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In recent years, terminal iterative learning control (TILC)

[1, 2] has attracted more attention for specific control tasks

where the only available measurement is the terminal state

or terminal output, and the ultimate control objective is

also the terminal state or terminal output, instead of the

whole trajectory of the system. Since then, TILC has been

applied to many applications, such as in station stop control

of a train, rapid thermal processing chemical vapor deposi-

tion (RTPCVD) system, and the multi-agent systems.

However, the existing results with TILC can achieve

tracking error convergence only when the iteration tends to

infinity. Nevertheless, in practical applications, more em-

phasis is placed on maintaining the tracking error within an

acceptable range for finite iterations rather than pursuing

the theoretical zero error after infinite iterations. Hence,

it is very meaningful to carry out the research on finite-

iteration learning control. The finite-iteration convergence

of linear systems was investigated in exploratory research

in [3]. However, its finite convergence can be obtained di-

rectly from the existing infinite zero-tracking convergence.

Additionally, the algorithm design requires known informa-

tion about the model of the system.

Based on the above analysis, this study aims to design

a novel finite-iteration TILC (FITILC) method for nonlin-

ear discrete-time single input single output (SISO) systems.

First, an equivalent linear iterative data model is established

for unknown SISO systems. Then, a novel definition of the

finite convergence of the iterative domain is given, and an

iterative learning control algorithm based on the fractional

power of the terminal error is constructed. The main con-

tributions of this study are summarized as follows. (1) This

study proposes an iterative learning control algorithm with

finite-iteration convergence, where the convergence of track-

ing errors can be guaranteed within a finite-iteration. In

contrast, existing results require an infinite-iteration to en-

sure convergence. (2) Compared with existing TILCs, the

control input update algorithm in this study uses the frac-

tional power of terminal tracking error. Besides, the frac-

tional power update has faster convergence through simula-

tion results. (3) The finite iteration learning control algo-

rithm designed in this study is conducted under the data-

driven framework, where the design and analysis of the con-

troller only require input-output (I/O) data, without the

need for any model information. In contrast, the results

of [3] require the model information to be known.

Problem formulation. Consider a discrete-time SISO

nonlinear system as follows:

yk(t + 1) = f(yk(t), uk), (1)

where k denotes the number of repetitions for the system,

t = 0, 1, . . . , T is the sampling time index, uk is the input

of the system, yk denotes the output of the system, where

only yk(T ) can be measured at the end of every iteration

and f(·) is an unknown vector valued function.

In each iteration, the relationship between the input and

output along the iteration domain can be represented by the

following functions:

yk(1) = f(yk(0), uk) = w1(yk(0), uk),

yk(2) = f(w1(yk(0), uk), uk) = w2(yk(0), uk),

..

.

yk(T ) = f
(
wT−1 (yk(0), uk) , uk

)
= wT (yk(0), uk) , (2)

where yk(0) is the initial value of system and

w1(·), . . . , wT (·) are unknown nonlinear functions.

Assumption 1 ( [1] ). The system (1) is completely con-

trollable.

Assumption 2 ( [1] ). The initial output value yk(0) is

unchanged at every iteration k, i.e., ∀k, yk(0) = yk−1(0).

Assumption 3. The nonlinear function wT (·) satisfies the

generalized Lipschitz condition
∣∣∣wT (y1, u1)− wT (y2, u2)

∣∣∣ 6 Ly |y1 − y2|+ Lu |u1 − u2| ,

where Ly and Lu are two positive Lipschitz constants.
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Using the mean value theorem for (2) and combined with

Assumption 2, it yields

∆yk(T ) = yk(T ) − yk−1(T )

= wT (yk(0), uk) −wT (yk(0) −∆yk(0), uk −∆uk)

= wT,u (χk)∆uk = Φk∆uk, (3)

where ∆uk = uk − uk−1, χk ∈ [uk, uk−1], and Φk =

wT,u (χk).

Assumption 4. wT,u (χk) has upper and lower bounds

and is strictly nonzero, Φk is also bounded and the sign of

Φk is always consistent with that of Φ0. Without loss of

generality, we assume 0 < l1 6 |Φk | 6 l2.

Remark 1. Assumptions 1–3 are common for the design

of learning control for nonlinear systems. Note that we only

need the existence of the lower and upper bounds in As-

sumption 4 without requiring their exact values.

