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Lemma 1. If 0 < σ < 1 and function p(σ) = 1+ σ
σ

1−σ − σ
1

1−σ then xp(σ)− xσpσ(σ) + p(σ)− 1 ⩾ 0 for
any x ∈ [0, 1]

Proof.
First, denote Q(x) = xp(σ) − xσpσ(σ) + p(σ) − 1. Next, it is only necessary to demonstrate that the

minimum value of Q(x) is greater than zero when x ∈ [0, 1]. According to the figure 1, it is clear that
1 < p(σ) < 2, then we can get that Q(0) = p(σ)−1 > 0 and Q(1) = p(σ)−pσ(σ)+p(σ)−1 > 0. Secondly,
by taking the derivative of Q, one obtains Q̇(x) = p(σ) − σxσ−1pσ(σ). It is clear that Q̇(x) > 0 when
x ∈ [0, 1], therefore Q(x) is a monotonically increasing function. Then, we obtain that minx∈[0,1]Q(x) =
Q(0) = 0, which completes the proof.
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Figure 1 Plot of function p(σ).
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Appendix A Proof of Theorem 1

Proof. First, define 02 =

{
|hk(t)| ⩽ p(σ) ·max

(
(λ/a)

1
σ ,

(
a

1−b

) 1
1−σ

)}
, where p(σ) = 1+σ

σ
1−σ −σ

1
1−σ . The following

proof can be divided into two steps. The first step is to demonstrate that hk(t) can enter the bounded region 02 within

finite-iteration. The second step is to ensure that hk(t) does not leave the bounded region 02 after entering it.

Step 1: Considering Lyapunov function Vk(t) = h2k(t), according to equation (5) that

∆Vk(t) = Vk+1 − Vk(t) = − (ahσk (t)+bhk(t)−Ok(t)) (2hk(t)− ahσk (t)− bhk(t) +Ok(t)) . (A1)

Next, our target is to prove that ∆Vk(t) < −c when hk(t) /∈ 02, where c is a small positive constant. If hk(t) is not in

the bounded region 02, there are two cases for hk(t).

Case 1: hk(t) > p(σ) ·max

(
(λ/a)1/σ ,

(
a

1−b

) 1
1−σ

)
.

For one thing, if (λ/a)1/σ >
(

a
1−b

) 1
1−σ

, we can obtain hk(t) > p(σ)(λ/a)1/σ , then ahσk (t) > pσ(σ)λ. By noticing that

|Ok(t)| < λ, we have

ahσk (t)− |Ok(t)|+ bhk > (pσ(σ)− 1)λ+ bhk := ϑ. (A2)

Since p(σ) ∈ (1, 2), λ > 0, then ϑ > 0. For another thing, if (λ/a)1/σ <
(

a
1−b

) 1
1−σ

, we can obtain hk(t) >

p(σ)
(

a
1−b

) 1
1−σ

, then h1−σ
k (t) > p1−σ(σ)

(
a

1−b

)
, further obtain (1 − b)hk(t) > p1−σ(σ)ahσk (t) ⩾ ahσk (t). Based on this

inequality and (A2), 2hk(t)− ahσk (t)− bhk(t) +Ok(t) > ahσk (t) +Ok(t) + bhk(t) > ϑ is given. Substituting this inequality

and (A2) into (A1) gives ∆Vk(t) < −ϑ2 := −c.

Case 2: hk(t) ⩽ −p(σ) ·max

(
(λ/a)1/σ ,

(
a

1−b

) 1
1−σ

)
.

If (λ/a)1/σ >
(

a
1−b

) 1
1−σ

, we get hk(t) ⩽ −p(σ)(λ/a)1/σ , then ahσk (t) ⩽ −pσ(σ)λ, further we obtain

ahσk (t) + bhk −Ok(t) ⩽ (−pσ(σ) + 1)λ+ bhk := ν. (A3)

where ν is a negative number since pσ(σ) > 1 and λ > 0 . On the other hand, hk(t) ⩽ −p(σ)
(

a
1−b

) 1
1−σ

, then (1 −
b)(−h(t))1−σ

k ⩾ p1−σ(σ)a , which implies (1− b)hk(t) ⩽ p1−σ(σ)ahσk (t) .It follows from this inequality and A3, we can get

2hk(t)− ahσk (t)− bhk +Ok(t) ⩽ (2p1−σ(σ)− 1)ahσk (t) + bhk + λ ⩽ ahσk (t) + bhk + λ ⩽ (−pσ(σ) + 1)λ : = ν. (A4)

Substituting this inequality and A3 into A1 results in Vk(t) < −ν2. Therefore, by combining case 1 and case 2, it is

guaranteed that hk(t) enters the bounded region 02 within finite-iteration.

