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1 Appendix A

In this paper, a sequence of digraphs is considered, which is formally stated as follows.

Assumption 1. The sequence of graphs {G(t)}t>1 are uniformly jointly strongly connected and weight-
balanced, i.e., there is a finite integer B > 0 such that the graph G(t) ∪ G(t + 1) ∪ . . . ∪ G(t + B − 1)
is strongly connected and weight-balanced. Moreover, the edge weight satisfies aij > o for some positive
constant o as (i, j) ∈ E.

In light of the distributed policy evaluation algorithm, we have

θj,t+1 =

N∑
i=1

φji(t, 1)θi,1 −
N∑
i=1

t−1∑
s=1

φji(t, s+ 1)ηsgθi,s − ηtgθj ,t (1)

where the state transition matrix φ(t, l) = [φji(t, l)] with elements φji(t, l) denoted by

φ(t, l) = P̂(t)P̂(t− 1) . . . P̂(l), t > l

with P̂ (t) = IN − σLt.
Under Assumption 1, the state transition matrix φ(t, l) has the following property.

Lemma 1. While Assumption 1 holds, one has

|φji(t, s)−
1

N
| 6 νrt−s for all t > s,

with ν = 2 1+o−B

1−oB , r = (1− oB)
1
B .

We first show that the consensus constraints are satisfied for the distributed policy evaluation algorithm,
and the proof of Theorem 1 proceeds as follows.

1.1 The proof of Theorem 1

Taking the summation on both sides of (1), we have

1

N

N∑
i=1

θi,t+1 =
1

N

N∑
i=1

θi,1 −
1

N

N∑
i=1

t−1∑
s=1

ηsgθi,s −
1

N

N∑
i=1

ηtgθi,t (2)

According to (1) and (2), one has

θj,t+1 −
1

N

N∑
i=1

θi,t+1 =

N∑
i=1

(φji(t, 1)− 1

N
)θi,1
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−
N∑
i=1

t−1∑
s=1

(φji(t, s+ 1)− 1

N
)ηsgθi,s − ηtgθj,t +

1

N

N∑
i=1

ηtgθi,t (3)

Moreover, it yields from (3) that

‖θaj,T+1 −
1

TN

T∑
t=1

N∑
i=1

θi,t+1‖ 6
1

T

T∑
t=1

‖θj,t+1 −
1

N

N∑
i=1

θi,t+1‖

6
1

T

T∑
t=1

N∑
i=1

|φji(t, 1)− 1

N
| · ‖θi,1‖

+
1

T

T∑
t=2

t−1∑
s=1

N∑
i=1

ηs|φji(t, s+ 1)− 1

N
| · ‖gθi,s‖

+
1

T

T∑
t=1

(ηt(‖gθj,t‖+
1

N

N∑
i=1

ηt‖gθi,t‖) (4)

Let ‖θi,1‖ 6 θ0 and ‖gθj,t‖ 6 gθ0 with θ0 > 0, gθ0 > 0. By Lemma 1, we further get that

‖θaj,T+1 −
1

TN

T∑
t=1

N∑
i=1

θi,t+1‖ 6
1

T

T∑
t=1

N∑
i=1

θ0νr
t−1

+
1

T

T∑
t=2

t−1∑
s=1

N∑
i=1

gθ0νηsr
t−s−1 +

1

T

T∑
i=1

2gθ0ηt

6
Nνθ0

(1− r)T
+

νNgθ0
(1− r)T

T−1∑
t=1

ηt +
2gθ0
T

T∑
t=1

ηt

While ηt = ε
T4

, we have

‖θaj,T+1 −
1

TN

T∑
t=1

N∑
i=1

θi,t+1‖ 6
Nνθ0

(1− r)T
+

2gθ0ε

T4
+

νNgθ0ε

(1− r)T4
(5)

While ηt = ε√
t
, by noting

∑T
t=1

ε√
t
6 ε(1 +

∫ T
t=1

1√
t
dt) 6 2ε

√
T , we get that

‖θaj,T+1 −
1

TN

T∑
t=1

N∑
i=1

θi,t+1‖ 6
Nνθ0

(1− r)T
+

4gθ0ε√
T

+
2νNgθ0ε

(1− r)
√
T

(6)

From (5) and (6), we see that the consensus constraints for θi, i = 1, · · · , N are satisfied as T → ∞.
The similar proof and results are also applicable for the dual variable ωi, i = 1, · · · , N .

The following lemma is useful in the following analyses.

Lemma 2. Under Assumption 1, the following bound holds.

