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Robust methods for uncertain problems have drawn exten-

sive attention across diverse fields, including science, social

science, and military affairs. For uncertain problems, one

usually considers the least favorable case and chooses the

most reliable scheme—the well-known minimax criterion,

which has been extensively studied [1]. In terms of this

criterion, a minimum cost solution for the least favorable

case under uncertain assumptions provides a minimum cost

upper bound, regardless of which assumption holds true.

Due to this advantage, there are numerous applications in

estimation, filtering, decision, detection, statistics, control,

and optimization. However, this traditional criterion is crit-

icized because of its conservativeness [2]. Therefore, a lot of

research is dedicated to improving the traditional minimax.

An uncertain problem may involve various types of prior

knowledge, such as uncertainty levels and probability dis-

tributions, along with differing practical requirements. For

example, some scenarios require a minimal worst-case cost

deviation upper bound between the robust solution and all

potential actual solutions, while others may favor minimiz-

ing average cost deviation or total cost deviation to tolerate

uncertainty. In this study, we will develop a new scheme

that is more globally robust and applicable for dealing with

uncertain problems. Furthermore, the corresponding glob-

ally robust solution (GRS) will also be discussed. In our

new scheme, the GRS can leverage a priori problem knowl-

edge and meet practical requirements. Therefore, it can

address a wider range of uncertain problems than previous

robust methods, leading to better performance. We empha-

size that the advantages of the GRS compared to traditional

minimax methods stem from a crucial technical change. The

GRS relies more on the entire optimal solution set, rather

than solely depending on the least favorable case.

To visually clarify the above statement, Appendix A in-

troduces the main idea of our scheme through well-known

Bayesian binary hypothesis testing with unknown a priori

probabilities. We then generalize the GRS and highlight

its advantages over minimax solutions, followed by the in-

troduction of specific GRSs based on various criteria. In

Appendix B, we present a signal detection example with

uncertain noise to demonstrate how to obtain the GRS and

further verify the analyses presented above. Finally, we will

provide some concluding remarks.

General formulation and several criteria for the GRS. In

an uncertain problem, an assumption A ∈ A is not precisely

known, and the optimal solution S(A) ∈ S(A) correspond-

ing to A is determined based on a specific criterion. Here,

A represents the set of all possible actual assumptions, and

S is the set of corresponding optimal solutions.

A natural idea is to consider the difference between the

robust solution S(A∗) and the optimal solution S(A), i.e.,

‖S(A∗) − S(A)‖ for a specific norm ‖ · ‖. When solving

this difference is difficult, we can use C(A, S(A∗)) (e.g., the

mean squared error (MSE) in estimation problems or the er-

ror probability in hypothesis testing problems) to represent

the loss of the robust solution S(A∗) when the true hypothe-

sis is A. For a fixed A∗ ∈ A, the cost can be denoted simply

as CA∗ (A). Clearly, when A∗ is the same as the actual as-

sumption A, the cost function CA(A) depends only on A

and can be denoted as C(A). This represents the minimal

cost function for each actual assumption A according to the

given criterion. Using the above notations, we can formulate

the general GRS as follows:

AG = argminA∗‖CA∗ (·)− C(·)‖c (1)

with the optimal solution S(AG) and the cost function

C
AG (·). That is to say, in the new scheme, the GRS AG

determines the cost function C
AG (A) which is an optimal

approximation to the minimal cost function C(A) of every

actual assumption A in terms of the given criterion ‖ · ‖c.

Remark 1. The above framework has broad applications.

For instance, in the uncertain estimator problem, where the

observation y is used to estimate the random signal x, as-

sumption A can be viewed as the joint density pA(x, y). The

solution S(A) represents the optimal linear estimator asso-

ciated with pA(x, y). Furthermore, the cost C(A, S(A∗)) is

the MSE between the estimator corresponding to the as-

sumption pA∗(x, y) and the random signal x. The goal of

the optimal robust estimator in our scheme is to find the op-

*Corresponding author (email: e.b.song@163.com)

†These authors contributed equally to this work.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-4560-2&domain=pdf&date_stamp=2025-10-23
https://doi.org/10.1007/s11432-023-4560-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-023-4560-2
https://doi.org/10.1007/s11432-023-4560-2


Zhu Y M, et al. Sci China Inf Sci December 2025, Vol. 68, Iss. 12, 229202:2

timal density p
AG(x, y) based on certain criteria, resulting

in the global optimal estimator.

Remark 2. The GRS in the new uncertain scheme is es-

sentially to derive an optimal approximation to the optimal

solution cost function from a feasible solution cost function

set in terms of a given criterion. Clearly, this is an infinite-

dimensional optimization problem.

