• Supplementary File •

Multi-agent robust policy evaluation for reinforcement learning via primal-dual online time-averaging

Gang CHEN^{1*}, Changli PU¹, Yaoyao ZHOU¹, Xiumin LI¹ & Huimiao CHEN²

¹College of Automation, Chongqing University, Chongqing 400044, China; ²Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China

1 Appendix A

In this paper, a sequence of digraphs is considered, which is formally stated as follows.

Assumption 1. The sequence of graphs $\{G(t)\}_{t\geqslant 1}$ are uniformly jointly strongly connected and weight-balanced, i.e., there is a finite integer B>0 such that the graph $G(t)\cup G(t+1)\cup\ldots\cup G(t+B-1)$ is strongly connected and weight-balanced. Moreover, the edge weight satisfies $a_{ij}\geqslant o$ for some positive constant o as $(i,j)\in E$.

In light of the distributed policy evaluation algorithm, we have

$$\theta_{j,t+1} = \sum_{i=1}^{N} \phi_{ji}(t,1)\theta_{i,1} - \sum_{i=1}^{N} \sum_{s=1}^{t-1} \phi_{ji}(t,s+1)\eta_s g_{\theta_i,s} - \eta_t g_{\theta_j,t}$$
(1)

where the state transition matrix $\phi(t,l) = [\phi_{ji}(t,l)]$ with elements $\phi_{ji}(t,l)$ denoted by

$$\phi(t,l) = \hat{\mathbf{P}}(t)\hat{\mathbf{P}}(t-1)\dots\hat{\mathbf{P}}(l), \ t \geqslant l$$

with $\hat{P}(t) = I_N - \sigma L_t$.

Under Assumption 1, the state transition matrix $\phi(t,l)$ has the following property.

Lemma 1. While Assumption 1 holds, one has

$$|\phi_{ji}(t,s) - \frac{1}{N}| \leqslant \nu r^{t-s} \text{ for all } t \geqslant s,$$

with
$$\nu = 2\frac{1+o^{-B}}{1-o^{B}}$$
, $r = (1-o^{B})^{\frac{1}{B}}$.

We first show that the consensus constraints are satisfied for the distributed policy evaluation algorithm, and the proof of Theorem 1 proceeds as follows.

1.1 The proof of Theorem 1

Taking the summation on both sides of (1), we have

$$\frac{1}{N} \sum_{i=1}^{N} \theta_{i,t+1} = \frac{1}{N} \sum_{i=1}^{N} \theta_{i,1} - \frac{1}{N} \sum_{i=1}^{N} \sum_{s=1}^{t-1} \eta_s g_{\theta_i,s} - \frac{1}{N} \sum_{i=1}^{N} \eta_t g_{\theta_{i,t}}$$
(2)

According to (1) and (2), one has

$$\theta_{j,t+1} - \frac{1}{N} \sum_{i=1}^{N} \theta_{i,t+1} = \sum_{i=1}^{N} (\phi_{ji}(t,1) - \frac{1}{N}) \theta_{i,1}$$

^{*} Corresponding author (email: chengang@cqu.edu.cn)

$$-\sum_{i=1}^{N}\sum_{s=1}^{t-1}(\phi_{ji}(t,s+1) - \frac{1}{N})\eta_s g_{\theta_i,s} - \eta_t g_{\theta_{j,t}} + \frac{1}{N}\sum_{i=1}^{N}\eta_t g_{\theta_{i,t}}$$
(3)

Moreover, it yields from (3) that

$$\|\theta_{j,T+1}^{a} - \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} \theta_{i,t+1}\| \leq \frac{1}{T} \sum_{t=1}^{T} \|\theta_{j,t+1} - \frac{1}{N} \sum_{i=1}^{N} \theta_{i,t+1}\|$$

$$\leq \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} |\phi_{ji}(t,1) - \frac{1}{N}| \cdot \|\theta_{i,1}\|$$

$$+ \frac{1}{T} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \sum_{i=1}^{N} \eta_{s} |\phi_{ji}(t,s+1) - \frac{1}{N}| \cdot \|g_{\theta_{i},s}\|$$

$$+ \frac{1}{T} \sum_{t=1}^{T} (\eta_{t}(\|g_{\theta_{j,t}}\| + \frac{1}{N} \sum_{i=1}^{N} \eta_{t} \|g_{\theta_{i,t}}\|)$$

