

rule:

p(r, o′, x′|f(h), u) = p(x′|f(h), u)p(r, o′|x′, f(h), u) (C4)

By decomposing p(r, o′|x′, f(h), u), we can get:

p(r, o′|x′, f(h), u) = p(r|x′, f(h), u)p(o′|r, x′, f(h), u) (C5)

Merging Eq. (C4) and Eq. (C5), we can obtain:

p(r, o′, x′|f(h), u) = p(o′|r, x′, f(h), u)p(r, x′|f(h), u) (C6)

Substituting Eq. (C6) into Eq. (C3), we get:

p(r, o′|f(h), u) =
∫
χ
p(o′|r, x′, f(h), u)p(r, x′|f(h), u)dx′ (C7)

Based on the property 3 of RDec-POMDP in Appendix B, Eq. (C7) can be simplified to:

p(r, o′|f(h), u) =
∫
χ
p(o′|x′)p(r, x′|f(h), u)dx′ (C8)

According to the chain rule and the total probability formula, we can prove Eq. (C2) as:

p(r, o′|f(h), u) =
∫
χ
p(o′|x′)p(r, x′|h, u)dx′

=

∫
χ
p(o′, r, x′|h, u)dx′

= p(r, o′|h, u)

(C9)

Thus, the hidden state h effectively captures the dynamic characteristics of the environment and integrates historical

information through recurrent updates, thereby containing richer information than the real state s corresponding to o′ in

Eq. (C9) of a single time step.

Appendix D QICM method

According to the context of RDec-POMDP, here we propose a MARL method with quantified information-decision content

measurement (QICM). The design of the agent networks is crucial to approximating the Q-value of each agent. In our

design, each agent not only relies on current partial observations, but also historical information integrated and processed

by DRQNs. Here, agents are allowed to output their local Q-value Qn(τnt , un
t ) based on their observation sequence τnt [49]

and actions un
t taken at the current time step. GRUs are adopted to generate hidden states ht, which is vital for maintaining

the coherence of sequential information because GRUs can effectively capture temporal dependencies, thereby more informed

decisions are made by agents. Then hidden states ht are fed as input into the transformer. Subsequently, hidden states

are combined to form a joint hidden state vector ht that contains information of all agents. Since f(h) is the probability

distribution over the hidden states corresponding to the entire history of observations and actions, the joint hidden state

can be considered as an approximation of the statistic f(h). By integrating the sequential information with GRUs and

transformers, the probability distribution is approximated, enabling agents to make decisions based on a comprehensive

understanding of both current and historical information.

Although RNNs are good at working with sequential data, they are still limited by things like disappearing gradients and

difficulty in capturing long-term relationships among agents. To further enhance cooperation and information integration, we

incorporate a transformer and take advantage of two features: the time modeling capabilities of RNN and the self-attention

mechanism of transformer, wherein the self-attention mechanism can autonomously learn which time step information is

crucial for decision-making at the current time step, and the learning of adaptive weights can help filter out noise and

irrelevant information from the hidden states. Notably, because of the independent and parallel decision-making of agents,

the sequence order is disregard, namely, omitting position encoding. Concretely, the joint hidden state ht is input into the

multi-head attention layer, and the output is defined as [50]

atta(ht) = softmax(
mask(Wa

q (ht)Wa
k (ht))T√

datt
)Wa

v (ht), (D1)

where Wa
q , W

a
k , and Wa

v are all MLPs with dimension datt [51]; q, k, and v represent query, key, and value respectively; the

mask in Eq. (D1) obscures the observational outcomes of the agent and allows other agents to predict the actions of the

agent from limited information [52]. The self-attention mechanism dynamically adjusts the importance of different parts of



Sci China Inf Sci 5

the hidden states, enabling effective extraction of key information in partially observable environments. The joint hidden

state ht reflects the current state of all agents at a specific time step, while f(h) encapsulates the historical information

up to that point. The attention mechanism primarily utilizes ht for real-time decision-making, and all the outputs are

concatenated to form a higher-dimensional representation:

att(ht) = att1(ht)⊕ ...⊕ atta(ht). (D2)

To further process the outputs and to effectively integrate them together, a linear transformation based on a fully

connected layer is applied to the output. Such solution simplifies the information presentation and ensures that the output

maintains the same dimension with the joint hidden state ht, which is crucial to subsequent monotonic value function

factorisation. A decoder is used to produce the final output of the transformer, where the decoder uses multiple linear

transformations and softmax activation functions to map the high-dimensional representations into probability distributions

in the target space, ensuring that the transformer outputs the final results att(ht) for value functions directly. The detailed

internal structure of the transformer is plotted in Figure D1.

