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Lemma 1. If 0 < ¢ < 1 and function p(o) =1+ 077 — o7 then xp(o) —x%p?(0) +p(o) —1 >0 for
any z € [0, 1]
Proof.

First, denote Q(z) = ap(o) — z°p?(0) + p(o) — 1. Next, it is only necessary to demonstrate that the
minimum value of Q(z) is greater than zero when x € [0,1]. According to the figure 1, it is clear that
1 < p(o) < 2, then we can get that Q(0) = p(c)—1 > 0 and Q(1) = p(c) —p°(c)+p(o) —1 > 0. Secondly,
by taking the derivative of Q, one obtains Q(z) = p(c) — o2 p? (). It is clear that Q(z) > 0 when

€ [0, 1], therefore Q(z) is a monotonically increasing function. Then, we obtain that min,cjo,11Q(z) =
Q(0) = 0, which completes the proof.
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Figure 1 Plot of function p(o).
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Appendix A Proof of Theorem 1

1 -
Proof.  First, define Us = {\hk(t)| p(o) - max (()\/a) o (ﬁ> 1= ) }, where p(o) =14+01-7 — oT=7. The following

proof can be divided into two steps. The first step is to demonstrate that hg(¢) can enter the bounded region Uz within
finite-iteration. The second step is to ensure that hy(t) does not leave the bounded region Us after entering it.
Step 1: Considering Lyapunov function Vj(t) = hZ(t), according to equation (5) that

AVi(t) = Vi1 — Vi (t) = — (ahf (1) +bhi(t) — Ok (1)) (2hi(t) — ahf (t) — bhy(t) + Ok(t)) . (A1)

Next, our target is to prove that AV (t) < —c when hi(t) ¢ U2, where c is a small positive constant. If hy(¢) is not in
the bounded region Usg, there are two cases for hg(t).

Case 1: hy(t) > p(o) - max (()\/a)l/a . (ﬁ)ﬁ)

1
For one thing, if (\/a)'/? > (ﬁ) 177 we can obtain hy(t) > p(c)(A/a)'/?, then ahy (t) > p? (o). By noticing that
|0k (t)| < X, we have

ahf (t) — |Ok(t)| + bhy > (p°(0) — )X + bhy := 9. (A2)

_1
Since p(0) € (1,2), A > 0, then ¥ > 0. For another thing, if (A/a)!/7 < (ﬁ) 177 | we can obtain hg(t) >

_1
p(a)(ﬁ) =7 then h1 7(t) > plfo(a)(ﬁ), further obtain (1 — b)hy(t) > p*~7(0)ahf(t) > ahf(t). Based on this
inequality and (A2), 2hy (t) — ah{ (t) — bhg(t) + Ok (t) > ahf (t) 4+ Ok(t) + bhr(t) > ¥ is given. Substituting this inequality
and (A2) into (A1) gives AV (t) < —92 := —c.

Case 2: hy(t) < —p(o) - max (()\/a)l/" ’ (ﬁ)ﬁ)

If (\/a)Y/ > (ﬁ) =7 we get hy, (t) < —p(0)(A/a)*/?, then ahf (t) < —p? (o)A, further we obtain

hz(t) + bhy — Ok (t) < (—p? (o) + )X + bhg :=v. (A3)

_1
where v is a negative number since p®(c) > 1 and A > 0 . On the other hand, h(t) < 7p(0')<ﬁ) =7 then (1 —
b)(—h(t)),lc_" > p'=9(0)a , which implies (1 — b)hy(t) < p'=7(0)ahg(t) .It follows from this inequality and A3, we can get

2h (t) — ahf (t) — bhy + Ok(t) < (2p'~7 (o) — 1)ahy (t) + bhy + X < ahf (t) + bhr + A < (—p7 (o) + DA : =v. (A4)
Substituting this inequality and A3 into A1 results in Vj(t) < —v2. Therefore, by combining case 1 and case 2, it is
guaranteed that hy(t) enters the bounded region Uz within finite-iteration.
Step 2: In this step, we will prove that if hy(t) is in the region Uz, hi41(t) is also in the region Ug. There are also two
cases that need to be discussed.

1 1 _o
casel: (ﬁ) = s (%) furthermore A\ < (1 b) t=e
-
In this case, we assume that hy(t) = p(o)w ( ) ,0 < w < 1. According to (5) yields

() < (1= Dty (12 ) ~a(ployw )0(1:)&“

) ~a(ploe )U(lil)ﬁ”(lib)ﬁ

g(l—b)(lib) 7 o)+ 1 (o)) (45)

<= oploy (1=

Next, we discuss the cases of 0 < p(o)w < 1 and 1 < p(o)w, respectively. When 0 < p(o)w < 1, we can get (p(o)w +1—
L 1

oo (325) 7

(p(o)w)®) < 1. In the light of this information, it follows from (A5) that hgy1(¢) < (1 —b) (1“b)
If p(o)w > 1, there is (p(o)w + 1 — (p(o)w)?) < p(o)w, then hi41(t) < p(o)w (1 b)ﬁ .