Then, Eq. (1) can be rewritten as

yk(T ) = yk−1(T ) + Φk∆uk. (4)

Remark 2. From (4), we find that nonlinear functions

f(·, ·) are compressed into an iterative-varying parameter

Φk. Thus, it is very difficult to establish the dynamic equa-

tions of Φk with mathematical formulas. However, through

a large number of simulations, we find that its numerical

size is relatively simple and easy to estimate.

Theorem 1 ( [4,5] ). Consider a dynamic system that can

be run repeatedly,

hk+1(t) = hk(t) − ahσ
k (t) − bhk(t) +Ok(t), (5)

where 0 < b < 1 and 0 < σ < 1 are odd fractions. If

Ok(t) satisfies |Ok(t)| < λ with λ as a bounded constant,

then hk(t) can converge to a bounded range |hk(t)| 6 (1 +

σ
σ

1−σ −σ
1

1−σ ) ·max((λ/a)
1

σ , ( a
1−b

)
1

1−σ ) in finite-iteration.

Remark 3. Although Theorem 1 is similar to Lemma

3.1 in [5] in terms of mathematical expressions, there is a

significant difference in their research focus. Theorem 3 fo-

cuses on the change of the system in the iterative domain,

which involves recursive updates of the system states and

iterative optimization, which is closely related to our study

of discrete-time systems and iterative algorithms. In con-

trast, Lemma 3.1 focuses on the dynamics of the system in

the time domain, which studies the behavior of the system

state that changes continuously over time. This difference

implies that although the two theorems are formally sim-

ilar, the practical problems and application scenarios they

address are completely different.

Objective of control. For the nonlinear system 1 with

unknown model information, this study aims to design a

FITILC strategy. This strategy can ensure that the termi-

nal output of the system accurately tracks the preset target

value within finite-iterations. At the same time, the bound-

edness of the control input uk is guaranteed to ensure the

stability and reliability of the whole control process.

Controller design. Define the terminal control input in-

dex function and iterative estimate algorithm as follows:

J(uk) =
∣∣eσk−1(T ) + ek−1(T ) − 2Φk∆uk

∣∣2 + λ|∆uk|
2, (6)

J(Φ̂k) =
∣∣∣∆yk−1(T )− Φ̂k∆uk−1

∣∣∣
2

+ µ
∣∣∣Φ̂k − Φ̂k−1

∣∣∣
2

, (7)

where λ > 0 and µ > 0 are the weighting factors, ek(T ) =

yd − yk(T ) denotes the tracking error, Φ̂k is the estimation

of Φk at the kth iteration. According to the optimal condi-

tion of ∂J(uk)/∂uk = 0 and ∂J(Φ̂k)
/
∂Φ̂k = 0, then we get

the FITILC for system (1) as follows:

Φ̂k = Φ̂k−1 +
η(∆yk−1(T )− Φ̂k−1∆uk−1)∆uk−1

µ + |∆uk−1|
2

, (8)

Φ̂k = Φ̂0, if
∣∣∣Φ̂k

∣∣∣ < ε or sign(Φ̂k) 6= sign(Φ̂0),

uk = uk−1 +
2ρΦ̂k

λ+ 4|Φ̂k|
2

(
eσk−1(T ) + ek−1(T )

)
, (9)

where 0 < η < 2, µ > 0. ε is a very small positive integer,

usually ε = 10−4 or ε = 10−5.

Theorem 2. For the discrete-time SISO nonlinear sys-

tem (1) satisfies Assumptions 1–4, and the system uses the

proposed FITILC scheme (8) and (9) can guarantee the fol-

lowing.

(i) The estimation of Φ̂k is bounded for every iterations

k.

(ii) The terminal error ek(T ) converges to a bounded re-

gion within finite-iteration.

The proofs of Theorems 1 and 2 are included in Ap-

pendixes A and B, respectively. The proposed results are

illustrated by a numerical simulation, shown in Appendix C.

Conclusion. This study addresses the problem of fast ter-

minal output tracking control in nonlinear systems. Based

on the existing TILC schemes, this study ingeniously in-

tegrates finite-iteration control strategies with terminal it-

erative learning control to propose an innovative FITILC

scheme. The controller design and analysis rely entirely on

measured I/O data of the system. No additional model in-

formation is required. A rigorous mathematical analysis en-

sures that the effectiveness of the proposed method can be

theoretically guaranteed. Finally, the efficacy and superi-

ority of the designed TFILC method are validated through

a simulation study. Future research work will mainly focus

on extending the devised FITILC approach to multi-input

multi-output nonlinear systems as well as multi-agent sys-

tems.
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