$$(4)$$

Let $\|\theta_{i,1}\| \leq \theta_0$ and $\|g_{\theta_{j,t}}\| \leq g_{\theta_0}$ with $\theta_0 > 0, g_{\theta_0} > 0$. By Lemma 1, we further get that

$$\|\theta_{j,T+1}^{a} - \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} \theta_{i,t+1}\| \leq \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \theta_{0} \nu r^{t-1}$$

$$+ \frac{1}{T} \sum_{t=2}^{T} \sum_{s=1}^{t-1} \sum_{i=1}^{N} g_{\theta_{0}} \nu \eta_{s} r^{t-s-1} + \frac{1}{T} \sum_{i=1}^{T} 2g_{\theta_{0}} \eta_{t}$$

$$\leq \frac{N \nu \theta_{0}}{(1-r)T} + \frac{\nu N g_{\theta_{0}}}{(1-r)T} \sum_{t=1}^{T-1} \eta_{t} + \frac{2g_{\theta_{0}}}{T} \sum_{t=1}^{T} \eta_{t}$$

While $\eta_t = \frac{\varepsilon}{T^{\triangle}}$, we have

$$\|\theta_{j,T+1}^a - \frac{1}{TN} \sum_{t=1}^T \sum_{i=1}^N \theta_{i,t+1}\| \leqslant \frac{N\nu\theta_0}{(1-r)T} + \frac{2g_{\theta_0}\varepsilon}{T^{\triangle}} + \frac{\nu Ng_{\theta_0}\varepsilon}{(1-r)T^{\triangle}}$$
 (5)

While $\eta_t = \frac{\varepsilon}{\sqrt{t}}$, by noting $\sum_{t=1}^T \frac{\varepsilon}{\sqrt{t}} \leqslant \varepsilon (1 + \int_{t=1}^T \frac{1}{\sqrt{t}} dt) \leqslant 2\varepsilon \sqrt{T}$, we get that

$$\|\theta_{j,T+1}^{a} - \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} \theta_{i,t+1}\| \leqslant \frac{N\nu\theta_{0}}{(1-r)T} + \frac{4g_{\theta_{0}}\varepsilon}{\sqrt{T}} + \frac{2\nu Ng_{\theta_{0}}\varepsilon}{(1-r)\sqrt{T}}$$
 (6)

From (5) and (6), we see that the consensus constraints for θ_i , $i=1,\cdots,N$ are satisfied as $T\to\infty$. The similar proof and results are also applicable for the dual variable ω_i , $i=1,\cdots,N$.

The following lemma is useful in the following analyses.

Lemma 2. Under Assumption 1, the following bound holds.

$$\sum_{t=1}^{T} \|\boldsymbol{L}\boldsymbol{\theta}_{t}\| \leqslant 2N\theta_{0} + \frac{N^{2}\theta_{0}\nu}{1-r} + 2Ng_{\theta_{0}} \sum_{t=1}^{T-1} \eta_{t} + N^{2}g_{\theta_{0}}\nu \sum_{t=2}^{T-1} \sum_{s=1}^{t-1} \eta_{s}r^{t-s-1}$$

Proof. Note that

$$\|\boldsymbol{L}\boldsymbol{\theta}_{t+1}\| = \|\boldsymbol{\theta}_{t+1} - 1_d \otimes (\frac{1}{N} \sum_{i=1}^{N} \theta_{i,t+1})\|$$

$$\leq \sum_{i=1}^{N} \|\theta_{i,t+1} - \frac{1}{N} \sum_{i=1}^{N} \theta_{i,t+1}\|$$

From (3) and Lemma 1, we further get that

$$\|\boldsymbol{L}\boldsymbol{\theta}_{t+1}\| \leq \sum_{i=1}^{N} (N\nu\theta_0 r^{t-1} + \sum_{s=1}^{t-1} N\nu g_{\theta_0} \eta_s r^{t-s-1} + 2g_{\theta_0} \eta_t)$$

Noting that

$$\begin{split} \sum_{t=1}^{T} \|\boldsymbol{L}\boldsymbol{\theta}_{t}\| &= \sum_{t=0}^{T-1} \|\boldsymbol{L}\boldsymbol{\theta}_{t+1}\| \\ &= \|\boldsymbol{L}\boldsymbol{\theta}_{1}\| + \sum_{t=1}^{T-1} \|\boldsymbol{L}\boldsymbol{\theta}_{t+1}\| \end{split}$$

and applying the inequalities

$$\|\boldsymbol{L}\boldsymbol{\theta}_1\| \leqslant 2N\theta_0$$

and

$$\sum_{t=1}^{T-1} \|\boldsymbol{L}\boldsymbol{\theta}_{t+1}\| \leqslant \frac{N^2 \nu \theta_0}{1-r} + 2Ng_{\theta_0} \sum_{t=1}^{T-1} \eta_t + N^2 \nu g_{\theta_0} \sum_{t=2}^{T-1} \sum_{s=1}^{t-1} \eta_s r^{t-s-1}$$

we get the result Lemma 2.