Figure D1 The structure of the transformer.

Afterwards, to accurately factorise the contribution of each agent to the total action value, the output of the fully

connected layer enters the mixing network. The process is implemented by a monotonic function, which ensures that any

increase in an agent’s Q-value correspondingly enhances the overall value of the joint action, reflecting the added value of

cooperative actions. The process also transforms the joint hidden state into a set of action strategies, and unfolds in an

autoregressive manner by encoding, a scaled dot-product attention mechanism and decoding. During the process, based on

the current environmental information, the interactions and objectives are shared across agents, and the real environmental

state s will be replaced by a highly abstracted and informational representation h.

The mixing network optimizes the overall collaborative behaviors by using a linear combination. The local Q-value

outputs from agent networks are combined to produce Qtot, which reflects the best action selected by agents. Moreover,

the mixing network embodies collective intelligence and efficacy, and thus provides a clear path toward general goals.

Here, two tactics are performed for model training. One is sharing network parameters among all agents, which reduces

the total number of parameters, accelerates training process, and promotes consistency; the other is individually training

parameters for each agent, which will increase model’s flexibility because each agent can learn behavioral strategies with

more customization.

The output of the transformer is a sequence of hidden states generated by the multi-head attention mechanism. Each

hidden state is transformed by a feedforward neural network to obtain the local Q value. The local Q values are fed into

the mixing network, which generates the global Q value according to the monotonicity constraint described above. This

process ensures that the features extracted by the Transformer are effectively integrated through the mixing network while

preserving the IGM condition.

In previous work, agents’ experiences are usually stored in experience replay memory, and agents are commonly trained

by random uniform sampling, often resulting in high variance. Meanwhile, due to the introduction of hidden states, the

uncertainty level increases. To address this issue, the experience replay is replaced with the prioritized experience replay,

where the uncertainty of samples is performed by dynamically adjusting the probability of experience sampling. Concretely,

by employing techniques derived from Rainbow’s prioritized experience replay [53,54] and TD learning [55,56], the temporal
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correlations between experience samples are broken, thereby the variance is reduced and the training stability is ultimately

enhanced.

Based on the size of TD error, prioritized experience replay can adjust the sampling probability of each sample, and

greater weights will be allocated to samples with larger TD error. Note that TD error reflects the difference between the

prediction of current policy and the actual reward, and thus the TD error of each experience sample can be calculated by

pi ∝ |R+ γmaxQθ− (s′, u′)−Qθ(s, u)|, (D3)

where θ− represents the parameters of the target network. The TD error is applied to compute the priority of each

experience sample, and larger TD errors correspond to samples with higher priorities that are more valuable for network

training. Here, the priority is denoted by

P (i) =
(pαi )

Σkp
α
k

, (D4)

where P (i) is the priority of the sample i, and pi is the TD error of sample i; α is a hyperparameter with positive value,

which controls the balance of the priority distribution. Obviously, the sample priority is directly proportional to the α-th

power of the TD error; when α = 0, all samples own equal priority, which equals to uniform sampling from the experience

replay pool; when α = 1, the sample priority is just proportional to the TD error. Since the sample with larger TD error is

more likely to be selected for training, the network can easily adapt to high-error situations.