T∑
t=1

‖Lθt‖ 6 2Nθ0 +
N2θ0ν

1− r
+ 2Ngθ0

T−1∑
t=1

ηt +N2gθ0ν

T−1∑
t=2

t−1∑
s=1

ηsr
t−s−1

Proof. Note that

‖Lθt+1‖ = ‖θt+1 − 1d ⊗ (
1

N

N∑
i=1

θi,t+1)‖

6
N∑
i=1

‖θi,t+1 −
1

N

N∑
i=1

θi,t+1‖
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From (3) and Lemma 1, we further get that

‖Lθt+1‖ 6
N∑
i=1

(Nνθ0r
t−1 +

t−1∑
s=1

Nνgθ0ηsr
t−s−1 + 2gθ0ηt)

Noting that

T∑
t=1

‖Lθt‖ =

T−1∑
t=0

‖Lθt+1‖

= ‖Lθ1‖+

T−1∑
t=1

‖Lθt+1‖

and applying the inequalities

‖Lθ1‖ 6 2Nθ0

and

T−1∑
t=1

‖Lθt+1‖ 6
N2νθ0
1− r

+ 2Ngθ0

T−1∑
t=1

ηt +N2νgθ0

T−1∑
t=2

t−1∑
s=1

ηsr
t−s−1

we get the result Lemma 2.

Then, we construct the evaluation error, and find the cumulative error bounds corresponding to the
primal and dual variables, respectively.

Lemma 3. Let {(θt,ωt)}t>1 be a sequence of the iterative process, and (θp,ωp) be the variable at any
time p, 1 6 p 6 t. The bound of primal variable evaluation error is as follows:

2(J(θt,ωt)− J(θp,ωt)) 6
1

ηt
(‖Mθt − θp‖2 − ‖Mθt+1 − θp‖2)

+ 2‖gθt‖(‖Lθt‖+ ‖Lθp‖) + ηt‖gθt‖2. (7)

Similarly, for the dual variable, we have

2(J(θt,ωt)− J(θt,ωp)) >−
1

ηt
(‖Mωt − ωp‖2 − ‖Mωt+1 − ωp‖2)

− 2‖gωt‖(‖Lωt‖+ ‖Lωp‖)− ηt‖gωt‖2. (8)

Proof. Multiplying M on both sides of the first equation in the distributed policy evaluation algorithm
and noting that MLt = 0, we can derive the following equation

Mθt+1 = Mθt − ηtMgθt (9)

By subtracting θp on both sides of (9) and applying the relationships MT = M ,M2 = M , we have

‖Mθt+1 − θp‖2 = ‖Mθt − θp‖2 + ‖ηtMgθt‖2 − 2ηtg
>
θt(Mθt −Mθp). (10)

Using the convexity of J(θ,ω) with respect to θ, the last term of (10) can be bounded as follows

−g>θt(Mθt −Mθp) = −g>θt(Mθt − θt)− g>θt(θp −Mθp)− g>θt(θt − θp)
6 g>θtLθt − g

>
θtLθp + J(θp,ωt)− J(θt,ωt). (11)

Combining (10) with (11), we have

J(θt,ωt)− J(θp,ωt) 6
1

2ηt
(‖Mθt − θp‖2 − ‖Mθt+1 − θp‖2)

+ g>θtLθt − g
>
θtLθp +

1

2ηt
‖ηtMgθt‖2. (12)
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According to the Cauchy-Schwarz inequality,

g>θtLθt − g
>
θtLθp 6 ‖gθt‖(‖Lθt‖+ ‖Lθp‖),

and the facts that ‖M‖ 6 1 and

‖ηtMgθt‖ 6 ηt‖M‖‖gθt‖ 6 ηt‖gθt‖,

we further get that

J(θt,ωt)− J(θp,ωt) 6
1

2ηt
(‖Mθt − θp‖2 − ‖Mθt+1 − θp‖2)

+ ‖gθt‖(‖Lθt‖+ ‖Lθp‖) +
ηt
2
‖gθt‖2. (13)

Similarly, for any dual variable ωp, we can derive that

J(θt,ωt)− J(θt,ωp) >−
1

2ηt
(‖Mωt − ωp‖2 − ‖Mωt+1 − ωp‖2)

− ‖gωt
‖(‖Lωt‖+ ‖Lωp‖)−

ηt
2
‖gωt
‖2. (14)

Based on Lemma 3, we will provide the cumulative estimation error corresponding to the online time-
averages.

