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1 Appendix A

In this paper, a sequence of digraphs is considered, which is formally stated as follows.

Assumption 1. The sequence of graphs {G(¢)};>1 are uniformly jointly strongly connected and weight-
balanced, i.e., there is a finite integer B > 0 such that the graph G(t) UG(t+1)U...UG(t+ B — 1)
is strongly connected and weight-balanced. Moreover, the edge weight satisfies a;; > o for some positive
constant o as (i,5) € E.

In light of the distributed policy evaluation algorithm, we have

N t—1

gt+1 Z(bjl t 1 7,1 ZZ¢]Z t S+ 1 77399“5 ntgej,t (1)

1=1 s=1

where the state transition matrix ¢(t,1) = [¢;,(¢,1)] with elements ¢;;(t,!) denoted by
o(t, 1) =POPEt—1)...P(1), t >1

with P(t) = Iy — oLy.
Under Assumption 1, the state transition matrix ¢(¢,1) has the following property.
Lemma 1. While Assumption 1 holds, one has

1 ;
|ji(t,s) — N' <wvr'™s forallt>s

with v = 211+fo_33, r=(1- 03)%
We first show that the consensus constraints are satisfied for the distributed policy evaluation algorithm,
and the proof of Theorem 1 proceeds as follows.

1.1 The proof of Theorem 1

Taking the summation on both sides of (1), we have

t—1

1 1< 1< 1<
N D i = N > 01— N Z Z Ns90:s — 77 > mgo.. (2)
=1 =1 i=1 s=1 =1
According to (1) and (2), one has
1 al 1
Ojirn — D g =Y (5t 1) — N)ai,l
=1 =1
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N t—1 N

1 1
=D (il s+ 1) - N 196is — Mo, + 37 > g, (3)

i=1 s=1 =1

Moreover, it yields from (3) that
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<7 Z |650(t, 1) = 5| 16ial
t=1 i=1
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+fz > nslegit S+1)**\ 190,
t=2 s=1 i=1
1 X
o > (melllgo, | + Zmllgem (4)
t=1
Let [|0;1]] < 0o and ||ge, .|| < gg, With 0o > 0, gs, > 0. By Lemma 1, we further get that
TN
HNEIS 5 DUTIESS 3) S e
t=1 i=1 t=1 i=1
AN 1 X
LSS s 4 LY 2
t=2 s=1 i=1 i=1
- T
Nvb, vN gp, 290,
A—nT " 1-nT D omt g 2
While 7, = 7x, we have
T N
1 NV90 290, vNgg, e
0% _ 0, 0 o 5
H 3, T+1 — TN ;; t+1H T)T + TA + (1 _ T)TA ( )
While 7, = =, by noting Zt 17 <e(l+ ft L \lfdt) 2e\/T, we get that
NV90 499 € 2vN gy, €
0; S 0 6
|| 7, 7+1 TN;; t+1|| ) \/T (1—T>\/T ( )
From (5) and (6), we see that the consensus constraints for 6;, i = 1,--- , N are satisfied as T — oco.
The similar proof and results are also applicable for the dual variable w;, i =1,---, N.
The following lemma is useful in the following analyses.
Lemma 2. Under Assumption 1, the following bound holds.
T—1¢—1
ZHLOtH 2]\790—|— +2NggOZ77t+N ggoyz nert T
t=2 s=1

Proof. Note that

N
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|LO:i 11| = (10141 — 14 ® (N Zei,t+l)”

N
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1
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From (3) and Lemma 1, we further get that
N t—1

(Nvbort=t + Z Nvga,nsr' ™51 + 2g9,m¢)
i=1 s=1

[LO:11] <

Noting that

T T-1
IO =D L8|
t=1 t=0

T-1
= L6 || + > || L0
t=1
and applying the inequalities
| LO:]| < 2Ny
and
T-1 N210 T-1 T—1¢-—1
0 e
Z||L0t+1” < T + 2N gg, Zﬂt+N2V900 ZZ%V 1
t=1 t=1 t=2 s=1

we get the result Lemma 2.

Then, we construct the evaluation error, and find the cumulative error bounds corresponding to the
primal and dual variables, respectively.

