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Robust methods for uncertain problems have drawn exten-
sive attention across diverse fields, including science, social
science, and military affairs. For uncertain problems, one
usually considers the least favorable case and chooses the
most reliable scheme—the well-known minimax criterion,
which has been extensively studied [1].
criterion, a minimum cost solution for the least favorable
case under uncertain assumptions provides a minimum cost
upper bound, regardless of which assumption holds true.
Due to this advantage, there are numerous applications in
estimation, filtering, decision, detection, statistics, control,
and optimization. However, this traditional criterion is crit-
icized because of its conservativeness [2]. Therefore, a lot of
research is dedicated to improving the traditional minimax.

In terms of this

An uncertain problem may involve various types of prior
knowledge, such as uncertainty levels and probability dis-
tributions, along with differing practical requirements. For
example, some scenarios require a minimal worst-case cost
deviation upper bound between the robust solution and all
potential actual solutions, while others may favor minimiz-
ing average cost deviation or total cost deviation to tolerate
uncertainty. In this study, we will develop a new scheme
that is more globally robust and applicable for dealing with
uncertain problems. Furthermore, the corresponding glob-
ally robust solution (GRS) will also be discussed. In our
new scheme, the GRS can leverage a priori problem knowl-
edge and meet practical requirements. Therefore, it can
address a wider range of uncertain problems than previous
robust methods, leading to better performance. We empha-
size that the advantages of the GRS compared to traditional
minimax methods stem from a crucial technical change. The
GRS relies more on the entire optimal solution set, rather
than solely depending on the least favorable case.

To visually clarify the above statement, Appendix A in-
troduces the main idea of our scheme through well-known
Bayesian binary hypothesis testing with unknown a priori
probabilities. We then generalize the GRS and highlight
its advantages over minimax solutions, followed by the in-
troduction of specific GRSs based on various criteria. In
Appendix B, we present a signal detection example with
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uncertain noise to demonstrate how to obtain the GRS and
further verify the analyses presented above. Finally, we will
provide some concluding remarks.

General formulation and several criteria for the GRS. In
an uncertain problem, an assumption A € A is not precisely
known, and the optimal solution S(A) € S(A) correspond-
ing to A is determined based on a specific criterion. Here,
A represents the set of all possible actual assumptions, and
S is the set of corresponding optimal solutions.

A natural idea is to consider the difference between the
robust solution S(A*) and the optimal solution S(A), i.e.,
[|S(A*) — S(A)|| for a specific norm || - ||. When solving
this difference is difficult, we can use C'(A, S(A*)) (e.g., the
mean squared error (MSE) in estimation problems or the er-
ror probability in hypothesis testing problems) to represent
the loss of the robust solution S(A*) when the true hypothe-
sis is A. For a fixed A* € A, the cost can be denoted simply
as Ca=(A). Clearly, when A* is the same as the actual as-
sumption A, the cost function C4(A) depends only on A
and can be denoted as C'(A). This represents the minimal
cost function for each actual assumption A according to the
given criterion. Using the above notations, we can formulate
the general GRS as follows:

AC = argmin g« [|Cax (-) — C(-)|le (1)

with the optimal solution S(A%) and the cost function
Cac (). That is to say, in the new scheme, the GRS AG
determines the cost function C4c (A) which is an optimal
approximation to the minimal cost function C(A) of every
actual assumption A in terms of the given criterion || - ||c.

Remark 1. The above framework has broad applications.
For instance, in the uncertain estimator problem, where the
observation y is used to estimate the random signal x, as-
sumption A can be viewed as the joint density pa(z,y). The
solution S(A) represents the optimal linear estimator asso-
ciated with p4(z,y). Furthermore, the cost C(A, S(A*)) is
the MSE between the estimator corresponding to the as-
sumption pa=(z,y) and the random signal z. The goal of
the optimal robust estimator in our scheme is to find the op-
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timal density p ¢ (z,y) based on certain criteria, resulting
in the global optimal estimator.

Remark 2. The GRS in the new uncertain scheme is es-
sentially to derive an optimal approximation to the optimal
solution cost function from a feasible solution cost function
set in terms of a given criterion. Clearly, this is an infinite-
dimensional optimization problem.

Advantages of the GRS. Based on the discussion above,
we can conclude the advantages of the GRS in addressing
the shortcomings of the minimax criterion solution.