As a result, hyyq(t) € Uz. A similar proof will show that the assumption of hy(t) = p(o)w (ﬁ) = , 1 <w<O0,
will also lead to the conclusion that hg11(t) € Us.

1 _1
case2: % 7> (ﬁ) 177 Similar to the proof of Case 1, we can obtain that kg 1(t) € Ua. The proof of Theorem 1

is completed here.
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Remark 1. Although the proof of Theorem 1 is the same as Lemma 2 in reference [1] in terms of logical structure, the two
are fundamentally different in terms of the specific dimensions of the application. Specifically, Theorem 1 is based on the
iteration axis, with a focus on the dynamic behavior and stability properties of the algorithm during the iteration process.
This is fundamentally different from the traditional timeline analysis. Furthermore, to deal with this two-dimensional
dynamic behavior, we introduce a more complex Lyapunov function in the proof. This Lyapunov function considers the
coupling effect of both time and iteration dimensions, which does not occur in analyses with a single time dimension.
Thus, although seemingly similar in surface structure, our method and results demonstrate new theoretical and technical
contributions in dealing with multidimensional dynamical systems.

Appendix B Proof of Theorem 2

Proof.  The proof process is divided into two parts.
(I). The boundedness of estimation value @y
Let & = @) — Py, indicates the estimation error. Subtracting @ from both sides of equation (8), we have

N®x—1Aug_1Aug_q
A | Aug_q |?

Bp = Bp_1 — + &p — Q1. (B1)

According to Assumption 4, 0 < |®g| < l2, so we can easily get |® — Pi_1| < 2l2.Moreover, there have 0 < p; < 1 such

A 2
that the inequation (1 - %) < p1 holds. Furthermore, taking absolute values on both sides of (B1), one obtains
Iz U1
~ ~ n&’};Aui_l ~
“Dk‘ < Ppo1 — —————5 |+ —Pp_1| <p1 "%-1‘ + 22
pt [Aug_1]

2l5(1 — p¥)

[ (B2)

<p1 (pl “51@72‘ +2l2> 2 < < pf ’&’0‘ +

which means that EI;k is bounded. Then, according to &;k =&y — ‘ik and 0 < |®y| < l2, it can be concluded that <T>k is also
bounded.

(IT). The terminal tracking error finite-iteration convergence property

According to (4) and (9), the terminal tracking error can be expressed as follows

2003,
er(T) = ex1(T) = —L="E (e7_y(T) + e _1(T)) = ex1(T) — Tref_1(T) — Tgep_1(T). (B3)
A+4 )@k‘
where I'y, = %. It has been demonstrated that EI;k and @, are bounded. So, 0 < |I'| < w < 1 can be guaranteed
A+4| Dy |

under the condition of A > A\,,in and p < pmaz. Therefore, according to Theorem 1, there is a finite-iteration k*, for every
iteration k such that

o
1—1w

ek(T)<( )1_“ (14075 —gT5) Vk> k*.

which implies that e; can converge to a bounded range within finite-iteration.
Since the tracking error ex(7') has a finite-iterative convergence property outside the stable region, it satisfies

leg (T)| < @ |ef_1 (T)] 0 <w< 1. (B4)

(IIT). The boundedness of uy,
In order to prove uy is bounded, we rewrite equation (9) as follows

20D,
Ay, = —FZ5 (e (T) + ep_1(T)). (B5)
A+ 4’%‘
Since Eﬁk is bounded, then —£22k . is also bounded. Without loss of generality, let’s assume that % < 2 with
A+4|Dy| A+4|2p
12 being a positive constant. Thus, from equation (B4) and (B5), we can eventually get
luk| < [Aug| +|Aug_1] -+ [ua] < 2 {wk*2 ([eZ(D)] + lex(D)]) + =" (|7 (T)] + lex(T)]) + - -
Prw(l = @*72) (|7 (T)] + ler (T)]
+w(|e‘1’(T)|+|el(T)|)+\u1|} < ( L | ) + |ua]. (B6)

1—-w

which implies that u is also bounded.
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Appendix C Simulation examples

This section presents two illustrative examples that demonstrate the efficacy of the proposed FITILC method.