Lemma 3. Let {(0;,w;)}i>1 be a sequence of the iterative process, and (8, w,) be the variable at any
time p, 1 < p < t. The bound of primal variable evaluation error is as follows:

1
2(J (01, w1) — J(0p,w1)) S;(IIM@ = 0,7 — | MOes1 — 6,]%)
t
+2go, [ (IL6:]| + | L6, ) + 1]l g6, |- (7)

Similarly, for the dual variable, we have
1
2(J (01, wi) = J (01, wp)) = — ;(HM% —wp|? = [[Mwe i1 — wpl?)
t

= 2|l geo, (1Ll + | L) = 11el| g, |- (8)

Proof.  Multiplying M on both sides of the first equation in the distributed policy evaluation algorithm
and noting that M L; = 0, we can derive the following equation

M6, = M6, — M ge, (9)
By subtracting 6, on both sides of (9) and applying the relationships M7 = M, M? = M, we have
|MO0y1 — 6,12 = M8, — 8, + 1. Moo, I — 2093, (M6, — M8,). (10)
Using the convexity of J(0,w) with respect to 6, the last term of (10) can be bounded as follows

*QeTt(Mgt - Mgp) = *geT,,(Mgt —0;) — QeTt(Op - Mgp) - g;(ot - Op)
< 99, L0: — gg, L0, + J(0,, w;) — J(0y, wy). (11)

Combining (10) with (11), we have

J (0, wi) = J(Op, wi) <5 —(|MO; — 0,[|* — | M8,11 — 6,])

1

2m;
1

+ 99,L0; — gg,LO, + TmllmMgef,llg- (12)
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According to the Cauchy-Schwarz inequality,
96, L6 — 95,L8, < |90, I (| LO:| + IL6, ),

and the facts that [|[M|| < 1 and

e Mge, || < nel| Ml[l|go, | < nellgo,

we further get that
J(0r,w1) = J(0p, 1) < (||M9t 0,1 — || MOs1 — 6,]%)
+ ||get||<||L0t|| + 128, ) + % 90, I (13)
Similarly, for any dual variable w,, we can derive that
T(O1.000) = 7(01.00,) > = (1 Moon =00, = | Musr = )
— 9w, (1 Lt ]| + (| Ly [[) — %||gwt||2- (14)

Based on Lemma 3, we will provide the cumulative estimation error corresponding to the online time-
averages.
Lemma 4. For any (0,,w,), 1 < p < t, we have the following cumulative error corresponding to the
dual averaging

! u(t, ,)
D (0., w,) — (B, wiy ) < 5 (15)
s=1
where
: 11 2
=Y (IM6, = 6,]1*)(— — ——) + =(16:* + [16,]*)
) Ns  Ts—1 m
t
+) ns (16)
s=1 s=1 s=1
Correspondingly, the cumulative error with respect to the primal averaging is
u(t,w !
p ZJ Oeaws - (0?-1—1(“)29)’ (17)
s=1
Proof.  Based on Lemma 3, making the summation over s = 1,--- ,¢ on both sides of (7), we derive
that
t t 1 1
QZ(J(G&WS)_ (0p,ws)) Z ||M98_0p|‘2)(*_ )
s=1 s=2 s MNs—1
—||M01 0pl* + Zns
s=1
(18)
Noting that | M6; — 6,[|? < 2|01 + 2(|6,]|%, we have
t
2 Z(J(em‘%) — J(0p, ws)) < ult, 6)) (19)

s=1



Author G Chen, et al. Sci China Inf Sci 5

Since the function J(6,w) is concave with respective to w, one has

t
a 1
J(Op,win) = 5> (6, w5) (20)
s=1

Based on (19) and (20), we get (15). Similarly, the lower bound (17) can be derived by making
the summation over s = 1,---,¢t on (14) and utilizing the convexity of J(0,w) with respective to 6,

ie,J(0}, wp) < %2221 J(0s,w,).
In Lemma 4, we have established the upper and lower bounds of the cumulative errors. Let (6*,w*)
denote the saddle point, which satisfies

J(0%,wiyy) < J(07,w7) < (674 ,,w7) (21)

We further get the following fundamental results on the online time-average evaluations.
Lemma 5. Let (6*,w*) be the saddle point of J(0*,w™*). The following inequalities hold:

—u(t,w”) —u(t, 07, ,) <2t(J(07,,, wiy,) — J (0", w"))
gu(tv 0*) + u(tv (.U?+1)

