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In recent years, terminal iterative learning control (TILC)
[1,2] has attracted more attention for specific control tasks
where the only available measurement is the terminal state
or terminal output, and the ultimate control objective is
also the terminal state or terminal output, instead of the
whole trajectory of the system. Since then, TILC has been
applied to many applications, such as in station stop control
of a train, rapid thermal processing chemical vapor deposi-
tion (RTPCVD) system, and the multi-agent systems.

However, the existing results with TILC can achieve
tracking error convergence only when the iteration tends to
infinity. Nevertheless, in practical applications, more em-
phasis is placed on maintaining the tracking error within an
acceptable range for finite iterations rather than pursuing
the theoretical zero error after infinite iterations. Hence,
it is very meaningful to carry out the research on finite-
iteration learning control. The finite-iteration convergence
of linear systems was investigated in exploratory research
in [3]. However, its finite convergence can be obtained di-
rectly from the existing infinite zero-tracking convergence.
Additionally, the algorithm design requires known informa-
tion about the model of the system.

Based on the above analysis, this study aims to design
a novel finite-iteration TILC (FITILC) method for nonlin-
ear discrete-time single input single output (SISO) systems.
First, an equivalent linear iterative data model is established
for unknown SISO systems. Then, a novel definition of the
finite convergence of the iterative domain is given, and an
iterative learning control algorithm based on the fractional
power of the terminal error is constructed. The main con-
tributions of this study are summarized as follows. (1) This
study proposes an iterative learning control algorithm with
finite-iteration convergence, where the convergence of track-
ing errors can be guaranteed within a finite-iteration. In
contrast, existing results require an infinite-iteration to en-
sure convergence. (2) Compared with existing TILCs, the
control input update algorithm in this study uses the frac-
tional power of terminal tracking error. Besides, the frac-
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tional power update has faster convergence through simula-
tion results. (3) The finite iteration learning control algo-
rithm designed in this study is conducted under the data-
driven framework, where the design and analysis of the con-
troller only require input-output (I/O) data, without the
need for any model information. In contrast, the results
of [3] require the model information to be known.

Problem formulation. Consider a discrete-time SISO
nonlinear system as follows:

yk(t+1) = f(yk(t)vuk)v (1)

where k denotes the number of repetitions for the system,
t =0,1,...,T is the sampling time index, uy is the input
of the system, yj denotes the output of the system, where
only yi(T) can be measured at the end of every iteration
and f(-) is an unknown vector valued function.

In each iteration, the relationship between the input and
output along the iteration domain can be represented by the
following functions:

yk(1) = £y (0), uk) = w' (yx(0), uk),
Ye(2) = fw (Y (0), up), ug) = w? (yx(0), ug),

un(@) = £ (7 (@e(0) wn) s w) = w7 (g (0) ) (2)
)

where y,(0) is the system and
wl(-),...,wT(-) are unknown nonlinear functions.

initial value of

Assumption 1 ([1]).
trollable.

Assumption 2 ([1]). The initial output value y(0) is
unchanged at every iteration k, i.e., Vk, yx(0) = yr_1(0).

The system (1) is completely con-

Assumption 3. The nonlinear function w? (-) satisfies the
generalized Lipschitz condition

w” (y1,u1) — wh (y2, u2)| < Ly [y1 — y2| + Lu |u1 — ual,

where Ly and L, are two positive Lipschitz constants.
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Using the mean value theorem for (2) and combined with
Assumption 2, it yields

Ay (T) = yr(T) — yr—1(T)
= w” (y(0), ur) — w” (Y (0) — Ayx(0), u, — Auy)
=wD% (xi) Auy, = O Aug, (3)

where Aup = up — up_1, Xk € [Ug,ug_1], and P} =
wh® (x)-

Assumption 4. wDv (x%) has upper and lower bounds
and is strictly nonzero, @ is also bounded and the sign of
P, is always consistent with that of ®g. Without loss of
generality, we assume 0 < [; < |§g| < 2.

Remark 1. Assumptions 1-3 are common for the design
of learning control for nonlinear systems. Note that we only
need the existence of the lower and upper bounds in As-
sumption 4 without requiring their exact values.