Example 1. Consider a linear SISO system as follows

0.5 0.035 0.025 -
zp(t+1)=10.0255 0.6 —0.99 | zx(t)+ (0.2 0.2 0.0) ug(t)
0.75 0.03 0.025

y(®) = (1.0 0.0 1.0)ka(t)

where ¢ € {0, - 20}, desired terminal trajectories y4(20) = 2.
In the simulation, the initial iteration of the control input is designated as ug = 0 and the initial states are assumed

as ¢ (0) = [0 0 O}T for every iteration k. Please note that setting the initial state and control input of the system to
zero is a common and simple choice. Although the initial state theoretically affects the system’s instantaneous dynamics,
our focus is on the control performance of the terminal state, and this impact is designed to diminish gradually during the
iteration process. In addition, the asymptotic convergence of the proposed scheme can be guaranteed by arbitrary initial
input. However, choosing a suitable initial input can expedite the transient convergence rate. The initial estimation is
chosen as ‘50 = 1. Then, according to the convergence condition in Theorem 2, select the controller parameter as p=1,
n=02,A=1,pu=1and o = 7/9. In order to demonstrate the superiority of the method proposed in this paper, we

specifically selected the control schemes from references [2] and [3] for a comparative simulation analysis with the scheme
designed in this paper.
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Figure C1 Terminal tracking error profile along with iteration axis.

Figure C1 shows the curve of the terminal tracking error with iteration. The horizontal axis represents the iteration
number, while the vertical axis denotes the absolute value of the terminal tracking error. It is evident that the aforementioned
three algorithms are capable of guaranteeing the iterative convergence of the terminal tracking error. Moreover, the tracking
performance of the proposed FITILC is superior to that of OTILC, while the tracking performance of FITILC is superior
to that of literature [2,3].

Control input ug is shown in Figure C2. It is obvious that the control input is bounded. In addition, the control inputs
of FITILC can reach the desired value at a faster rate than the scheme in [2,3].

Example 2. In order to further illustrate the applicability of the proposed approach in practical processes. A simulation
is performed on realistic mechanical systems. The dynamic of systems is described as follows [4]
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Figure C2 Optimal Control input along with iteration axis.

#(t) = v(t)
’l)(t) _ u(t) - frip.(t) - ff’!‘l(t)

where z(t) is position (m), v(t) is the speed (m/s), control input wu(t) is the developed force (N), m is the combined
mass of the translator and load , fy;.(t) = (fc + (fs — fe) exp (—:Z'T/i)(s)(; + fva':> sgn() is the friction force (N), frip.(t) =
bisin(woz(t)) is the ripple force (IV).The parameters in the simulation are selected as: m = 0.59, z5 = 0.1, 6 =1, f. = 10
N, fs=20N, fy =10 N-s-m~1, wyg =314 s~ L.

Denote z1(t) = x(t), z2(t) = v(t). Next, discretization of the above system using the forward Euler method, we can
obtain

z1(t+1) =h-z2(t) + z1(t)
h
2(t+1) = @2(t) + - (w(t) = frip.(t) = frri.(t)

y(t) = z2(t)

where the asmpling time h = 0.001, ¢ € {0, - -- 500}, terminal desired velocity is y4(T") = 3 (m/s).

The initial conditions of the system are selected as z1(0) = z2(0) = 0, control input «(0) = 0 for all iteration. The
initial estimation is chosen as &30 = 1. Then, according to the convergence condition in Theorem 2, select the controller
parameter as p= 1,n= 0.2,A= 1,u= 1 and 0=7/9. The simulation results shown in Figure C3 show that all schemes can
achieve satisfactory control performance. In addition, the FITILC achieves much better control performance compared to

the existing TILC.
In practical applications, the system will be affected by various disturbances. To further demonstrate the applicability of
the proposed approach to practical processes, some state disturbances and output noises are introduced to the mechanical

model, shown as follows:
.Z‘1(t —+ 1) =h- :L‘Q(t) + x1(t) + w1(t)
22t +1) = 22(8) & = ((0) = i () = F52i.(0) + w2(0)
y(t) = z2(t) + n(t)

where w1 (t) = 0.01sin(¢7/300) + 0.01rand(1) and w2(t) = 0.01sin(¢7/600) 4+ 0.01rand(1l) are the state disturbances; we let
n(t) = 0.05sin(tw/1500) + 0.01rand(1) denotes the output noise. The simulation result is shown in Figure C4. Apparently,
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Figure C3 Terminal tracking error profile along with iteration axis.
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Figure C4 Terminal tracking error profile with disturbances.
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the proposed approach is robust for the uncertain disturbances that exist in system states and outputs. However, there exist
some deviations in output curves that are caused by stochastic measurement noises. The deviations cannot be canceled

since the noise is completely unpredictable.
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