To further facilitate sampling efficiency, the priority of all samples is normalized, and the total weight of all samples is

set as 1. During the sampling, the selection probability of each sample is determined by its priority with respect to the

weight. The selected samples are used for network training, where back propagation is performed and the loss function is

defined as

L(θ) =
p∑
i

[(ri + γmaxu′Qtot(τ
′,u′, s′; θ−)−Qtot(τ,u, s; θ))

2],

where p is the size of the replay buffer. When the TD error is extremely high, agents have to struggle to accurately estimate

long-term dependencies, leading to the unstable update of the value function. Such instability may manifest as considerable

fluctuations in the value function across different time steps, affecting the reliability of the training process accordingly.

Here, we use a parameterized TD(λ) method to address this issue, where the value of λ ranges between 0 and 1. The λ

value determines the trade-off between the rewards of the current time step and the predictions of multiple future time

steps; when λ is 0, only the reward of the current time step is considered; when λ = 1, however, the rewards of all future

time steps will be taken into account.

Obviously, TD(λ) can be viewed as a sliding window over time steps, and can effectively estimate the value function of

the current state by considering reward signals from multiple time steps within a certain range, in another word, TD(λ)

allows agents to flexibly obtain reward signals from multiple time steps during training.

Appendix E Simulation

Appendix E.1 Experimental setup

Based on the real-time strategy game StarCraft II, StarCraft Multi-Agent Challenge (SMAC) is a comprehensive and

popular benchmark for evaluating MARL methods. To evaluate the performance of QICM, all simulation experiments are

conducted on SMAC. And all simulations are performed using default hyperparameters and run on Windows 11 with a

3.20-GHz Intel® CoreTM i9-12900KF CPU, 32-GB RAM, an NVIDIA GeForce GTX 3090Ti GPU and StarCraft II with

version SC2.4.6.2.69232. All the results represent an average of 10 training runs under different seeds with a 95% confidence

interval. Here, the confidence interval is calculated using the mean and standard deviation (SD) of the win rates from all

the training samples, where the confidence interval = mean± (1.96× SD/sqrt(10)).

QICM will be compared with state-of-the-art value-based MARL algorithms, including QPLEX, QMIX and QTRAN as

well as policy-based MARL algorithms such as MAPPO and COMA. All simulation experiments are conducted on a set of

StarCraft II micromanagement scenarios. Considering the characteristics of maps, we select nine maps and categorize them

as easy (3m, 2s3z, and 3s5z), hard (1c3s5z, 2c vs 64zg, and 3s vs 5z), and super hard (MMM2, 3s5z vs 3s6z, and 6h vs 8z).

A complete map list is presented in Table E1.

Each algorithm will be trained until convergence or a maximum time step is reached. For easy and hard maps, the

maximum time step is 2 million (2M); for super hard maps, the maximum time step is 10 million (10M). An episode will

be finished when all agents on either side are destroyed or when the episode reaches the predetermined time limit T . Each

agent selects action based on a greedy strategy after each 2000 steps of network training.

The key hyperparameters we use in our experiments, such as λ in TD(λ) and α in PER, are based on common settings

for the vast majority of relevant work, not on experimental tuning. We choose the value of λ to be 0.8 [54,57] and the value

of α to be 0.6 [58,59].

The objective of all MARL methods is to find an optimal decision strategy with limited resources and time, and maximize

team’s gain. Here, the specific reward scheme is set as follows: the reward is 10 points when an enemy unit is killed, and

200 points when all enemy units are destroyed. And all cumulative rewards are normalized to within 20 points.
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Table E1 Map List

Map Name Category Ally Units Enemy Units

3m 3 Marines 3 Marines

2s3z Easy 2 Stalkers and 3 Zealots 2 Stalkers and 3 Zealots

3s5z 3 Stalkers and 5 Zealots 3 Stalkers and 5 Zealots

1c3s5z 1 Colossus, 3 Stalkers, and 5 Zealots 1 Colossus, 3 Stalkers, and 5 Zealots

2c vs 64zg Hard 2 Colossi 64 Zerglings

3s vs 5z 3 Stalkers 5 Zealots

MMM2 1 Medivac, 2 Marauders, and 7 Marines 1 Medivac, 3 Marauders, and 8 Marines

3s5z vs 3s6z Super hard 3 Stalkers and 5 Zealots 3 Stalkers and 5 Zealots

6h vs 8z 6 Hydralisks 8 Zealots

Table E2 The influence of λ on the win rate

λ win rate

0.6 0.813

0.8 0.844

0.9 0.826

Appendix E.2 Experimental results and analysis

The performance of the MARL methods are evaluated by the win rate, which refers to the proportion of defeating runs to the

total runs. Figure E3 illustrates the win rate on nine maps, where shaded regions are plotted with a 95% confidence interval.

