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Reinforcement learning aims to find the best sequence of ac-
tions that will generate the optimal return. Since some com-
plex tasks require the collaborative cooperation of multiple
agents, multi-agent reinforcement learning (MARL) has at-
tracted much more attention in recent years.

Motivated by the real applications, two classes of MARL
are investigated in this study. In the first kind of MARL,
we consider a group of agents that carry out the parallel
computing to learn the value function of a given joint pol-
icy. For the second kind of MARL, we partition the state
space into many subspaces and each agent implements the
distributed exploration in each subspace by a given policy.
Inspired by [1,2], we mainly focus on the distributed policy
evaluation problem of MARL.

Most of the MARL studies are feasible under the frame-
work of undirected or fixed topologies [1,3]. Considering the
real scenarios, the directed and time-varying communication
networks are more suitable. For example, due to the actual
privacy consideration, an agent may broadcast its local in-
formation to another agent, but the receiver may be unwill-
ing to transmit the local information back to the previous
agent. In this study, we investigate MARL on a sequence of
time-varying directed and jointly connected communication
topologies. Motivated by the Laplacian averaging [4], we
combine the MARL with primal-dual running-time averag-
ing in the process of policy evaluation.

The main contributions are twofold. First, we estab-
lish a robust distributed policy evaluation algorithm with
primal-dual online time-averaging. The online time aver-
aging scheme has the filtering capability and thus can re-
duce the impact of noise. Second, the more general commu-
nication structures with time-varying directed and jointly
connected topologies are considered in this work. Our al-
gorithm is feasible in the relaxed settings and thus our re-
sults are more general as compared with the existing undi-
rected graph-based algorithms [1,3]. In addition, our anal-
ysis method is different from the existing studies [1-3]. In
fact, considering the primal-dual optimization and online
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time-averaging, the analyses become more challenging. Mo-
tivated by the time-average analyses [4], we shed some light
on its application in the online learning.

Problem description. Let G = (V, E) describe the com-
munication graph, where V' = {1,2,..., N} denotes agents
and E C V X V represents the communication edges. Let
N; = {j € V|(j,i) € E} denote the in-neighbor set. The
weights are represented by the adjacency matrix A = [a;],
where the element a;; denotes the weight of the edge (4, 5).
The laplacian matrix £ is defined as £ = D — A, where D =
[d;] is the diagonal in-degree matrix with the elements d; =
Z;V:1 aij. A multi-agent Markov decision process (MDP)
can be defined as a quintuple (.S, {Ai}ﬁvzl, Psa, {Ri}f\;p“{),
where S is the state space; A; is the action space of
agent i; Psq denotes the transition probability from state
s € S to any other state s/ € S under a joint action
a=(ai,...,an) € A1 X --- X AN; R; = Ri(s,a,s’) repre-
sents the reward of agent ; v € [0, 1) is the discount factor.
Under a joint policy 7, we can define the global reward as an
average of the local rewards, i.e., RT(s) = % Zf\r:l RT (s),
where RT(s) := Eqn(.|s)[Ri(s,a,8")] is the local reward
of agent ¢ at state s if it follows the fixed policy w. Un-
der this fixed policy, we define the transition matrix as P™,
whose elements denote the probability of multi-agent MDP
to take an action a at state s and reach the next state s’,
ie., [PTg o = P(s'|s,m) = 3, ca7(als) - P(s'|s,a). We
assume that this Markov chain is aperiodic and irreducible
and there is a stationary distribution of states p™(s) with
the policy .

The policy evaluation means to learn the value function
under a given joint policy 7. The value function can be
described as V™ (s) := E[>_72 i 7P R7 (sp)|so = s, 7. Then
we define V™ = RT + yP™V ™, where RT is constructed
by stacking up RT (s), P™ is the transition matrix. Let
Vo(s) = ¢ (s)0 be the approximation of the value func-
tion, where ¢(s) € R? is a feature vector such as the feature
mapping of neural network and 6 € R? denote the param-
eters to be estimated. Let Vj represent a vector of Vy(s)

info.scichina.com  link.springer.com


http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4578-2&domain=pdf&date_stamp=2025-10-23
https://doi.org/10.1007/s11432-024-4578-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4578-2
https://doi.org/10.1007/s11432-024-4578-2

Chen G, et al. Sci China Inf Sci

for all states and ® = [¢(1), P(2),...,¢(s)]T € RISIxd,
Thus, the policy evaluation problem is simplified to find
a parameter 6 that minimizes the mean squared projected
Bellman error (MSPBE), i.e., J(0) = %”Hq;(‘/:g —yPTVy—
R7)|%, + %p||9||2, where D = diag(p™(s)) with the en-
tries p™ (s) being the stationary distribution under the pol-
icy 7, Ils donates the projection matrix onto the linear
space {®0,0 ¢ R}, %p||0||2 is the regularization part with
p > 0. Further, we rewrite MSPBE in a standard weighted
least-square form J(0) = %HA@ - b||zc,1 + %p||0||2 where
A = Eun[d(s)(p(s) —19(s) "], b = Eun[RT (s)$(s)],
C=Eu~[p(s)p(s)T].