Then, we construct the evaluation error, and find the cumulative error bounds corresponding to the primal and dual variables, respectively.

Lemma 3. Let $\{(\boldsymbol{\theta}_t, \boldsymbol{\omega}_t)\}_{t \geqslant 1}$ be a sequence of the iterative process, and $(\boldsymbol{\theta}_p, \boldsymbol{\omega}_p)$ be the variable at any time $p, 1 \leqslant p \leqslant t$. The bound of primal variable evaluation error is as follows:

$$2(J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{t}) - J(\boldsymbol{\theta}_{p}, \boldsymbol{\omega}_{t})) \leqslant \frac{1}{\eta_{t}} (\|\boldsymbol{M}\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{p}\|^{2} - \|\boldsymbol{M}\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{p}\|^{2})$$

$$+ 2\|g_{\boldsymbol{\theta}_{t}}\|(\|\boldsymbol{L}\boldsymbol{\theta}_{t}\| + \|\boldsymbol{L}\boldsymbol{\theta}_{p}\|) + \eta_{t}\|g_{\boldsymbol{\theta}_{t}}\|^{2}.$$

$$(7)$$

Similarly, for the dual variable, we have

$$2(J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{t}) - J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{p})) \geqslant -\frac{1}{\eta_{t}} (\|\boldsymbol{M}\boldsymbol{\omega}_{t} - \boldsymbol{\omega}_{p}\|^{2} - \|\boldsymbol{M}\boldsymbol{\omega}_{t+1} - \boldsymbol{\omega}_{p}\|^{2})$$
$$-2\|g_{\boldsymbol{\omega}_{t}}\|(\|\boldsymbol{L}\boldsymbol{\omega}_{t}\| + \|\boldsymbol{L}\boldsymbol{\omega}_{p}\|) - \eta_{t}\|g_{\boldsymbol{\omega}_{t}}\|^{2}. \tag{8}$$

Proof. Multiplying M on both sides of the first equation in the distributed policy evaluation algorithm and noting that $ML_t = 0$, we can derive the following equation

$$M\theta_{t+1} = M\theta_t - \eta_t M g_{\theta_t} \tag{9}$$

By subtracting θ_p on both sides of (9) and applying the relationships $M^T = M, M^2 = M$, we have

$$\|\boldsymbol{M}\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_p\|^2 = \|\boldsymbol{M}\boldsymbol{\theta}_t - \boldsymbol{\theta}_p\|^2 + \|\eta_t \boldsymbol{M}g_{\boldsymbol{\theta}_t}\|^2 - 2\eta_t g_{\boldsymbol{\theta}_t}^{\top} (\boldsymbol{M}\boldsymbol{\theta}_t - \boldsymbol{M}\boldsymbol{\theta}_p).$$
(10)

Using the convexity of $J(\theta, \omega)$ with respect to θ , the last term of (10) can be bounded as follows

$$-g_{\boldsymbol{\theta}_{t}}^{\top}(\boldsymbol{M}\boldsymbol{\theta}_{t} - \boldsymbol{M}\boldsymbol{\theta}_{p}) = -g_{\boldsymbol{\theta}_{t}}^{\top}(\boldsymbol{M}\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{t}) - g_{\boldsymbol{\theta}_{t}}^{\top}(\boldsymbol{\theta}_{p} - \boldsymbol{M}\boldsymbol{\theta}_{p}) - g_{\boldsymbol{\theta}_{t}}^{\top}(\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{p})$$

$$\leq g_{\boldsymbol{\theta}_{t}}^{\top}\boldsymbol{L}\boldsymbol{\theta}_{t} - g_{\boldsymbol{\theta}_{t}}^{\top}\boldsymbol{L}\boldsymbol{\theta}_{p} + J(\boldsymbol{\theta}_{p}, \boldsymbol{\omega}_{t}) - J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{t}). \tag{11}$$