Then, Eq. (1) can be rewritten as
Ye(T) = yr—1(T) + PrAug. 4)

Remark 2. From (4), we find that nonlinear functions
f(-,-) are compressed into an iterative-varying parameter
®y.. Thus, it is very difficult to establish the dynamic equa-
tions of & with mathematical formulas. However, through
a large number of simulations, we find that its numerical
size is relatively simple and easy to estimate.

Theorem 1 ([4,5]).
be run repeatedly,

Consider a dynamic system that can

hit1(t) = hi(t) — ahi (t) — bhy(t) + Ok(t), (4)

where 0 < b < 1 and 0 < o < 1 are odd fractions. If
Oy (t) satisfies |Og(¢t)] < A with X as a bounded constant,
then hy(t) can converge to a bounded range |hy(t)| < (1 +
oTo7 — o1=7)-max((\/a) z , (ﬁ)ﬁ) in finite-iteration.
Remark 3. Although Theorem 1 is similar to Lemma
3.1 in [5] in terms of mathematical expressions, there is a
significant difference in their research focus. Theorem 3 fo-
cuses on the change of the system in the iterative domain,
which involves recursive updates of the system states and
iterative optimization, which is closely related to our study
of discrete-time systems and iterative algorithms. In con-
trast, Lemma 3.1 focuses on the dynamics of the system in
the time domain, which studies the behavior of the system
state that changes continuously over time. This difference
implies that although the two theorems are formally sim-
ilar, the practical problems and application scenarios they
address are completely different.

Objective of control. For the nonlinear system 1 with
unknown model information, this study aims to design a
FITILC strategy. This strategy can ensure that the termi-
nal output of the system accurately tracks the preset target
value within finite-iterations. At the same time, the bound-
edness of the control input uy is guaranteed to ensure the
stability and reliability of the whole control process.

Controller design. Define the terminal control input in-
dex function and iterative estimate algorithm as follows:

J(ug) = |ef_1(T) +ep1(T) — 2‘1>kAuk|2 + MAug?, (6)
. - 2 - .
J(®r) = ’Aykfl(T) - (I)kA“kfl‘ + /J"I)k —®p_1|, (7)

where A > 0 and g > 0 are the weighting factors, ex(T) =
ya — Yk (T) denotes the tracking error, @y is the estimation
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of @, at the kth iteration. According to the optimal condi-
tion of 8J(uy)/Our = 0 and w@w/a@k =0, then we get
the FITILC for system (1) as follows:

N(Ayg_1 (T) = Bpo_y Aug_ 1) Aug_y
A+ [ A |
‘/1\’1@ = ‘/1;0, if ’&\)k’ <e or sign(:ﬁk) #* sign(‘/l;o)7

P =Ty +

(8

2p~2I\>;c

Up = Up—1 + ————5
A+ 4Dy

(e7_1(T) + ex—1(T)), 9)

where 0 < 1 < 2, p > 0. € is a very small positive integer,
usually € = 10~% or e = 1072,

Theorem 2. For the discrete-time SISO nonlinear sys-

tem (1) satisfies Assumptions 1-4, and the system uses the
proposed FITILC scheme (8) and (9) can guarantee the fol-
lowing.

(i) The estimation of ®,, is bounded for every iterations
k.

(ii) The terminal error eg(7T') converges to a bounded re-
gion within finite-iteration.

The proofs of Theorems 1 and 2 are included in Ap-
pendixes A and B, respectively. The proposed results are
illustrated by a numerical simulation, shown in Appendix C.

Conclusion. This study addresses the problem of fast ter-
minal output tracking control in nonlinear systems. Based
on the existing TILC schemes, this study ingeniously in-
tegrates finite-iteration control strategies with terminal it-
erative learning control to propose an innovative FITILC
scheme. The controller design and analysis rely entirely on
measured I/O data of the system. No additional model in-
formation is required. A rigorous mathematical analysis en-
sures that the effectiveness of the proposed method can be
theoretically guaranteed. Finally, the efficacy and superi-
ority of the designed TFILC method are validated through
a simulation study. Future research work will mainly focus
on extending the devised FITILC approach to multi-input
multi-output nonlinear systems as well as multi-agent sys-
tems.
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