Advantage 1. Global robustness. Compared to the
conservativeness of minimax solutions, S(A%) is a globally
robust solution that minimum [|Cyc (-) — C(-)||c since C(:)
is the cost functional of the entire solutions set of the uncer-
tain problem. In other words, the GRS globally suppresses
the deviations across the entire minimum cost curve C(-).

Advantage 2. Utilizing more problem knowledge.
In contrast to minimax solutions, which focus only on the
least favorable case, C'4c (A) depends strongly on the en-
tire problem knowledge, making it sensitive to even slight
changes. Furthermore, in the following section, we will
present specific criteria for the GRS to effectively use avail-
able knowledge and meet practical requirements.

Advantage 3. Improve the performance. The GRS
generally outperforms traditional minimax solutions, as con-
firmed by the experiments in Appendix B. Notably, the GRS
avoids trivial solutions. Even in Bayesian binary hypothesis
testing, where the two families of uncertain conditional den-
sities intersect, as noted in [3], the GRS remains nontrivial.

Remark 3. We acknowledge that the GRS does not offer
a worst-case upper bound for losses like the minimax crite-
rion. In minimax, the loss remains below the upper bound
regardless of the uncertainty A. In contrast, the losses of
GRS can be large for some unfavorable assumptions.

Then, we introduce some specific criteria for the GRS.

GRS minimax (GRM). Incorporating the minimax
idea along with the information from the optimal cost func-
tion C(-), the GRM criterion is here defined by

[Cax(-) = C()lle = max {Cax(A) — C(A)|A € A}, (2)
i.e., AG of the GRM solution is given by

A = Arg'lgri\max {Ca+(A) — C(A)|A € A}. (3)

According to (2) and (3), it is easy to see that the regret
estimation in [4] and the set-membership estimation in [5]
are the two special cases of the above GRM solutions.

Minimum average deviation (MAD). If the uncer-
tain assumption A is a parameter with no prior knowledge of
its distribution on 4, one typically assumes A is uniformly
distributed and prefers to minimize the average deviation
(MAD) of Cy=(A) — C(A) over A. Thus, the MAD crite-
rion in (1) can be defined as

ICax () = COlle = /A(CA*(A) _C(A)dA. (@)

Since [, C(A)dA is a constant that does not affect the
choice of the optimal value and can be ignored, the opti-
mization problem can be simplified to finding

G _ : .
A —argAn;l‘lgI}“/J;C'A (A)dA. (5)
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Minimum expectation deviation (MED). If the un-
certain assumption A is a parameter with known statistical
information, such as its probability density q(A) on A. This
prior knowledge is valuable and should be utilized to en-
hance the solution’s performance. Therefore, the MED in
(1) can be defined as

||CA*(')_C(')||C:AQ(A)(CA*(A)_C(A))dA~ (6)

Similarly, since [, ¢(A)C(A)dA is a constant that can be
ignored, we only need to consider solving

A% = arg Arg'lgri\/;‘ q(A)Cax(A)dA. (7)

Notably, when the exact distribution of the parameters is
unknown, we can focus on coarse information, such as iden-
tifying a robust solution by determining where the parame-
ters are concentrated at a particular point.

Remark 4. The MAD can be seen as a form of MED when
the uncertainty follows a uniform distribution, as their ob-
jectives differ by a constant factor. Additionally, the GRM
(minimax) criterion, even within the GRS scheme, cannot
fully utilize global knowledge, like the probability density
g(A). This shows the GRM has some degree of locality, but
it still provides the advantage of guaranteeing a minimal up-
per bound on deviations between the GRM and the optimal
cost across all cases.

Remark 5. When the uncertainty follows a distribution
with single point or very small area around the least favor-
able case, the MED criterion takes the same optimization
equation as the traditional minimax criterion. However,
they both come respectively from two completely different
optimization frameworks.

Conclusion. We have established the new robust
scheme—the GRS for uncertain problems in a more global
sense. The new scheme can utilize various optimization cri-
teria to sufficiently take advantage of different prior problem
knowledge and satisfy practical requirements. It may have
more extensive applications than the traditional minimax
solution. Since uncertain problems exist everywhere, and
the traditional minimax is extensively applied in many ar-
eas, such as communication, signal detection, medical diag-
nosis, automation, control, and image processing, the GRS
method can also be extensively applied to those areas.

Supporting information Appendixes A and B. The sup-
porting information is available online at info.scichina.com and
link.springer.com. The supporting materials are published as
submitted, without typesetting or editing. The responsibility
for scientific accuracy and content remains entirely with the au-
thors.
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