Combining (10) with (11), we have

$$J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{t}) - J(\boldsymbol{\theta}_{p}, \boldsymbol{\omega}_{t}) \leqslant \frac{1}{2\eta_{t}} (\|\boldsymbol{M}\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{p}\|^{2} - \|\boldsymbol{M}\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{p}\|^{2})$$
$$+ g_{\boldsymbol{\theta}_{t}}^{\mathsf{T}} \boldsymbol{L}\boldsymbol{\theta}_{t} - g_{\boldsymbol{\theta}_{t}}^{\mathsf{T}} \boldsymbol{L}\boldsymbol{\theta}_{p} + \frac{1}{2\eta_{t}} \|\eta_{t} \boldsymbol{M} g_{\boldsymbol{\theta}_{t}}\|^{2}.$$
(12)

According to the Cauchy-Schwarz inequality,

$$g_{\boldsymbol{\theta}_t}^{\top} \boldsymbol{L} \boldsymbol{\theta}_t - g_{\boldsymbol{\theta}_t}^{\top} \boldsymbol{L} \boldsymbol{\theta}_p \leqslant \|g_{\boldsymbol{\theta}_t}\| (\|\boldsymbol{L} \boldsymbol{\theta}_t\| + \|\boldsymbol{L} \boldsymbol{\theta}_p\|),$$

and the facts that $||M|| \leq 1$ and

$$\|\eta_t \mathbf{M} g_{\boldsymbol{\theta}_t}\| \leqslant \eta_t \|\mathbf{M}\| \|g_{\boldsymbol{\theta}_t}\| \leqslant \eta_t \|g_{\boldsymbol{\theta}_t}\|,$$

we further get that

$$J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{t}) - J(\boldsymbol{\theta}_{p}, \boldsymbol{\omega}_{t}) \leq \frac{1}{2\eta_{t}} (\|\boldsymbol{M}\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{p}\|^{2} - \|\boldsymbol{M}\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{p}\|^{2})$$

$$+ \|g_{\boldsymbol{\theta}_{t}}\|(\|\boldsymbol{L}\boldsymbol{\theta}_{t}\| + \|\boldsymbol{L}\boldsymbol{\theta}_{p}\|) + \frac{\eta_{t}}{2}\|g_{\boldsymbol{\theta}_{t}}\|^{2}.$$

$$(13)$$

Similarly, for any dual variable ω_p , we can derive that

$$J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{t}) - J(\boldsymbol{\theta}_{t}, \boldsymbol{\omega}_{p}) \geqslant -\frac{1}{2\eta_{t}} (\|\boldsymbol{M}\boldsymbol{\omega}_{t} - \boldsymbol{\omega}_{p}\|^{2} - \|\boldsymbol{M}\boldsymbol{\omega}_{t+1} - \boldsymbol{\omega}_{p}\|^{2})$$
$$-\|g_{\boldsymbol{\omega}_{t}}\|(\|\boldsymbol{L}\boldsymbol{\omega}_{t}\| + \|\boldsymbol{L}\boldsymbol{\omega}_{p}\|) - \frac{\eta_{t}}{2}\|g_{\boldsymbol{\omega}_{t}}\|^{2}. \tag{14}$$

Based on Lemma 3, we will provide the cumulative estimation error corresponding to the online time-averages.

Lemma 4. For any (θ_p, ω_p) , $1 \leq p \leq t$, we have the following cumulative error corresponding to the dual averaging

$$\sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) - tJ(\boldsymbol{\theta}_{p}, \boldsymbol{\omega}_{t+1}^{a}) \leqslant \frac{u(t, \boldsymbol{\theta}_{p})}{2}$$
(15)

where

$$u(t, \boldsymbol{\theta}_{p}) = \sum_{s=2}^{t} (\|\boldsymbol{M}\boldsymbol{\theta}_{s} - \boldsymbol{\theta}_{p}\|^{2}) (\frac{1}{\eta_{s}} - \frac{1}{\eta_{s-1}}) + \frac{2}{\eta_{1}} (\|\boldsymbol{\theta}_{1}\|^{2} + \|\boldsymbol{\theta}_{p}\|^{2})$$

$$+ \sum_{s=1}^{t} \eta_{s} \|g_{\boldsymbol{\theta}_{s}}\|^{2} + 2 \sum_{s=1}^{t} \|g_{\boldsymbol{\theta}_{s}}\| \|\boldsymbol{L}\boldsymbol{\theta}_{s}\| + 2 \|\boldsymbol{L}\boldsymbol{\theta}_{p}\| \sum_{s=1}^{t} \|g_{\boldsymbol{\theta}_{s}}\|.$$

$$(16)$$

Correspondingly, the cumulative error with respect to the primal averaging is

$$-\frac{u(t, \boldsymbol{\omega}_p)}{2} \leqslant \sum_{s=1}^{t} J(\boldsymbol{\theta}_s, \boldsymbol{\omega}_s) - tJ(\boldsymbol{\theta}_{t+1}^{a} \boldsymbol{\omega}_p), \tag{17}$$