Step 2: In this step, we will prove that if hk(t) is in the region 02, hk+1(t) is also in the region 02. There are also two

cases that need to be discussed.

case1:
(

a
1−b

) 1
1−σ ⩾

(
λ
a

) 1
σ
, furthermore λ ⩽ a

(
a

1−b

) σ
1−σ

In this case, we assume that hk(t) = p(σ)w
(

a
1−b

) 1
1−σ

, 0 < w < 1. According to (5) yields

hk+1(t) ⩽ (1− b)p(σ)w

(
a

1− b

) 1
1−σ

− a (p(σ)w)σ
(

a

1− b

) σ
1−σ

+ λ

⩽ (1− b)p(σ)w

(
a

1− b

) 1
1−σ

− a (p(σ)w)σ
(

a

1− b

) σ
1−σ

+ a

(
a

1− b

) σ
1−σ

⩽ (1− b)

(
a

1− b

) 1
1−σ

(p(σ)w + 1− (p(σ)w)a). (A5)

Next, we discuss the cases of 0 ⩽ p(σ)w ⩽ 1 and 1 ⩽ p(σ)w, respectively. When 0 ⩽ p(σ)w ⩽ 1, we can get (p(σ)w+1−

(p(σ)w)a) ⩽ 1. In the light of this information, it follows from (A5) that hk+1(t) ⩽ (1− b)
(

a
1−b

) 1
1−σ ⩽ p(σ)w

(
a

1−b

) 1
1−σ

.

If p(σ)w > 1, there is (p(σ)w + 1− (p(σ)w)σ) < p(σ)w, then hk+1(t) ⩽ p(σ)w
(

a
1−b

) 1
1−σ

.

As a result, hk+1(t) ∈ 02. A similar proof will show that the assumption of hk(t) = p(σ)w
(

a
1−b

) 1
1−σ

, −1 < w < 0,

will also lead to the conclusion that hk+1(t) ∈ 02.

case2:
(

λ̄
a

) 1
σ
>

(
a

1−b

) 1
1−σ

. Similar to the proof of Case 1, we can obtain that hk+1(t) ∈ 02. The proof of Theorem 1

is completed here.
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Remark 1. Although the proof of Theorem 1 is the same as Lemma 2 in reference [1] in terms of logical structure, the two

are fundamentally different in terms of the specific dimensions of the application. Specifically, Theorem 1 is based on the

iteration axis, with a focus on the dynamic behavior and stability properties of the algorithm during the iteration process.

This is fundamentally different from the traditional timeline analysis. Furthermore, to deal with this two-dimensional

dynamic behavior, we introduce a more complex Lyapunov function in the proof. This Lyapunov function considers the

coupling effect of both time and iteration dimensions, which does not occur in analyses with a single time dimension.

Thus, although seemingly similar in surface structure, our method and results demonstrate new theoretical and technical

contributions in dealing with multidimensional dynamical systems.

Appendix B Proof of Theorem 2

Proof. The proof process is divided into two parts.

(I). The boundedness of estimation value Φ̂k

Let Φ̃k = Φk − Φ̂k indicates the estimation error. Subtracting Φk from both sides of equation (8), we have

Φ̃k = Φ̃k−1 −
ηΦ̃k−1∆uk−1∆uk−1

µ+ |∆uk−1|2
+Φk − Φk−1. (B1)

According to Assumption 4, 0 < |Φk| ⩽ l2, so we can easily get |Φk − Φk−1| < 2l2.Moreover, there have 0 < p1 < 1 such

that the inequation

(
1−

η∆u2
k−1

µ+|∆uk−1|2
)

⩽ p1 holds. Furthermore, taking absolute values on both sides of (B1), one obtains