Lemma 4. For any (θp,ωp), 1 6 p 6 t, we have the following cumulative error corresponding to the
dual averaging

t∑
s=1

J(θs,ωs)− tJ(θp,ω
a
t+1) 6

u(t,θp)

2
(15)

where

u(t,θp) =

t∑
s=2

(‖Mθs − θp‖2)(
1

ηs
− 1

ηs−1
) +

2

η1
(‖θ1‖2 + ‖θp‖2)

+

t∑
s=1

ηs‖gθs‖2 + 2

t∑
s=1

‖gθs‖‖Lθs‖+ 2‖Lθp‖
t∑

s=1

‖gθs‖. (16)

Correspondingly, the cumulative error with respect to the primal averaging is

−u(t,ωp)

2
6

t∑
s=1

J(θs,ωs)− tJ(θat+1ωp), (17)

Proof. Based on Lemma 3, making the summation over s = 1, · · · , t on both sides of (7), we derive
that

2

t∑
s=1

(J(θs,ωs)− J(θp,ωs)) 6
t∑

s=2

(‖Mθs − θp‖2)(
1

ηs
− 1

ηs−1
)

+
1

η1
‖Mθ1 − θp‖2 +

t∑
s=1

ηs‖gθs‖2

+ 2

t∑
s=1

‖gθs‖‖Lθs‖+ 2‖Lθp‖
t∑

s=1

‖gθs‖. (18)

Noting that ‖Mθ1 − θp‖2 6 2‖θ1‖2 + 2‖θp‖2, we have

2

t∑
s=1

(J(θs,ωs)− J(θp,ωs)) 6 u(t,θp) (19)
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Since the function J(θ,ω) is concave with respective to ω, one has

J(θp,ω
a
t+1) >

1

t

t∑
s=1

J(θp,ωs) (20)

Based on (19) and (20), we get (15). Similarly, the lower bound (17) can be derived by making
the summation over s = 1, · · · , t on (14) and utilizing the convexity of J(θ,ω) with respective to θ,
i.e.,J(θat+1,ωp) 6

1
t

∑t
s=1 J(θs,ωp).

In Lemma 4, we have established the upper and lower bounds of the cumulative errors. Let (θ∗,ω∗)
denote the saddle point, which satisfies

J(θ∗,ωa
t+1) 6 J(θ∗,ω∗) 6 J(θat+1,ω

∗) (21)

We further get the following fundamental results on the online time-average evaluations.

Lemma 5. Let (θ∗,ω∗) be the saddle point of J(θ∗,ω∗). The following inequalities hold:

−u(t,ω∗)− u(t,θat+1) 62t(J(θat+1,ω
a
t+1)− J(θ∗,ω∗))

6u(t,θ∗) + u(t,ωa
t+1)

Proof. Replacing θp with θ∗ in (15) and applying (21), we have

t∑
s=1

J(θs,ωs)− tJ(θ∗,ω∗) 6
t∑

s=1

J(θs,ωs)− tJ(θ∗,ωa
t+1) 6

u(t,θ∗)

2
. (22)

Replacing ωp with ω∗ in (17) and using (21), we get that

t∑
s=1

J(θs,ωs)− tJ(θ∗,ω∗) >
t∑

s=1

J(θs,ωs)− tJ(θat+1,ω
∗) > −u(t,ω∗)

2
. (23)

By (22) and (23), we have

−u(t,ω∗)

2
6

t∑
s=1

J(θs,ωs)− tJ(θ∗,ω∗) 6
u(t,θ∗)

2
. (24)

Letting θp = θat+1 in (15) yields

t∑
s=1

J(θs,ωs)− tJ(θat+1,ω
a
t+1) 6

u(t,θat+1)

2
(25)

Similarly, letting ωp = ωat+1 in (17) yields

−
u(t,ωa

t+1)

2
6

t∑
s=1

J(θs,ωs)− tJ(θat+1,ω
a
t+1) (26)

Combining (25) and (26), we get that

−
u(t,θat+1)

2
6 tJ(θat+1,ω

a
t+1)−

t∑
s=1

J(θs,ωs) 6
u(t,ωa

t+1)

2
. (27)

According to (24) and (27), we get Lemma 5.
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1.2 The proof of Theorem 2

From Lemma 5, we have

J(θaT+1,ω
a
T+1)− J(θ∗,ω∗) 6

u(T,θ∗) + u(T,ωa
T+1)

2T
(28)

Next, we analyze the terms u(T,θ∗) and u(T,ωa
T+1) one by one. Noting that ηt = ε