Proof. Based on Lemma 3, making the summation over $s = 1, \dots, t$ on both sides of (7), we derive that

$$2\sum_{s=1}^{t} (J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) - J(\boldsymbol{\theta}_{p}, \boldsymbol{\omega}_{s})) \leq \sum_{s=2}^{t} (\|\boldsymbol{M}\boldsymbol{\theta}_{s} - \boldsymbol{\theta}_{p}\|^{2}) (\frac{1}{\eta_{s}} - \frac{1}{\eta_{s-1}}) + \frac{1}{\eta_{1}} \|\boldsymbol{M}\boldsymbol{\theta}_{1} - \boldsymbol{\theta}_{p}\|^{2} + \sum_{s=1}^{t} \eta_{s} \|g_{\boldsymbol{\theta}_{s}}\|^{2} + 2\sum_{s=1}^{t} \|g_{\boldsymbol{\theta}_{s}}\| \|\boldsymbol{L}\boldsymbol{\theta}_{s}\| + 2\|\boldsymbol{L}\boldsymbol{\theta}_{p}\| \sum_{s=1}^{t} \|g_{\boldsymbol{\theta}_{s}}\|.$$
(18)

Noting that $\|\boldsymbol{M}\boldsymbol{\theta}_1 - \boldsymbol{\theta}_p\|^2 \leq 2\|\boldsymbol{\theta}_1\|^2 + 2\|\boldsymbol{\theta}_p\|^2$, we have

$$2\sum_{s=1}^{t} (J(\boldsymbol{\theta}_s, \boldsymbol{\omega}_s) - J(\boldsymbol{\theta}_p, \boldsymbol{\omega}_s)) \leqslant u(t, \boldsymbol{\theta}_p)$$
(19)

Since the function $J(\boldsymbol{\theta}, \boldsymbol{\omega})$ is concave with respective to $\boldsymbol{\omega}$, one has

$$J(\boldsymbol{\theta}_p, \boldsymbol{\omega}_{t+1}^{\mathrm{a}}) \geqslant \frac{1}{t} \sum_{s=1}^{t} J(\boldsymbol{\theta}_p, \boldsymbol{\omega}_s)$$
 (20)

Based on (19) and (20), we get (15). Similarly, the lower bound (17) can be derived by making the summation over $s = 1, \dots, t$ on (14) and utilizing the convexity of $J(\boldsymbol{\theta}, \boldsymbol{\omega})$ with respective to $\boldsymbol{\theta}$, i.e., $J(\boldsymbol{\theta}_{t+1}^{a}, \boldsymbol{\omega}_{p}) \leqslant \frac{1}{t} \sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{p})$.

In Lemma 4, we have established the upper and lower bounds of the cumulative errors. Let (θ^*, ω^*) denote the saddle point, which satisfies

$$J(\boldsymbol{\theta}^*, \boldsymbol{\omega}_{t+1}^{\mathrm{a}}) \leqslant J(\boldsymbol{\theta}^*, \boldsymbol{\omega}^*) \leqslant J(\boldsymbol{\theta}_{t+1}^{\mathrm{a}}, \boldsymbol{\omega}^*)$$
(21)

We further get the following fundamental results on the online time-average evaluations.

