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Reinforcement learning aims to find the best sequence of ac-

tions that will generate the optimal return. Since some com-

plex tasks require the collaborative cooperation of multiple

agents, multi-agent reinforcement learning (MARL) has at-

tracted much more attention in recent years.

Motivated by the real applications, two classes of MARL

are investigated in this study. In the first kind of MARL,

we consider a group of agents that carry out the parallel

computing to learn the value function of a given joint pol-

icy. For the second kind of MARL, we partition the state

space into many subspaces and each agent implements the

distributed exploration in each subspace by a given policy.

Inspired by [1, 2], we mainly focus on the distributed policy

evaluation problem of MARL.

Most of the MARL studies are feasible under the frame-

work of undirected or fixed topologies [1,3]. Considering the

real scenarios, the directed and time-varying communication

networks are more suitable. For example, due to the actual

privacy consideration, an agent may broadcast its local in-

formation to another agent, but the receiver may be unwill-

ing to transmit the local information back to the previous

agent. In this study, we investigate MARL on a sequence of

time-varying directed and jointly connected communication

topologies. Motivated by the Laplacian averaging [4], we

combine the MARL with primal-dual running-time averag-

ing in the process of policy evaluation.

The main contributions are twofold. First, we estab-

lish a robust distributed policy evaluation algorithm with

primal-dual online time-averaging. The online time aver-

aging scheme has the filtering capability and thus can re-

duce the impact of noise. Second, the more general commu-

nication structures with time-varying directed and jointly

connected topologies are considered in this work. Our al-

gorithm is feasible in the relaxed settings and thus our re-

sults are more general as compared with the existing undi-

rected graph-based algorithms [1, 3]. In addition, our anal-

ysis method is different from the existing studies [1–3]. In

fact, considering the primal-dual optimization and online

time-averaging, the analyses become more challenging. Mo-

tivated by the time-average analyses [4], we shed some light

on its application in the online learning.

Problem description. Let G = (V, E) describe the com-

munication graph, where V = {1, 2, . . . , N} denotes agents

and E ⊆ V × V represents the communication edges. Let

Ni = {j ∈ V |(j, i) ∈ E } denote the in-neighbor set. The

weights are represented by the adjacency matrix A = [aij ],

where the element aij denotes the weight of the edge (i, j).

The laplacian matrix L is defined as L = D−A, where D =

[di] is the diagonal in-degree matrix with the elements di =∑N
j=1 aij . A multi-agent Markov decision process (MDP)

can be defined as a quintuple (S, {Ai}Ni=1, Psa, {Ri}Ni=1, γ),

where S is the state space; Ai is the action space of

agent i; Psa denotes the transition probability from state

s ∈ S to any other state s′ ∈ S under a joint action

a = (a1, . . . , aN ) ∈ A1 × · · · × AN ; Ri = Ri(s,a, s′) repre-

sents the reward of agent i; γ ∈ [0, 1) is the discount factor.

Under a joint policy π, we can define the global reward as an

average of the local rewards, i.e., Rπ
c (s) = 1

N

∑N
i=1 R

π
i (s),

where Rπ
i (s) := Ea∼π(·|s)[Ri(s,a, s′)] is the local reward

of agent i at state s if it follows the fixed policy π. Un-

der this fixed policy, we define the transition matrix as P π,

whose elements denote the probability of multi-agent MDP

to take an action a at state s and reach the next state s′,
i.e., [Pπ ]s,s′ = P (s′|s,π) =

∑
a∈A π(a|s) · P (s′|s,a). We

assume that this Markov chain is aperiodic and irreducible

and there is a stationary distribution of states µπ(s) with

the policy π.

The policy evaluation means to learn the value function

under a given joint policy π. The value function can be

described as V π(s) := E[
∑∞

p=0 γ
pRπ

c (sp)|s0 = s,π]. Then

we define V π = Rπ
c + γPπV π , where Rπ

c is constructed

by stacking up Rπ
c (s), Pπ is the transition matrix. Let

Vθ(s) = φ⊤(s)θ be the approximation of the value func-

tion, where φ(s) ∈ R
d is a feature vector such as the feature

mapping of neural network and θ ∈ R
d denote the param-

eters to be estimated. Let Vθ represent a vector of Vθ(s)
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for all states and Φ = [φ(1),φ(2), . . . ,φ(s)]⊤ ∈ R
|S|×d.

Thus, the policy evaluation problem is simplified to find

a parameter θ that minimizes the mean squared projected

Bellman error (MSPBE), i.e., J(θ) = 1
2
‖ΠΦ(Vθ −γPπVθ −

Rπ
c )‖2

D
+ 1

2
ρ‖θ‖2, where D = diag(µπ(s)) with the en-

tries µπ(s) being the stationary distribution under the pol-

icy π, ΠΦ donates the projection matrix onto the linear

space {Φθ, θ ∈ R
d}, 1

2
ρ‖θ‖2 is the regularization part with

ρ > 0. Further, we rewrite MSPBE in a standard weighted

least-square form J(θ) = 1
2
‖Aθ − b‖2

C−1 + 1
2
ρ‖θ‖2 where

A = Eµπ [φ(s)(φ(s) − γφ(s′))⊤], b = Eµπ [Rπ
c (s)φ(s)],

C = Eµπ [φ(s)φ(s)⊤ ].