T4
and Lθ∗ = 0, we

get from (16) that

u(T,θ∗) =
2T4

ε
(‖θ1‖2 + ‖θ∗‖2) +

ε

T4

T∑
s=1

‖gθs‖2 + 2

T∑
s=1

‖gθs‖‖Lθs‖

6
4T4θ20
ε

+ εg2θ0T
1−4 + 2gθ0

T∑
s=1

‖Lθs‖ (29)

According to Lemma 2, we have

T∑
s=1

‖Lθs‖ 6 2Nθ0 +
N2θ0ν

1− r
+ 2Ngθ0εT

1−4 +N2gθ0νεT
−4

T−1∑
t=2

t−1∑
s=1

rt−s−1

6 2Nθ0 +
N2θ0ν

1− r
+ (2Ngθ0ε+

N2gθ0νε

1− r
)T 1−4 (30)

Substituting (30) into (29) and making some reorganization yield

u(T,θ∗) 6
T4

ε
(4θ20 + 4Nθ0gθ0 +

2N2θ0νgθ0
1− r

(31)

+ (g2θ0ε
2 + 4Ng2θ0ε

2 +
2N2g2θ0νε

2

1− r
)T 1−24)

For the term u(T,ωa
T+1), we get from (16) that

u(T,ωa
T+1) 6

4T4ω2
0

ε
+ εg2ω0

T 1−4 + 2gω0

T∑
s=1

‖Lωs‖+ 2gω0
‖Lωa

T+1‖T

In light of ‖Lωa
T+1‖ 6 1

T

∑T
s=1 ‖Lωs‖, we further get that

u(T,ωa
T+1) 6

4T4ω2
0

ε
+ εg2ω0

T 1−4 + 4gω0

T∑
s=1

‖Lωs‖ (32)

6
T4

ε
(4ω2

0 + 8Nω0gω0
+

4N2ω0νgω0

1− r

+ (g2ω0
ε2 + 8Ng2ω0

ε2 +
4N2g2ω0

νε2

1− r
)T 1−24)

Substituting (31) and (32) into (28), and according to Lemma 5, we have

J(θ∗,ω∗)− J(θaT+1,ω
a
T+1) 6

u(T,ω∗) + u(T,θaT+1)

2T
(33)

Applying the similar dirivation process as (28)-(33), we can get Theorem 2.

1.3 The proof of Theorem 3

From Lemma 5, we have

J(θat+1,ω
a
t+1)− J(θ∗,ω∗) 6

u(t,θ∗) + u(t,ωa
t+1)

2t
(34)
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For the term u(t,θ∗), we get from (16) that

u(t,θ∗) 6 4θ20ε

t∑
s=2

1√
s

+
4θ20
ε

+ g2θ0ε

t∑
s=1

1√
s

+ 2gθ0

t∑
s=1

‖Lθs‖

6
4θ20
ε

+ (8θ20ε+ 2g2θ0ε)
√
t+ 2gθ0

t∑
s=1

‖Lθs‖ (35)

From Lemma 2, we have

t∑
s=1

‖Lθs‖ 62Nθ0 +
N2θ0ν

1− r
+ 2Ngθ0ε

t−1∑
s=1

1√
s

+N2gθ0νε

t−1∑
l=2

l−1∑
s=1

rt−s−1√
s

(36)

62Nθ0 +
N2θ0ν

1− r
+ (4Ngθ0ε+

2N2gθ0νε

1− r
)
√
t

Substituting (36) into (35), we have

u(t,θ∗) 6 2α′θ1 + 2α′θ2
√
t (37)

For the term u(t,ωa
t+1), we get from (16) that

u(t,ωa
t+1) 64ω2

0

t∑
s=1

ε√
s

+
4ω2

0

ε
+ g2ω0

t∑
s=1

ε√
s

+ 2gω0

t∑
s=1

‖Lωs‖+ 2gω0‖Lωa
t+1‖t

6
4ω2

0

ε
+ (8ω2

0ε+ 2g2ω0
ε)
√
t+ 4gω0

t∑
s=1

‖Lωs‖ (38)

Since the term
∑t
s=1 ‖Lωs‖ satisfies the similar relationship as that of (36), we further get that

u(t,ωa
t+1) 6 2β′ω1

+ 2β′ω2

√
t (39)

By (34), (37) and (39), we get the inequality on the right side of Theorem 3. From Lemma 5, we have

J(θ∗,ω∗)− J(θat+1,ω
a
t+1) 6

u(t,ω∗) + u(t,θat+1)

2t
(40)

Using the similar derivation process as that of (35)-(39), we can get Theorem 3.
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