One can see that QICM effectively explores and consistently performs as the best method on almost all maps, especially

in those complex maps (Fig. E1 (e)-(i)), such as map 3s vs 5z which is characterized by a relatively high complexity and

requires superior strategic planning. Due to the adaptability and complex policy formulation of QICM, resulting in the

distinct advantages of QICM over other baselines on map 3s vs 5z. In contrast, QTRAN and COMA are constrained by

their value function approximation strategies and critic structures, leading to their relatively poor performances.

On the other hand, MAPPO, QPLEX, QMIX, QTRAN, and COMA also exhibit certain advantages on specific maps.

For instance, MAPPO, renowned for its stability and scalability, exhibits high win rate values on maps including 3m and

2s3z, which suggests that MAPPO is efficacious on easy or less strategically demanding maps. The fluctuating performance

across other maps also indicates MAPPO’s limitations in coping with environments that present complex agent interactions

or that require sophisticated temporal coordination.

QPLEX, with a novel value decomposition tactic, shows proficiency on maps including 3m, 2s3z, 3s5z, 1c3s5z, and

3s5z vs 3s6z. Nevertheless, the inconsistent performances across other maps suggest that QPLEX will encounter potential

challenges in value function estimation of complex strategic settings or when agents’ role need to be precisely delineated.

The performance of QMIX is notable, particularly on map 3s5z, where the win rate value expeditiously achieves a

commendable 90%. Generally, QMIX maintains a strong performing position as the second-best, reflecting the robust value

function approximation of QMIX in cooperative scenes. However, QMIX’s lower performance on maps 3s vs 5z and 6h vs 8z

highlights its potential limitations on asymmetric maps.

The performance of QTRAN is generally moderate, with the exception of better outcomes on maps 2c vs 64zg and

MMM2. Due to the relaxed constraint conditions, resulting in a suboptimal value function approximation of QTRAN,

particularly on complex maps that strategic depth and tight coordination are all paramount.

COMA’s reasonable performance on map 3m contrasts with its underwhelming performances on other maps. This

discrepancy is traced back to COMA’s critical structure, leading to nonideal policy updates due to the sequential nature of

these updates. Such a mechanism is less effective on maps that demand concurrent learning and adaptation among multiple

agents.

In short, the convergence speed of QICM may not be the fastest because of the high volume of information which always

leads to increased uncertainty and extended training time. But the introduction of experience prioritization and TD(λ)

mitigates the amount of time spending on uncertainty.

In order to better verify the sensitivity analysis, we chose the super hard map 3s5z vs 3s6z as the map of sensitivity

analysis, and used the win rate as the main evaluation index. In the sensitivity analysis, we fixed other hyperparameters

and only adjusted the target hyperparameters respectively. The experimental results are shown in Table E2 and Table E3

respectively.

It can be seen that with the increase of λ the performance of QICM first improves and then decreases (Table E2).

Table E3 The influence of α on the win rate

α win rate

0.4 0.75

0.6 0.844

0.8 0.743
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The best performance is achieved at λ =0.8. The value of sensitivity about λ: S(λ1) = ∆Wr
∆λ

= 0.844−0.813
0.8−0.6

= 0.155,

S(λ2) =
∆Wr
∆λ

= 0.826−0.844
0.9−0.8

= −0.18.

The value of sensitivity about α: S(α1) =
∆Wr
∆α

= 0.844−0.75
0.6−0.4

= 0.47, S(α2) =
∆Wr
∆α

= 0.743−0.844
0.8−0.6

= −0.505.