∣∣∣Φ̃k

∣∣∣ ⩽ ∣∣∣∣∣Φ̃k−1 −
ηΦ̃i

k∆u
2
k−1

µ+ |∆uk−1|2

∣∣∣∣∣+ |Φk − Φk−1| ⩽ p1

∣∣∣Φ̃k−1

∣∣∣+ 2l2

⩽ p1
(
p1

∣∣∣Φ̃k−2

∣∣∣+ 2l2
)
+ 2l2 ⩽ · · · ⩽ pk1

∣∣∣Φ̃0

∣∣∣+ 2l2(1− pk1)

1− p1
. (B2)

which means that Φ̃k is bounded. Then, according to Φ̃k = Φk − Φ̂k and 0 < |Φk| ⩽ l2, it can be concluded that Φ̂k is also

bounded.

(II). The terminal tracking error finite-iteration convergence property

According to (4) and (9), the terminal tracking error can be expressed as follows

ek(T ) = ek−1(T )−
2ρΦΦ̂k

λ+ 4
∣∣∣Φ̂k

∣∣∣2
(
eσk−1(T ) + ek−1(T )

)
= ek−1(T )− Γke

σ
k−1(T )− Γkek−1(T ). (B3)

where Γk = 2ρΦHkΦ̂k

λ+4|Φ̂k|2
. It has been demonstrated that Φ̂k and Φk are bounded. So, 0 < |Γ| ⩽ w < 1 can be guaranteed

under the condition of λ > λmin and ρ < ρmax. Therefore, according to Theorem 1, there is a finite-iteration k∗, for every

iteration k such that

ek(T ) ⩽

(
w

1− w

) 1
1−σ

(1 + σ
σ

1−σ − σ
1

1−σ ) ∀k > k∗.

which implies that ek can converge to a bounded range within finite-iteration.

Since the tracking error ek(T ) has a finite-iterative convergence property outside the stable region, it satisfies

|eσk (T )| ⩽ ϖ
∣∣eσk−1(T )

∣∣ 0 < ϖ ⩽ 1. (B4)

(III). The boundedness of uk
In order to prove uk is bounded, we rewrite equation (9) as follows

∆uk =
2ρΦ̂k

λ+ 4
∣∣∣Φ̂k

∣∣∣2
(
eσk−1(T ) + ek−1(T )

)
. (B5)

Since Φ̂k is bounded, then 2ρΦ̂k

λ+4|Φ̂k|2
is also bounded. Without loss of generality, let’s assume that 2ρΦ̂k

λ+4|Φ̂k|2
⩽ ψ2 with

ψ2 being a positive constant. Thus, from equation (B4) and (B5), we can eventually get

|uk| ⩽ |∆uk|+ |∆uk−1| · · ·+ |u1| ⩽ ψ2

{
ϖk−2

(∣∣eσ
1
(T )

∣∣+ |e1(T )|
)
+ϖk−3

(∣∣eσ
1
(T )

∣∣+ |e1(T )|
)
+ · · ·

+ ϖ
(∣∣eσ

1
(T )

∣∣+ |e1(T )|
)
+ |u1|

}
⩽
ψ2ϖ(1−ϖk−2)

(∣∣eσ
1
(T )

∣∣+ |e1(T )|
)

1−ϖ
+ |u1| . (B6)

which implies that uk is also bounded.
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Appendix C Simulation examples

This section presents two illustrative examples that demonstrate the efficacy of the proposed FITILC method.

Example 1. Consider a linear SISO system as follows

xk(t+ 1) =


0.5 0.035 0.025

0.0255 0.6 −0.99

0.75 0.03 0.025

xk(t) +
(
0.2 0.2 0.0

)T
uk(t)

y(t) =
(
1.0 0.0 1.0

)T
xk(t)

where t ∈ {0, · · · 20}, desired terminal trajectories yd(20) = 2.