Lemma 5. Let (θ^*, ω^*) be the saddle point of $J(\theta^*, \omega^*)$. The following inequalities hold:

$$-u(t, \boldsymbol{\omega}^*) - u(t, \boldsymbol{\theta}_{t+1}^{\mathrm{a}}) \leq 2t(J(\boldsymbol{\theta}_{t+1}^{\mathrm{a}}, \boldsymbol{\omega}_{t+1}^{\mathrm{a}}) - J(\boldsymbol{\theta}^*, \boldsymbol{\omega}^*))$$
$$\leq u(t, \boldsymbol{\theta}^*) + u(t, \boldsymbol{\omega}_{t+1}^{\mathrm{a}})$$

Proof. Replacing θ_p with θ^* in (15) and applying (21), we have

$$\sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) - tJ(\boldsymbol{\theta}^{*}, \boldsymbol{\omega}^{*}) \leqslant \sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) - tJ(\boldsymbol{\theta}^{*}, \boldsymbol{\omega}_{t+1}^{a}) \leqslant \frac{u(t, \boldsymbol{\theta}^{*})}{2}.$$
 (22)

Replacing ω_p with ω^* in (17) and using (21), we get that

$$\sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) - tJ(\boldsymbol{\theta}^{*}, \boldsymbol{\omega}^{*}) \geqslant \sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) - tJ(\boldsymbol{\theta}_{t+1}^{a}, \boldsymbol{\omega}^{*}) \geqslant -\frac{u(t, \boldsymbol{\omega}^{*})}{2}.$$
 (23)

By (22) and (23), we have

$$-\frac{u(t, \boldsymbol{\omega}^*)}{2} \leqslant \sum_{s=1}^t J(\boldsymbol{\theta}_s, \boldsymbol{\omega}_s) - tJ(\boldsymbol{\theta}^*, \boldsymbol{\omega}^*) \leqslant \frac{u(t, \boldsymbol{\theta}^*)}{2}.$$
 (24)

Letting $\boldsymbol{\theta}_p = \boldsymbol{\theta}_{t+1}^{\mathrm{a}}$ in (15) yields

$$\sum_{s=1}^{t} J(\boldsymbol{\theta}_s, \boldsymbol{\omega}_s) - tJ(\boldsymbol{\theta}_{t+1}^{a}, \boldsymbol{\omega}_{t+1}^{a}) \leqslant \frac{u(t, \boldsymbol{\theta}_{t+1}^{a})}{2}$$
 (25)

Similarly, letting $\omega_p = \omega_{t+1}^a$ in (17) yields

$$-\frac{u(t, \boldsymbol{\omega}_{t+1}^{\mathbf{a}})}{2} \leqslant \sum_{s=1}^{t} J(\boldsymbol{\theta}_s, \boldsymbol{\omega}_s) - tJ(\boldsymbol{\theta}_{t+1}^{\mathbf{a}}, \boldsymbol{\omega}_{t+1}^{\mathbf{a}})$$
 (26)

Combining (25) and (26), we get that

$$-\frac{u(t, \boldsymbol{\theta}_{t+1}^{\mathrm{a}})}{2} \leqslant tJ(\boldsymbol{\theta}_{t+1}^{\mathrm{a}}, \boldsymbol{\omega}_{t+1}^{\mathrm{a}}) - \sum_{s=1}^{t} J(\boldsymbol{\theta}_{s}, \boldsymbol{\omega}_{s}) \leqslant \frac{u(t, \boldsymbol{\omega}_{t+1}^{\mathrm{a}})}{2}. \tag{27}$$

According to (24) and (27), we get Lemma 5.

1.2 The proof of Theorem 2

From Lemma 5, we have

$$J(\boldsymbol{\theta}_{T+1}^{\mathrm{a}}, \boldsymbol{\omega}_{T+1}^{\mathrm{a}}) - J(\boldsymbol{\theta}^{*}, \boldsymbol{\omega}^{*}) \leqslant \frac{u(T, \boldsymbol{\theta}^{*}) + u(T, \boldsymbol{\omega}_{T+1}^{\mathrm{a}})}{2T}$$
(28)

Next, we analyze the terms $u(T, \boldsymbol{\theta}^*)$ and $u(T, \boldsymbol{\omega}_{T+1}^a)$ one by one. Noting that $\eta_t = \frac{\varepsilon}{T^{\triangle}}$ and $\boldsymbol{L}\boldsymbol{\theta}^* = 0$, we get from (16) that

$$u(T, \boldsymbol{\theta}^*) = \frac{2T^{\triangle}}{\varepsilon} (\|\boldsymbol{\theta}_1\|^2 + \|\boldsymbol{\theta}^*\|^2) + \frac{\varepsilon}{T^{\triangle}} \sum_{s=1}^{T} \|g_{\boldsymbol{\theta}_s}\|^2 + 2\sum_{s=1}^{T} \|g_{\boldsymbol{\theta}_s}\| \|\boldsymbol{L}\boldsymbol{\theta}_s\|$$

$$\leq \frac{4T^{\triangle}\theta_0^2}{\varepsilon} + \varepsilon g_{\theta_0}^2 T^{1-\triangle} + 2g_{\theta_0} \sum_{s=1}^{T} \|\boldsymbol{L}\boldsymbol{\theta}_s\|$$
(29)