Table E2 and Table E3 show that QICM is more robust to λ change and more sensitive to α change near the optimal

hyperparameter value.

w
in

 ra
te

time steps (a)3m (b)2s3z (c)3s5z

(d)1c3s5z (e)2c_vs_64zg (f)3s_vs_5z

(g)MMM2 (h)3s5z_vs_3s6z (i)6h_vs_8z

w
in

 ra
te

time steps

w
in

 ra
te

time steps

w
in

 ra
te

time steps

 QICM  MAPPO  QPLEX  QMIX  QTRAN  COMA

w
in

 ra
te

time steps

w
in

 ra
te

time steps

w
in

 ra
te

time steps

w
in

 ra
te

time steps

w
in

 ra
te

time steps

Figure E1 The win rates under QICM, MAPPO, QPLEX, QMIX, QTRAN, and COMA on nine maps over 10 runs, where shaded

areas are displayed with a 95% confidence interval.

However, through multiple experiments and observations, we noticed that the win rate curve has limitations in some

cases. Particularly, at certain time steps, the win rates of different algorithms may overlap, making it difficult to intuitively

show the subtle differences and actual effects of the algorithms. To validate its practicality and effectiveness, we introduced

the friendly survival rate and enemy mortality rate, all of which are inherently normalized with values in the range of [0,1].

The friendly survival rate is the number of surviving friendly units divided by the initial number of friendly units; the

enemy mortality rate is the number of dead enemy units divided by the initial number of enemy units. We also compared

QICM with MAPPO, QPLEX, QMIX, QTRAN and COMA, and the friendly survival rate and the enemy mortality rate of

different algorithms at different time steps are displayed, using the average of five training runs with different seeds (Figure

E2 and E3).

It can be seen that both the friendly survival rate and enemy mortality rate increase with the number of time steps in

all experiments. This indicates that longer time steps help improve the friendly survival rate regardless of the method used.

Specifically, QICM’s friendly survival rate and enemy mortality rate are significantly superior to that of other algorithms,

with enemy mortality rate reaching 0.99436, and friendly survival rate reaching 0.78246.

Appendix E.3 Ablation study

Firstly, in QICM, component TD(λ) places more emphasis on immediate returns and reduces long-term dependencies.

When component TD(λ) is not included, only the reward of the current time step is considered while future rewards will

be disregarded.
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Figure E2 The friendly survival rate at different time steps.
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Figure E3 The enemy mortality rate at different time steps.
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Secondly, when the prioritized experience replay component is not adopted to allocate sampling probabilities, all expe-

rience samples will be randomly sampled for training with equal probability, namely, uniform sampling is employed.

Thirdly, the self-attention mechanism can reduce some of the limitations with respect to observability and achieve better

performances in the presence of large uncertainties. To investigate whether a combined approach that adopts RNN generated

hidden states followed by a transformer is superior to an approach using hidden states alone, the self-attention mechanism

in QICM is removed.
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Figure E4 The win rates under QICM, with and without key components with respect to different maps.

To clearly demonstrate the connotation of QICM and highlight the impact of each component on QICM’s performance,

we conduct ablation experiments by considering three methods: QICM without prioritized experience replay (without PER),

QICM without TD(λ) (without TD), and QICM without self-attention (without Attention). Similarly, each method will

be verified on nine maps.

The win rates under QICM, with and without these key components are plotted in Figure E4. We can see that QICM

demonstrates a high win rate and a short average convergence time, which suggests that QICM possesses strong generaliza-

tion capabilities and adapts well to various maps and opponent strategies. Particularly, QICM’s advantages are pronounced

on three maps: 3s vs 5z, MMM2, and 6h vs 8z, indicating that QICM can better access environmental information, plan

long-term strategies, and learn value functions via integrating the three components.