The policy evaluation problems can be reformulated as
a consensus form, i.e., ming, % Zfil Ji(0;). Further, the
primal-dual form is described as

N

J(0,w) = %ZL‘(@@M)

i=1

min max
0=col(6;) w=col(w;)

subject to 61 = -+ = 0N, w1 =+ =wpn 1)

with J;(0;,w;) = w;r (AZBZ — l;l) — %w;ré'lwl + %P||9i||2 and
A, = A, C; = C for the parallel computing based reinforce-
ment learning.

Distributed policy evaluation algorithm. The primal-dual

policy evaluation protocol with online time-averaging is pre-
sented as follows:

0;11 =0y —o(Lt ®14)0: —nt90,,

t—1 1
071 = 0f + —64,
t t
(2
witr1 =wt — (Lt ® Ig)wt + Nt Guw,
t—1 1
wi = —wi + —wy,
t+1 n t L t
where 6 = col(f1,...,0N), w¢ = col(wi,...,wn) are

the primal and dual variables, respectively; o is the con-
sensus stepsize with 0 < ¢ < dmax and dmax denoting
the maximum of in-degree; gg, = Vg,J(0t,wt), Ju; =
Vs J (0, wt); n¢ is the learning rate.

Main results. We first show that the consensus con-

straints in (1) are satisfied for Algorithm (2). Let
b0 = sup,_y _ )0sll, wo = sup,_y llwsl, go, =
Sups:l,.“,t”ges ”7 Juwo = Sups:1,4.4,tllgws ”
Theorem 1. For Algorithm (2), choosing the learning rate
m:TLA withe >0and 0.5 < A< 1lormn = %,thecon—
sensus constraints on the primal and dual variables in (1)
are satisfied as T' — oo.

Then, we provide the convergence analyses of Algorithm

(2) under the constant learning rate and the time-varying
rate, respectively.
In Algorithm (2), let T denote a fixed time
number of iterations. Setting the learning rate to 1 = TLA
with 0.5 < A < 1 and e < T®, Algorithm (2) solves the dis-
tributed policy evaluation problem (1) and the time averages
of the primal and dual variables converge to the saddle point
(6*,w*) with the convergence rate given by
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Theorem 3. Similar to the setting of Theorem 2, the

learning rate is set to ny = % with € > 0. Then, we have

1 1
- ;(O‘Zul + By,) — ﬁ(al% + Bo,) < J(OF4 1, witq),

. % 1 1
= J(0",w") < ;(aél +5L1)+%
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with o, = 2% L 9Ny gy +
01 - 096,

2N?2 ggo ve
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Theorem 2 shows that under constant learning rate n =

7 the convergence rate is O(Tllfﬁ ). Theorem 3 shows

that under time-varying learning rate n; = %7 the conver-

gence rate is O(%)

Ezxperimental studies: case 1 parallel computing. The ex-
ample of 6 networked Mountain car [5] is considered here,
where the state is global, the local reward of each car is
set at a random proportion of the reward, and the aver-
age is equal to RT(sp,ap). Let v = 0.9,d = 16,p = 0.2,
o(s) = 2exp((||s — ¢||?)/b?). We make a comparison with
the inexact ADMM [3]. We set Algorithm (2) to run on the
time-varying graphs with car 1 and car 4 are intermittently
connected to the network. We choose n = 6/1000°3% and
ne = 2/+/t, respectively. Figure 1 shows that our algorithm
achieves the same accuracy level (till up to 1% error).

0 200 400 600 800 1000 0 200 400 600 800 1000
iteration number ¢ iteration number ¢

Figure 1 (Color online) Performance of § and w.

Experimental studies: case 2 distributed exploring. We
partition the 9 x 6 grid environment into six 3 x 3 grids and
each robot implements the exploring task in a 3 x 3 grid.
Figure 1 shows that the errors can converge to the same
level of accuracy even with different communication graphs.
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