According to Lemma 2, we have

$$\sum_{s=1}^{T} \|\boldsymbol{L}\boldsymbol{\theta}_{s}\| \leq 2N\theta_{0} + \frac{N^{2}\theta_{0}\nu}{1-r} + 2Ng_{\theta_{0}}\varepsilon T^{1-\triangle} + N^{2}g_{\theta_{0}}\nu\varepsilon T^{-\triangle} \sum_{t=2}^{T-1} \sum_{s=1}^{t-1} r^{t-s-1}$$

$$\leq 2N\theta_{0} + \frac{N^{2}\theta_{0}\nu}{1-r} + (2Ng_{\theta_{0}}\varepsilon + \frac{N^{2}g_{\theta_{0}}\nu\varepsilon}{1-r})T^{1-\triangle}$$
(30)

Substituting (30) into (29) and making some reorganization yield

$$u(T, \boldsymbol{\theta}^*) \leqslant \frac{T^{\triangle}}{\varepsilon} \left(4\theta_0^2 + 4N\theta_0 g_{\theta_0} + \frac{2N^2 \theta_0 \nu g_{\theta_0}}{1 - r} + (g_{\theta_0}^2 \varepsilon^2 + 4Ng_{\theta_0}^2 \varepsilon^2 + \frac{2N^2 g_{\theta_0}^2 \nu \varepsilon^2}{1 - r})T^{1 - 2\Delta}\right)$$

$$(31)$$

For the term $u(T, \boldsymbol{\omega}_{T+1}^{\mathrm{a}})$, we get from (16) that

$$u(T, \boldsymbol{\omega}_{T+1}^{\mathrm{a}}) \leqslant \frac{4T^{\triangle}\omega_{0}^{2}}{\varepsilon} + \varepsilon g_{\omega_{0}}^{2}T^{1-\triangle} + 2g_{\omega_{0}}\sum_{s=1}^{T} \|\boldsymbol{L}\boldsymbol{\omega}_{s}\| + 2g_{\omega_{0}}\|\boldsymbol{L}\boldsymbol{\omega}_{T+1}^{\mathrm{a}}\|T$$

In light of $\|\boldsymbol{L}\boldsymbol{\omega}_{T+1}^{\mathrm{a}}\| \leqslant \frac{1}{T}\sum_{s=1}^{T}\|\boldsymbol{L}\boldsymbol{\omega}_{s}\|$, we further get that

$$u(T, \boldsymbol{\omega}_{T+1}^{\mathbf{a}}) \leqslant \frac{4T^{\Delta}\omega_{0}^{2}}{\varepsilon} + \varepsilon g_{\omega_{0}}^{2} T^{1-\Delta} + 4g_{\omega_{0}} \sum_{s=1}^{T} \|\boldsymbol{L}\boldsymbol{\omega}_{s}\|$$

$$\leqslant \frac{T^{\Delta}}{\varepsilon} (4\omega_{0}^{2} + 8N\omega_{0}g_{\omega_{0}} + \frac{4N^{2}\omega_{0}\nu g_{\omega_{0}}}{1-r}$$

$$+ (g_{\omega_{0}}^{2}\varepsilon^{2} + 8Ng_{\omega_{0}}^{2}\varepsilon^{2} + \frac{4N^{2}g_{\omega_{0}}^{2}\nu\varepsilon^{2}}{1-r})T^{1-2\Delta})$$

$$(32)$$

Substituting (31) and (32) into (28), and according to Lemma 5, we have

$$J(\boldsymbol{\theta}^*, \boldsymbol{\omega}^*) - J(\boldsymbol{\theta}_{T+1}^{a}, \boldsymbol{\omega}_{T+1}^{a}) \leqslant \frac{u(T, \boldsymbol{\omega}^*) + u(T, \boldsymbol{\theta}_{T+1}^{a})}{2T}$$
(33)

Applying the similar dirivation process as (28)-(33), we can get Theorem 2.