Proof.  Replacing 8, with 6* in (15) and applying (21), we have

t ¢
t, 0"
> J(8s,ws) — (8 <> IO, w,) — tI(67, W) < u : ). (22)
s=1 s=1
Replacing w,, with w* in (17) and using (21), we get that
t . t 0wy s )
> J(0s,w,) —t > (0, w) —tJ (0], w") > o (23)
s=1 s=1
By (22) and (23), we have
W) o u(t, 6*)
<D (0swa) — 1 (0%,w") < = (24)
s=1
Letting 6, = 67, in (15) yields
: a a u(t’ 0?—'1—1)
Z J(0s,ws) = tJ (071, wip) < -9 (25)
s=1
Similarly, letting w, = wf,; in (17) yields
¢
u(t, w?
- t+1 ZJ 0s,ws) — tJ (071, wiyy) (26)
s=1
Combining (25) and (26), we get that
t, 02 i t, w?
D) 0 ) 3 (0,0 < ML) 27)

s=1

According to (24) and (27), we get Lemma 5.
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1.2 The proof of Theorem 2
From Lemma 5, we have

u(T, 0%) + u(T, wﬁ}H)
2T

J(OF 41, W) — J(07,07) < (28)

Next, we analyze the terms u(7, 8*) and u(T, w4 ;) one by one. Noting that 7; = 7= and LO* = 0, we
get from (16) that

uw(T,0") = — (||t91||2+||<9 I?)

4T 00

+eg, T A+2geoz:||13¢9 | (29)
s=1

According to Lemma 2, we have

N29 v T—-1t—-1
Z IILOs|| < 2N6y + o 4 2Ngg,eT* =2 + N2gg,veT~4 Z pimsl
—r
t=2 s=1
N26 N?
<2NBo + S5 4 (2Ngge + 20T (30)
- -
Substituting (30) into (29) and making some reorganization yield
T 2N26
w(T,0") <— (462 + 4N8ygg, + 170'/990 (31)
€ -
2N?2g2 ve?
(G5, + ANgG,E* + — )T
For the term u(T,w%., ), we get from (16) that
. ATA R d
w(T,wiyq) < 292, T8 4 2000 Y LWl 4 2000 | L | T
s=1
In light of ||Lw¥ | < % ST | Lws]|, we further get that
ATA 2 _ a
u(T, Wi y) S—2 422 T % +4gu, > | Lo (32)
s=1
T AN2wovg,
<7(4w3 + SNWngo + e
€ 1—7r
4N?g? ve?
(92,67 + BNG2, &% 4 e 7128
Substituting (31) and (32) into (28), and according to Lemma 5, we have
. N N w(T,w*) +u(T, 0%, )
J(O", @) = J(0F11, i) < T (33)
Applying the similar dirivation process as (28)-(33), we can get Theorem 2.
1.3 The proof of Theorem 3
From Lemma 5, we have
N N v L u(t,0%) Fut,wd )
J(O0F,,wiyy) — J(0",w) < o (34)

2t
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For the term u(t, 8*), we get from (16) that

492
< 70 + (865e + 205,€) V't + 200, Z [ZAl (35)

s=1

From Lemma 2, we have

t t—1
N2901/ 1
> |ILe,| <2No 2Ngg,e Y —=
p— I I . 1—r 2N g0, — Vs

t—1

-1
+ N 990V€ZZ
=2

s=1

N20yv 2N2gg ve
2Ny + =2 + (4Nga,s + T2 )VE

Substituting (36) into (35), we have
u(t,0%) < 2ap, + 20Vt (37)
For the term u(t,wy, ), we get from (16) that

LA 4wd 'Le
u(t, wiyr) <4 Y =+ —+g2§—
ba) s w0 ls /s

¢

+ 29w, Z [ Lws || 4 2, [ Lwi ||t
s=1
4w i
70 + (8wie +292,E)VE +4gu, D || Lol (38)

s=1
Since the term Y'_, || Lw,|| satisfies the similar relationship as that of (36), we further get that
ult,wiy 1) < 26, + 260,V (39)
y (34), (37) and (39), we get the inequality on the right side of Theorem 3. From Lemma 5, we have

u(ta w*) + U(t, 9?—&-1)

J(O*aW*)—J(G?va?H) < o

(40)

Using the similar derivation process as that of (35)-(39), we can get Theorem 3.
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