The complexity of different scenarios significantly affects the effectiveness of key QICM modules, such as the attention

mechanism and TD learning. In 2c vs 64zg, this map is categorized as Hard and involves 2 Colossi fighting against 64

Zerglings. The key challenge of this map lies in the overwhelming number of enemy units, which requires precise positioning

and efficient area-of-effect attacks from the Colossi. The attention mechanism in QICM may not provide a significant

advantage in this map. The primary requirement is not complex coordination but rather effective area-of-effect (AoE)

damage control, which can be achieved by simpler mechanisms. This explains why the performance of without attention

is worse than that of QICM. In 3s5z vs 3s6z, this map is categorized as Super Hard and involves 3 Stalkers and 5 Zealots

fighting against 3 Stalkers and 6 Zealots. The key challenge here is the numerical disadvantage and the need for highly

precise micro-management to maximize unit survivability and damage output. In this map, the state-space complexity is

high due to the need for precise individual unit control. However, without attention, the hidden states lose expressiveness,

limiting the effectiveness of both PER and TD methods and leading to significantly worse performance compared to QMIX

and QICM.
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The complexity of different scenarios significantly affects the effectiveness of key QICM modules, such as TD learning.

In 2c vs 64zg and 3s5z vs 3s6z, the performance of without TD learning surpasses that of QICM during the middle stages

of training. This indicates that TD learning may occasionally hinder faster convergence in highly complex environments

due to its reliance on bootstrapped value estimates, which can propagate inaccuracies over time.

In map like 3s vs 5z, we observe that QICM experiences a temporary performance drop or slower improvement in the

middle stages of training compared to without attention. However, it is important to note that QICM ultimately converges

to the highest performance level, outperforming all other conditions.

On the other hand, one can see that the performance of without PER is clearly poorer than that of QICM on most

maps, which indicates that the prioritized experience replay is vital for QICM’s learning. Its absence will slow down the

convergence rate, resulting in a lower win rate, particularly noticeable on complex map 6h vs 8z. This highlights the role

of the prioritized experience replay in handling complex decision-making environments. Actually, the prioritized experience

replay accelerates the learning process by focusing on more surprising or less frequently occurred experiences, leading to a

more informative condition for agents.

Furthermore, one can see that the results of without TD exhibit an obvious performance decrease, which suggests

that TD(λ), a λ-return learning method, is vital for future reward estimation and long-term planning. In particular, the

performance decline is much obvious on maps that require more sophisticated planning and strategy, such as map MMM2,

where the long-term benefits must be well balanced with the immediate rewards.

From the performance of without Attention, one can see that this variant performs poorly on all maps, particularly on

those challenging maps. Actually, the attention mechanism allows QICM to dynamically focus on different aspects of the

input, and it is crucial for QICM to process the partial observability of the environment. When the attention module is

removed, the effectiveness of PER and TD methods may be limited, resulting in performance degradation. Therefore, its

absence will lead to QICM’s inability to changing environment and opponent strategies.

Comparing the above results, we can obtain that the three components all contribute to QICM’s improved performance.

To be specific, the attention mechanism appears to be the most critical component, followed by the prioritized experience

replay and TD(λ). This hierarchy suggests that the attention mechanism provides a foundational processing advantage,

however, learning efficiency and long-term planning, respectively enabled by the prioritized experience replay and TD(λ),

are also indispensable to QICM’s success.

Similarly, we evaluated the friendly survival rate and enemy mortality rate in the ablation experiments. At all time

steps, the QICM method’s friendly survival rate and enemy mortality rate are always higher than that of the other three

methods. The without Attention method performs the worst at all time steps, indicating that the self-attention mechanism

significantly contributes to the friendly survival rate and enemy mortality rate, and its absence significantly reduces model

performance. When the PER and TD modules were removed, both friendly survival rate and enemy mortality rate decreased

significantly, indicating that the modules played an important role in improving sampling efficiency and training effectiveness.

The specific results are shown in Figures E5 and E6, respectively.
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Figure E5 The friendly survival rate of ablation experiments at different time steps.

In a word, the self-attention mechanism, the prioritized experience replay, and TD(λ) play distinct and complementary

roles in enhancing the performance of QICM. These crucial components can make QICM to efficiently learn in complex

environments, strategically plan over long term time steps, and robustly adapt to variable maps and opponent strategies.
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Figure E6 The enemy mortality rate of ablation experiments at different time steps.
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