Advantages of the GRS. Based on the discussion above,

we can conclude the advantages of the GRS in addressing

the shortcomings of the minimax criterion solution.

Advantage 1. Global robustness. Compared to the

conservativeness of minimax solutions, S(AG) is a globally

robust solution that minimum ‖C
AG (·) − C(·)‖c since C(·)

is the cost functional of the entire solutions set of the uncer-

tain problem. In other words, the GRS globally suppresses

the deviations across the entire minimum cost curve C(·).

Advantage 2. Utilizing more problem knowledge.

In contrast to minimax solutions, which focus only on the

least favorable case, C
AG (A) depends strongly on the en-

tire problem knowledge, making it sensitive to even slight

changes. Furthermore, in the following section, we will

present specific criteria for the GRS to effectively use avail-

able knowledge and meet practical requirements.

Advantage 3. Improve the performance. The GRS

generally outperforms traditional minimax solutions, as con-

firmed by the experiments in Appendix B. Notably, the GRS

avoids trivial solutions. Even in Bayesian binary hypothesis

testing, where the two families of uncertain conditional den-

sities intersect, as noted in [3], the GRS remains nontrivial.

Remark 3. We acknowledge that the GRS does not offer

a worst-case upper bound for losses like the minimax crite-

rion. In minimax, the loss remains below the upper bound

regardless of the uncertainty A. In contrast, the losses of

GRS can be large for some unfavorable assumptions.

Then, we introduce some specific criteria for the GRS.

GRS minimax (GRM). Incorporating the minimax

idea along with the information from the optimal cost func-

tion C(·), the GRM criterion is here defined by

‖CA∗ (·)− C(·)‖c = max
{

CA∗ (A)− C(A)|A ∈ A
}

, (2)

i.e., AG of the GRM solution is given by

AG = min
A∗∈A

max
{

CA∗ (A)− C(A)|A ∈ A
}

. (3)

According to (2) and (3), it is easy to see that the regret

estimation in [4] and the set-membership estimation in [5]

are the two special cases of the above GRM solutions.

Minimum average deviation (MAD). If the uncer-

tain assumption A is a parameter with no prior knowledge of

its distribution on A, one typically assumes A is uniformly

distributed and prefers to minimize the average deviation

(MAD) of CA∗ (A) − C(A) over A. Thus, the MAD crite-

rion in (1) can be defined as

‖CA∗ (·)− C(·)‖c =

∫

A

(CA∗ (A) − C(A))dA. (4)

Since
∫

A
C(A)dA is a constant that does not affect the

choice of the optimal value and can be ignored, the opti-

mization problem can be simplified to finding

AG = arg min
A∗∈A

∫

A

CA∗ (A)dA. (5)

Minimum expectation deviation (MED). If the un-

certain assumption A is a parameter with known statistical

information, such as its probability density q(A) on A. This

prior knowledge is valuable and should be utilized to en-

hance the solution’s performance. Therefore, the MED in

(1) can be defined as

‖CA∗ (·)− C(·)‖c =

∫

A

q(A)(CA∗ (A)− C(A))dA. (6)

Similarly, since
∫

A
q(A)C(A)dA is a constant that can be

ignored, we only need to consider solving

AG = arg min
A∗∈A

∫

A

q(A)CA∗ (A)dA. (7)

Notably, when the exact distribution of the parameters is

unknown, we can focus on coarse information, such as iden-

tifying a robust solution by determining where the parame-

ters are concentrated at a particular point.

Remark 4. The MAD can be seen as a form of MED when

the uncertainty follows a uniform distribution, as their ob-

jectives differ by a constant factor. Additionally, the GRM

(minimax) criterion, even within the GRS scheme, cannot

fully utilize global knowledge, like the probability density

q(A). This shows the GRM has some degree of locality, but

it still provides the advantage of guaranteeing a minimal up-

per bound on deviations between the GRM and the optimal

cost across all cases.

Remark 5. When the uncertainty follows a distribution

with single point or very small area around the least favor-

able case, the MED criterion takes the same optimization

equation as the traditional minimax criterion. However,

they both come respectively from two completely different

optimization frameworks.

Conclusion. We have established the new robust

scheme—the GRS for uncertain problems in a more global

sense. The new scheme can utilize various optimization cri-

teria to sufficiently take advantage of different prior problem

knowledge and satisfy practical requirements. It may have

more extensive applications than the traditional minimax

solution. Since uncertain problems exist everywhere, and

the traditional minimax is extensively applied in many ar-

eas, such as communication, signal detection, medical diag-

nosis, automation, control, and image processing, the GRS

method can also be extensively applied to those areas.
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