The policy evaluation problems can be reformulated as

a consensus form, i.e., minθi
1
N

∑N
i=1 Ji(θi). Further, the

primal-dual form is described as

min
θ=col(θi)

max
ω=col(ωi)

J(θ, ω) =
1

N

N∑

i=1

Ji(θi, ωi)

subject to θ1 = · · · = θN , ω1 = · · · = ωN (1)

with Ji(θi, ωi) = ω⊤
i (Âiθi − b̂i)− 1

2
ω⊤
i Ĉiωi +

1
2
ρ‖θi‖2 and

Âi = Â, Ĉi = Ĉ for the parallel computing based reinforce-

ment learning.

Distributed policy evaluation algorithm. The primal-dual

policy evaluation protocol with online time-averaging is pre-

sented as follows:

θt+1 = θt − σ(Lt ⊗ Id)θt − ηtgθt
,

θa
t+1 =

t − 1

t
θa
t +

1

t
θt,

ωt+1 = ωt − σ(Lt ⊗ Id)ωt + ηtgωt
,

ωa
t+1 =

t− 1

t
ωa

t +
1

t
ωt,

(2)

where θt = col(θ1, . . . , θN ), ωt = col(ω1, . . . , ωN ) are

the primal and dual variables, respectively; σ is the con-

sensus stepsize with 0 < σ < dmax and dmax denoting

the maximum of in-degree; gθt
= ∇θt

J(θt,ωt), gωt
=

∇ωt
J(θt,ωt); ηt is the learning rate.

Main results. We first show that the consensus con-

straints in (1) are satisfied for Algorithm (2). Let

θ0 := sups=1,...,t‖θs‖, ω0 := sups=1,...,t‖ωs‖, gθ0 :=

sups=1,...,t‖gθs
‖, gω0

:= sups=1,...,t‖gωs
‖.

Theorem 1. For Algorithm (2), choosing the learning rate

ηt = ε

T△
with ε > 0 and 0.5 < △ < 1 or ηt = ε√

t
, the con-

sensus constraints on the primal and dual variables in (1)

are satisfied as T → ∞.

Then, we provide the convergence analyses of Algorithm

(2) under the constant learning rate and the time-varying

rate, respectively.

Theorem 2. In Algorithm (2), let T denote a fixed time

number of iterations. Setting the learning rate to ηt = ε

T△

with 0.5 < △ < 1 and ε < T△, Algorithm (2) solves the dis-

tributed policy evaluation problem (1) and the time averages

of the primal and dual variables converge to the saddle point

(θ∗,ω∗) with the convergence rate given by

− 1

2εT 1−△ (αω + βθ) 6 J(θa
T+1,ω

a
T+1)− J(θ∗,ω∗)

6
1

2εT 1−△ (αθ + βω), (3)

where αθ = 4θ20+4Nθ0gθ0+
2N2θ0νgθ0

1−r
+(g2θ0ε

2+4Ng2θ0ε
2+

2N2g2
θ0

νε2

1−r
)T 1−2△, βω = 4ω2

0 + 8Nω0gω0
+

4N2gω0
νω0

1−r
+

(g2ω0
ε2 + 8Ng2ω0

ε2 +
4N2g2

ω0
νε2

1−r
)T 1−2△.

Theorem 3. Similar to the setting of Theorem 2, the

learning rate is set to ηt = ε√
t
with ε > 0. Then, we have

− 1

t
(α′

ω1
+ β′

θ1
) − 1√

t
(α′

ω2
+ β′

θ2
) 6 J(θa

t+1,ω
a
t+1),

− J(θ∗,ω∗) 6
1

t
(α′

θ1
+ β′

ω1
) +

1√
t
(α′

θ2
+ β′

ω2
) (4)

with α′
θ1

=
2θ2

0

ε
+2Nθ0gθ0 +

N2νθ0gθ0
1−r

, α′
θ2

= 4θ20ε+g2θ0ε+

4Nεg2θ0 +
2N2g2

θ0
νε

1−r
, β′

ω1
=

2ω2

0

ε
+ 4Nω0gω0

+
2N2νω0gω0

1−r
,

β′
ω2

= 4ω2
0ε+ g2ω0

ε+ 8Nεg2ω0
+

4N2g2
ω0

νε

1−r
.

Theorem 2 shows that under constant learning rate η =
ε

T△
the convergence rate is O( 1

T1−△
). Theorem 3 shows

that under time-varying learning rate ηt = ε√
t
, the conver-

gence rate is O( 1√
t
).

Experimental studies: case 1 parallel computing. The ex-

ample of 6 networked Mountain car [5] is considered here,

where the state is global, the local reward of each car is

set at a random proportion of the reward, and the aver-

age is equal to Rπ
c (sp, ap). Let γ = 0.9, d = 16, ρ = 0.2,

φ(s) = 2exp((‖s − c‖2)/b2). We make a comparison with

the inexact ADMM [3]. We set Algorithm (2) to run on the

time-varying graphs with car 1 and car 4 are intermittently

connected to the network. We choose η = 6/10000.55 and

ηt = 2/
√
t, respectively. Figure 1 shows that our algorithm

achieves the same accuracy level (till up to 1% error).

Figure 1 (Color online) Performance of θ and ω.

Experimental studies: case 2 distributed exploring. We

partition the 9× 6 grid environment into six 3× 3 grids and

each robot implements the exploring task in a 3 × 3 grid.

Figure 1 shows that the errors can converge to the same

level of accuracy even with different communication graphs.
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