1.3 The proof of Theorem 3

From Lemma 5, we have

$$J(\boldsymbol{\theta}_{t+1}^{\mathrm{a}}, \boldsymbol{\omega}_{t+1}^{\mathrm{a}}) - J(\boldsymbol{\theta}^{*}, \boldsymbol{\omega}^{*}) \leqslant \frac{u(t, \boldsymbol{\theta}^{*}) + u(t, \boldsymbol{\omega}_{t+1}^{\mathrm{a}})}{2t}$$
(34)

For the term $u(t, \theta^*)$, we get from (16) that

$$u(t, \boldsymbol{\theta}^*) \leqslant 4\theta_0^2 \varepsilon \sum_{s=2}^t \frac{1}{\sqrt{s}} + \frac{4\theta_0^2}{\varepsilon} + g_{\theta_0}^2 \varepsilon \sum_{s=1}^t \frac{1}{\sqrt{s}} + 2g_{\theta_0} \sum_{s=1}^t \|\boldsymbol{L}\boldsymbol{\theta}_s\|$$

$$\leqslant \frac{4\theta_0^2}{\varepsilon} + (8\theta_0^2 \varepsilon + 2g_{\theta_0}^2 \varepsilon)\sqrt{t} + 2g_{\theta_0} \sum_{s=1}^t \|\boldsymbol{L}\boldsymbol{\theta}_s\|$$
(35)

From Lemma 2, we have

$$\sum_{s=1}^{t} \| L\theta_{s} \| \leq 2N\theta_{0} + \frac{N^{2}\theta_{0}\nu}{1 - r} + 2Ng_{\theta_{0}}\varepsilon \sum_{s=1}^{t-1} \frac{1}{\sqrt{s}}$$

$$+ N^{2}g_{\theta_{0}}\nu\varepsilon \sum_{l=2}^{t-1} \sum_{s=1}^{l-1} \frac{r^{t-s-1}}{\sqrt{s}}$$

$$\leq 2N\theta_{0} + \frac{N^{2}\theta_{0}\nu}{1 - r} + (4Ng_{\theta_{0}}\varepsilon + \frac{2N^{2}g_{\theta_{0}}\nu\varepsilon}{1 - r})\sqrt{t}$$
(36)

Substituting (36) into (35), we have

$$u(t, \boldsymbol{\theta}^*) \leqslant 2\alpha_{\theta_1}' + 2\alpha_{\theta_2}' \sqrt{t} \tag{37}$$

For the term $u(t, \boldsymbol{\omega}_{t+1}^{\mathrm{a}})$, we get from (16) that

$$u(t, \boldsymbol{\omega}_{t+1}^{\mathbf{a}}) \leq 4\omega_{0}^{2} \sum_{s=1}^{t} \frac{\varepsilon}{\sqrt{s}} + \frac{4\omega_{0}^{2}}{\varepsilon} + g_{\omega_{0}}^{2} \sum_{s=1}^{t} \frac{\varepsilon}{\sqrt{s}}$$

$$+ 2g_{\omega_{0}} \sum_{s=1}^{t} \|\boldsymbol{L}\boldsymbol{\omega}_{s}\| + 2g_{\omega_{0}} \|\boldsymbol{L}\boldsymbol{\omega}_{t+1}^{\mathbf{a}}\| t$$

$$\leq \frac{4\omega_{0}^{2}}{\varepsilon} + (8\omega_{0}^{2}\varepsilon + 2g_{\omega_{0}}^{2}\varepsilon)\sqrt{t} + 4g_{\omega_{0}} \sum_{s=1}^{t} \|\boldsymbol{L}\boldsymbol{\omega}_{s}\|$$

$$(38)$$

Since the term $\sum_{s=1}^{t} \|L\omega_s\|$ satisfies the similar relationship as that of (36), we further get that

$$u(t, \boldsymbol{\omega}_{t+1}^{\mathbf{a}}) \leqslant 2\beta_{\omega_1}' + 2\beta_{\omega_2}' \sqrt{t}$$
(39)

By (34), (37) and (39), we get the inequality on the right side of Theorem 3. From Lemma 5, we have

$$J(\boldsymbol{\theta}^*, \boldsymbol{\omega}^*) - J(\boldsymbol{\theta}_{t+1}^{\mathrm{a}}, \boldsymbol{\omega}_{t+1}^{\mathrm{a}}) \leqslant \frac{u(t, \boldsymbol{\omega}^*) + u(t, \boldsymbol{\theta}_{t+1}^{\mathrm{a}})}{2t}$$

$$(40)$$

Using the similar derivation process as that of (35)-(39), we can get Theorem 3.