In the simulation, the initial iteration of the control input is designated as u0 = 0 and the initial states are assumed

as xk(0) =
[
0 0 0

]T
for every iteration k. Please note that setting the initial state and control input of the system to

zero is a common and simple choice. Although the initial state theoretically affects the system’s instantaneous dynamics,

our focus is on the control performance of the terminal state, and this impact is designed to diminish gradually during the

iteration process. In addition, the asymptotic convergence of the proposed scheme can be guaranteed by arbitrary initial

input. However, choosing a suitable initial input can expedite the transient convergence rate. The initial estimation is

chosen as Φ̂0 = 1. Then, according to the convergence condition in Theorem 2, select the controller parameter as ρ= 1,

η = 0.2, λ = 1, µ = 1 and σ = 7/9. In order to demonstrate the superiority of the method proposed in this paper, we

specifically selected the control schemes from references [2] and [3] for a comparative simulation analysis with the scheme

designed in this paper.
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Figure C1 Terminal tracking error profile along with iteration axis.

Figure C1 shows the curve of the terminal tracking error with iteration. The horizontal axis represents the iteration

number, while the vertical axis denotes the absolute value of the terminal tracking error. It is evident that the aforementioned

three algorithms are capable of guaranteeing the iterative convergence of the terminal tracking error. Moreover, the tracking

performance of the proposed FITILC is superior to that of OTILC, while the tracking performance of FITILC is superior

to that of literature [2, 3].

Control input uk is shown in Figure C2. It is obvious that the control input is bounded. In addition, the control inputs

of FITILC can reach the desired value at a faster rate than the scheme in [2, 3].

Example 2. In order to further illustrate the applicability of the proposed approach in practical processes. A simulation

is performed on realistic mechanical systems. The dynamic of systems is described as follows [4]
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Figure C2 Optimal Control input along with iteration axis.

 ẋ(t) = v(t)

v̇(t) =
u(t)− frip.(t)− ffri.(t)

m

where x(t) is position (m), v(t) is the speed (m/s), control input u(t) is the developed force (N), m is the combined

mass of the translator and load , ffri.(t) =
(
fc + (fs − fc) exp (−ẋ/ẋδ)δ + fvẋ

)
sgn(ẋ) is the friction force (N), frip.(t) =

b1sin(ω0x(t)) is the ripple force (N).The parameters in the simulation are selected as: m = 0.59, xδ = 0.1, δ = 1, fc = 10

N , fs = 20 N , fv = 10 N · s ·m−1, ω0 = 314 s−1.

Denote x1(t) = x(t), x2(t) = v(t). Next, discretization of the above system using the forward Euler method, we can

obtain 
x1(t+ 1) = h · x2(t) + x1(t)

x2(t+ 1) = x2(t) +
h

m

(
u(t)− frip.(t)− ffri.(t)

)
y(t) = x2(t)

where the asmpling time h = 0.001, t ∈ {0, · · · 500}, terminal desired velocity is yd(T ) = 3 (m/s).

The initial conditions of the system are selected as x1(0) = x2(0) = 0, control input u(0) = 0 for all iteration. The

initial estimation is chosen as Φ̂0 = 1. Then, according to the convergence condition in Theorem 2, select the controller

parameter as ρ= 1,η= 0.2,λ= 1,µ= 1 and σ=7/9. The simulation results shown in Figure C3 show that all schemes can

achieve satisfactory control performance. In addition, the FITILC achieves much better control performance compared to

the existing TILC.

In practical applications, the system will be affected by various disturbances. To further demonstrate the applicability of

the proposed approach to practical processes, some state disturbances and output noises are introduced to the mechanical

model, shown as follows: 
x1(t+ 1) = h · x2(t) + x1(t) + w1(t)

x2(t+ 1) = x2(t) +
h

m

(
u(t)− frip.(t)− ffri.(t)

)
+ w2(t)

y(t) = x2(t) + n(t)

where w1(t) = 0.01 sin(tπ/300)+ 0.01rand(1) and w2(t) = 0.01 sin(tπ/600)+ 0.01rand(1) are the state disturbances; we let

n(t) = 0.05 sin(tπ/1500)+ 0.01rand(1) denotes the output noise. The simulation result is shown in Figure C4. Apparently,
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Figure C3 Terminal tracking error profile along with iteration axis.
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Figure C4 Terminal tracking error profile with disturbances.
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the proposed approach is robust for the uncertain disturbances that exist in system states and outputs. However, there exist

some deviations in output curves that are caused by stochastic measurement noises. The deviations cannot be canceled

since the noise is completely unpredictable.
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